NUMBER OF UNDERGRADUATE STUDENTS:
Quarter |
Chem |
Math |
Phys |
Applied Phys |
ESS (all majors) |
Unde |
W2013 |
427 |
420 |
129 |
0 |
148 |
152 |
W2014 |
426 |
501 |
156 |
0 |
192 |
197 |
W2015 |
405 |
594 |
164 |
0 |
236 |
152 |
W2016 |
415 |
750 |
203 |
0 |
208 |
219 |
W2017 |
468 |
989 |
210 |
22 |
201 |
197 |
W2018 |
508 |
1085 |
206 |
81 |
231 |
176 |
![]()
NUMBER OF GRADUATE STUDENTS:
|
W18 |
CHEMISTRY |
202 |
CHM-CHM AND MATL PHY |
12 |
EARTH SYSTEM SCIENCE |
50 |
MATHEMATICS |
101 |
PHY-CHM AND MATL PHY |
28 |
PHYSICS |
98 |
![]()
W18 LECTURE ENROLLMENTS:
Dept |
MATH |
ESS |
CHEM |
PHYSICS |
W2018 |
6832 |
1330 |
5922 |
3742 |
![]()
ENROLLMENTS BY DEPT:
Quarterly Summary for W2018 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Level |
LEC |
DIS |
LAB |
LAB LEC |
RES |
SEM |
TUT |
FLD |
COL |
|
|
|
|
|
|
|
|
|
|
|
CHEM |
Lower-Div |
3879 |
3879 |
1867 |
1396 |
|
|
|
|
|
|
Upper-Div |
482 |
618 |
198 |
|
66 |
|
49 |
|
|
|
Grad |
165 |
130 |
|
|
190 |
312 |
92 |
|
|
|
Total |
4526 |
4627 |
2065 |
1396 |
256 |
312 |
141 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
ESS |
Lower-Div |
1054 |
755 |
299 |
|
|
|
|
|
|
|
Upper-Div |
253 |
41 |
28 |
|
34 |
14 |
|
8 |
|
|
Grad |
23 |
|
|
|
46 |
47 |
15 |
|
|
|
Total |
1330 |
796 |
327 |
0 |
80 |
61 |
15 |
8 |
0 |
|
|
|
|
|
|
|
|
|
|
|
MATH |
Lower-Div |
5536 |
5213 |
45 |
|
|
|
|
|
|
|
Upper-Div |
1117 |
1071 |
45 |
|
28 |
|
|
10 |
|
|
Grad |
179 |
|
|
|
61 |
128 |
|
|
|
|
Total |
6832 |
6284 |
90 |
0 |
89 |
128 |
0 |
10 |
0 |
|
|
|
|
|
|
|
|
|
|
|
PHYS |
Lower-Div |
3329 |
3223 |
1896 |
|
|
|
178 |
|
|
|
Upper-Div |
242 |
202 |
30 |
|
22 |
|
|
|
|
|
Grad |
171 |
59 |
2 |
|
86 |
49 |
43 |
|
3 |
|
Total |
3742 |
3484 |
1928 |
0 |
108 |
49 |
221 |
0 |
3 |
CHEMISTRY ENROLLMENTS FOR WINTER 2018 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CHEM |
1A |
DIS |
768 |
|
CHEM |
177L |
LAB |
6 |
CHEM |
1A |
LEC |
768 |
|
CHEM |
180 |
RES |
58 |
CHEM |
1B |
DIS |
1665 |
|
CHEM |
H180B |
RES |
8 |
CHEM |
1B |
LEC |
1665 |
|
CHEM |
192 |
TUT |
34 |
CHEM |
1LD |
LAB |
205 |
|
CHEM |
193 |
LEC |
10 |
CHEM |
1LE |
LAB |
266 |
|
CHEM |
199 |
TUT |
15 |
CHEM |
H2B |
DIS |
69 |
|
CHEM |
202 |
DIS |
22 |
CHEM |
H2B |
LEC |
69 |
|
CHEM |
202 |
LEC |
22 |
CHEM |
H2LB |
LAB |
69 |
|
CