NUMBER OF UNDERGRADUATE STUDENTS:
Quarter |
Chem |
Math |
Phys |
Applied Phys |
ESS (all majors) |
Unde |
S2013 |
395 |
421 |
121 |
0 |
181 |
126 |
S2014 |
399 |
488 |
140 |
0 |
213 |
187 |
S2015 |
375 |
580 |
162 |
0 |
232 |
165 |
S2016 |
379 |
735 |
196 |
0 |
204 |
232 |
S2017 |
423 |
960 |
184 |
25 |
209 |
189 |
S2018 |
483 |
1051 |
204 |
76 |
237 |
162 |
![]()
NUMBER OF GRADUATE STUDENTS:
|
S18 |
CHEMISTRY |
195 |
CHM-CHM AND MATL PHY |
10 |
EARTH SYSTEM SCIENCE |
50 |
MATHEMATICS |
100 |
PHY-CHM AND MATL PHY |
26 |
PHYSICS |
94 |
![]()
S18 LECTURE ENROLLMENTS:
Dept |
MATH |
ESS |
CHEM |
PHYSICS |
S2018 |
6303 |
1714 |
5258 |
3582 |
![]()
ENROLLMENTS BY DEPT:
Quarterly Summary for S2018 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Level |
LEC |
DIS |
LAB |
LAB LEC |
RES |
SEM |
TUT |
FLD |
COL |
|
|
|
|
|
|
|
|
|
|
|
CHEM |
Lower-Div |
3551 |
3552 |
2511 |
1251 |
|
|
|
|
|
|
Upper-Div |
372 |
378 |
156 |
|
79 |
8 |
38 |
|
|
|
Grad |
84 |
79 |
5 |
|
196 |
316 |
103 |
|
|
|
Total |
4007 |
4009 |
2672 |
1251 |
275 |
324 |
141 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
ESS |
Lower-Div |
1350 |
1309 |
40 |
|
|
|
|
|
|
|
Upper-Div |
332 |
|
73 |
|
29 |
15 |
|
6 |
|
|
Grad |
32 |
|
|
|
46 |
25 |
19 |
|
|
|
Total |
1714 |
1309 |
113 |
0 |
75 |
40 |
19 |
6 |
0 |
|
|
|
|
|
|
|
|
|
|
|
MATH |
Lower-Div |
5234 |
5144 |
90 |
|
|
|
|
|
|
|
Upper-Div |
906 |
883 |
25 |
|
98 |
|
|
13 |
|
|
Grad |
163 |
18 |
|
|
62 |
126 |
|
|
|
|
Total |
6303 |
6045 |
115 |
0 |
160 |
126 |
0 |
13 |
0 |
|
|
|
|
|
|
|
|
|
|
|
PHYS |
Lower-Div |
3279 |
3194 |
1581 |
|
|
11 |
|
|
|
|
Upper-Div |
210 |
126 |
38 |
|
22 |
|
|
|
|
|
Grad |
93 |
38 |
|
|
107 |
54 |
40 |
|
7 |
|
Total |
3582 |
3358 |
1619 |
0 |
129 |
65 |
40 |
0 |
7 |
CHEMISTRY ENROLLMENTS FOR SPRING 2018 |
|
|
|
|
|
|
|
|
|
|
|
|
CHEM |
1B |
DIS |
651 |
|
CHEM |
192 |
TUT |
32 |
CHEM |
1B |
LEC |
651 |
|
CHEM |
193 |
LEC |
9 |
CHEM |
1C |
DIS |
1411 |
|
CHEM |
199 |
TUT |
6 |
CHEM |
1C |
LEC |
1411 |
|
CHEM |
205 |
DIS |
10 |
CHEM |
1LC |
LAB |
1255 |
|
CHEM |
205 |
LEC |
10 |
CHEM |
H2C |
DIS |
62 |
|
CHEM |
213 |
DIS |
13 |
CHEM |
H2C |
LEC |
62 |
|
CHEM |
213 |
LEC |
13 |
CHEM |
H2LC |
LAB |
62 |
|
CHEM |
218 |
DIS |
17 |
CHEM |
H2LC |
LAB LEC |
62 |
|
CHEM |
218 |
LEC |
17 |
CHEM |
M3C |
DIS |
82 |
|
CHEM |
219 |
DIS |
18 |
CHEM |
M3C |
LEC |
82 |
|
CHEM |
219 |
LEC |
18 |
CHEM |
M3LC |
LAB |
167 |
|
CHEM |
231C |
DIS |
6 |
CHEM |
M3LC |
LAB LEC |
167 |
|
CHEM |
231C |
LEC |
6 |
CHEM |
51A |
DIS |
258 |
|
CHEM |
232B |
DIS |
7 |
CHEM |
51A |
LEC |
258 |
|
CHEM |
232B |
LEC |
7 |
CHEM |
51C |
DIS |
1045 |
|
CHEM |
237 |
DIS |
8 |
CHEM |
51C |
LEC |
1044 |
|
CHEM |
237 |
LEC |
8 |
CHEM |
51LC |
LAB |
963 |
|
CHEM |
244 |
LAB |
5 |
CHEM |
51LC |
LAB LEC |
958 |
|
CHEM |
244 |
LEC |
5 |
CHEM |
H52LC |
LAB |
7 |
|
CHEM |
280 |
RES |
196 |
CHEM |
H52LC |
LAB LEC |
7 |
|
CHEM |
290 |
SEM |
141 |
CHEM |
M52LC |
LAB |
57 |
|
CHEM |
291 |
SEM |
106 |
CHEM |
M52LC |
LAB LEC |
57 |
|
CHEM |
292 |
SEM |
69 |
CHEM |
H90 |
DIS |
43 |
|
CHEM |
299 |
TUT |
1 |
CHEM |
H90 |
LEC |
43 |
|
CHEM |
399 |
TUT |
102 |
CHEM |
107L |
DIS |
72 |
|
|
|
|
|
CHEM |
107L |
LAB |
72 |
|
|
|
|
|
CHEM |
125 |
DIS |
95 |
|
|
|
|
|
CHEM |
125 |
LEC |
95 |
|
|
|
|
|
CHEM |
132C |
DIS |
192 |
|
|
|
|
|
CHEM |
132C |
LEC |
191 |
|
|
|
|
|
CHEM |
138 |
DIS |
12 |
|
|
|
|
|
CHEM |
138 |
LAB |
12 |
|
|
|
|
|
CHEM |
138 |
LEC |
12 |
|
|
|
|
|
CHEM |
153 |
LAB |
19 |
|
|
|
|
|
CHEM |
153 |
LEC |
19 |
|
|
|
|
|
CHEM |
156 |
LAB |
34 |
|
|
|
|
|
CHEM |
156 |
LEC |
34 |
|
|
|
|
|
CHEM |
177L |
DIS |
7 |
|
|
|
|
|
CHEM |
177L |
LAB |
7 |
|
|
|
|
|
CHEM |
180 |
RES |
71 |
|
|
|
|
|
CHEM |
180W |
LAB |
12 |
|
|
|
|
|
CHEM |
180W |
LEC |
12 |
|
|
|
|
|
CHEM |
H180C |
RES |
8 |
|
|
|
|
|
CHEM |
H181W |
SEM |
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ESS ENROLLMENTS FOR SPRING 2018 |
|
|
|
|
|
|
|
|
|
|
|
|
|
EARTHSS |
5 |
DIS |
431 |
|
|
|
|
|
EARTHSS |
5 |
LEC |
431 |
|
|
|
|
|
EARTHSS |
15 |
DIS |
300 |
|
|
|
|
|
EARTHSS |
15 |
LEC |
300 |
|
|
|
|
|
EARTHSS |
21 |
DIS |
443 |
|
|
|
|
|
EARTHSS |
21 |
LEC |
443 |
|
|
|
|
|
EARTHSS |
H30C |
DIS |
22 |
|
|
|
|
|
EARTHSS |
H30C |
LEC |
23 |
|
|
|
|
|
EARTHSS |
40B |
LAB |
40 |
|
|
|
|
|
EARTHSS |
40B |
LEC |
40 |
|
|
|
|
|
EARTHSS |
55 |
DIS |
61 |
|
|
|
|
|
EARTHSS |
55 |
LEC |
61 |
|
|
|
|
|
EARTHSS |
60C |
DIS |
52 |
|
|
|
|
|
EARTHSS |
60C |
LEC |
52 |
|
|
|
|
|
EARTHSS |
100 |
LEC |
29 |
|
|
|
|
|
EARTHSS |
112 |
LEC |
17 |
|
|
|
|
|
EARTHSS |
114 |
LAB |
41 |
|
|
|
|
|
EARTHSS |
114 |
LEC |
41 |
|
|
|
|
|
EARTHSS |
115 |
LAB |
9 |
|
|
|
|
|
EARTHSS |
115 |
LEC |
9 |
|
|
|
|
|
EARTHSS |
116 |
LAB |
23 |
|
|
|
|
|
EARTHSS |
116 |
LEC |
23 |
|
|
|
|
|
EARTHSS |
144 |
LEC |
28 |
|
|
|
|
|
EARTHSS |
152 |
LEC |
11 |
|
|
|
|
|
EARTHSS |
164 |
LEC |
25 |
|
|
|
|
|
EARTHSS |
182 |
LEC |
79 |
|
|
|
|
|
EARTHSS |
190CW |
SEM |
15 |
|
|
|
|
|
EARTHSS |
191 |
LEC |
55 |
|
|
|
|
|
EARTHSS |
197 |
FLD |
6 |
|
|
|
|
|
EARTHSS |
198W |
LEC |
10 |
|
|
|
|
|
EARTHSS |
H198 |
LEC |
5 |
|
|
|
|
|
EARTHSS |
199 |
RES |
23 |
|
|
|
|
|
EARTHSS |
H199C |
RES |
6 |
|
|
|
|
|
EARTHSS |
202 |
LEC |
7 |
|
|
|
|
|
EARTHSS |
252 |
LEC |
3 |
|
|
|
|
|
EARTHSS |
264 |
LEC |
6 |
|
|
|
|
|
EARTHSS |
266 |
LEC |
9 |
|
|
|
|
|
EARTHSS |
280C |
SEM |
14 |
|
|
|
|
|
EARTHSS |
286C |
SEM |
4 |
|
|
|
|
|
EARTHSS |
290 |
SEM |
7 |
|
|
|
|
|
EARTHSS |
298 |
LEC |
7 |
|
|
|
|
|
EARTHSS |
299 |
RES |
46 |
|
|
|
|
|
EARTHSS |
399 |
TUT |
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MATH ENROLLMENTS FOR SPRING 2018 |
|
|
|
|
|
|
|
|
|
|
|
|
|
MATH |
2A |
DIS |
903 |
|
MATH |
130C |
DIS |
21 |
MATH |
2A |
LEC |
904 |
|
MATH |
130C |
LEC |
21 |
MATH |
2B |
DIS |
1375 |
|
MATH |
133B |
DIS |
41 |
MATH |
2B |
LEC |
1375 |
|
MATH |
133B |
LEC |
41 |
MATH |
2D |
DIS |
748 |
|
MATH |
133C |
DIS |
41 |
MATH |
2D |
LEC |
748 |
|
MATH |
133C |
LEC |
41 |
MATH |
2E |
DIS |
382 |
|
MATH |
140A |
DIS |
61 |
MATH |
2E |
LEC |
382 |
|
MATH |
140A |
LEC |
61 |
MATH |
H2E |
DIS |
17 |
|
MATH |
140B |
DIS |
77 |
MATH |
H2E |
LEC |
17 |
|
MATH |
140B |
LEC |
77 |
MATH |
3A |
DIS |
783 |
|
MATH |
140C |
DIS |
18 |
MATH |
3A |
LEC |
783 |
|
MATH |
140C |
LEC |
18 |
MATH |
3D |
DIS |
450 |
|
MATH |
H140C |
LEC |
4 |
MATH |
3D |
LEC |
449 |
|
MATH |
141 |
DIS |
13 |
MATH |
4 |
DIS |
245 |
|
MATH |
141 |
LEC |
13 |
MATH |
4 |
LEC |
245 |
|
MATH |
147 |
DIS |
57 |
MATH |
5A |
DIS |
26 |
|
MATH |
147 |
LEC |
57 |
MATH |
5A |
LEC |
26 |
|
MATH |
161 |
DIS |
19 |
MATH |
5B |
DIS |
38 |
|
MATH |
161 |
LEC |
19 |
MATH |
5B |
LEC |
38 |
|
MATH |
180B |
DIS |
23 |
MATH |
8 |
DIS |
32 |
|
MATH |
180B |
LEC |
23 |
MATH |
8 |
LEC |
32 |
|
MATH |
184 |
DIS |
16 |
MATH |
9 |
LAB |
90 |
|
MATH |
184 |
LEC |
16 |
MATH |
9 |
LEC |
90 |
|
MATH |
184L |
LAB |
10 |
MATH |
13 |
DIS |
145 |
|
MATH |
192 |
FLD |
13 |
MATH |
13 |
LEC |
145 |
|
MATH |
192 |
LEC |
13 |
MATH |
107 |
DIS |
15 |
|
MATH |
199C |
RES |
98 |
MATH |
107 |
LEC |
15 |
|
MATH |
205C |
LEC |
15 |
MATH |
107L |
LAB |
15 |
|
MATH |
206C |
LEC |
10 |
MATH |
112C |
DIS |
12 |
|
MATH |
210C |
DIS |
14 |
MATH |
112C |
LEC |
12 |
|
MATH |
210C |
LEC |
18 |
MATH |
115 |
DIS |
40 |
|
MATH |
218C |
LEC |
9 |
MATH |
115 |
LEC |
40 |
|
MATH |
220C |
DIS |
2 |
MATH |
120A |
DIS |
88 |
|
MATH |
220C |
LEC |
18 |
MATH |
120A |
LEC |
88 |
|
MATH |
226C |
LEC |
5 |
MATH |
120B |
DIS |
46 |
|
MATH |
227C |
LEC |
10 |
MATH |
120B |
LEC |
46 |
|
MATH |
230C |
DIS |
2 |
MATH |
120C |
DIS |
6 |
|
MATH |
230C |
LEC |
11 |
MATH |
120C |
LEC |
6 |
|
MATH |
232C |
LEC |
13 |
MATH |
H120C |
LEC |
6 |
|
MATH |
245C |
LEC |
9 |
MATH |
121A |
DIS |
120 |
|
MATH |
260C |
LEC |
5 |
MATH |
121A |
LEC |
120 |
|
MATH |
271C |
LEC |
7 |
MATH |
121B |
DIS |
79 |
|
MATH |
282C |
LEC |
6 |
MATH |
121B |
LEC |
79 |
|
MATH |
290C |
LEC |
11 |
MATH |
130A |
DIS |
30 |
|
MATH |
295C |
LEC |
11 |
MATH |
130A |
LEC |
30 |
|
MATH |
296 |
LEC |
5 |
MATH |
130B |
DIS |
60 |
|
MATH |
298C |
SEM |
126 |
MATH |
130B |
LEC |
60 |
|
MATH |
299C |
RES |
62 |
|
|
|
|
|
|
|
|
|
PHYSICS ENROLLMENTS FOR SPRING 2018 |
|
|
|
|
|
|
|
|
|
|
|
|
|
PHYSICS |
3A |
DIS |
264 |
|
PHYSICS |
134A |
DIS |
15 |
PHYSICS |
3A |
LEC |
264 |
|
PHYSICS |
134A |
LEC |
15 |
PHYSICS |
3B |
DIS |
194 |
|
PHYSICS |
135 |
LEC |
8 |
PHYSICS |
3B |
LEC |
194 |
|
PHYSICS |
145 |
LEC |
27 |
PHYSICS |
3C |
DIS |
649 |
|
PHYSICS |
193 |
LEC |
3 |
PHYSICS |
3C |
LEC |
649 |
|
PHYSICS |
195 |
RES |
13 |
PHYSICS |
3LB |
LAB |
212 |
|
PHYSICS |
196C |
RES |
1 |
PHYSICS |
3LC |
LAB |
394 |
|
PHYSICS |
H196C |
RES |
6 |
PHYSICS |
7C |
DIS |
275 |
|
PHYSICS |
199 |
RES |
2 |
PHYSICS |
7C |
LEC |
275 |
|
PHYSICS |
213B |
DIS |
22 |
PHYSICS |
7D |
DIS |
689 |
|
PHYSICS |
213B |
LEC |
22 |
PHYSICS |
7D |
LEC |
689 |
|
PHYSICS |
230B |
LEC |
2 |
PHYSICS |
7E |
DIS |
357 |
|
PHYSICS |
234C |
LEC |
6 |
PHYSICS |
7E |
LEC |
357 |
|
PHYSICS |
235A |
DIS |
16 |
PHYSICS |
7LC |
LAB |
244 |
|
PHYSICS |
235A |
LEC |
16 |
PHYSICS |
7LD |
LAB |
673 |
|
PHYSICS |
238C |
LEC |
6 |
PHYSICS |
14 |
LEC |
27 |
|
PHYSICS |
239A |
LEC |
6 |
PHYSICS |
20B |
DIS |
180 |
|
PHYSICS |
240A |
LEC |
10 |
PHYSICS |
20B |
LEC |
180 |
|
PHYSICS |
241C |
LEC |
8 |
PHYSICS |
20E |
DIS |
309 |
|
PHYSICS |
260C |
SEM |
1 |
PHYSICS |
20E |
LEC |
309 |
|
PHYSICS |
261C |
SEM |
10 |
PHYSICS |
50 |
DIS |
72 |
|
PHYSICS |
263C |
SEM |
6 |
PHYSICS |
50 |
LEC |
72 |
|
PHYSICS |
265C |
SEM |
8 |
PHYSICS |
51A |
DIS |
122 |
|
PHYSICS |
291 |
SEM |
29 |
PHYSICS |
51A |
LEC |
122 |
|
PHYSICS |
295 |
RES |
66 |
PHYSICS |
52C |
LAB |
58 |
|
PHYSICS |
296 |
RES |
31 |
PHYSICS |
52C |
LEC |
58 |
|
PHYSICS |
298 |
COL |
7 |
PHYSICS |
53 |
DIS |
12 |
|
PHYSICS |
299 |
RES |
10 |
PHYSICS |
53 |
LEC |
12 |
|
PHYSICS |
395 |
LEC |
17 |
PHYSICS |
61B |
DIS |
31 |
|
PHYSICS |
399 |
TUT |
40 |
PHYSICS |
61B |
LEC |
31 |
|
|
|
|
|
PHYSICS |
61C |
DIS |
40 |
|
|
|
|
|
PHYSICS |
61C |
LEC |
40 |
|
|
|
|
|
PHYSICS |
H80 |
SEM |
11 |
|
|
|
|
|
PHYSICS |
106W |
LAB |
20 |
|
|
|
|
|
PHYSICS |
106W |
LEC |
20 |
|
|
|
|
|
PHYSICS |
112B |
DIS |
43 |
|
|
|
|
|
PHYSICS |
112B |
LEC |
43 |
|
|
|
|
|
PHYSICS |
113A |
DIS |
60 |
|
|
|
|
|
PHYSICS |
113A |
LEC |
60 |
|
|
|
|
|
PHYSICS |
121W |
LAB |
18 |
|
|
|
|
|
PHYSICS |
121W |
LEC |
18 |
|
|
|
|
|
PHYSICS |
125B |
DIS |
8 |
|
|
|
|
|
PHYSICS |
125B |
LEC |
8 |
|
|
|
|
|
PHYSICS |
133 |
LEC |
8 |
|
|
|
|
|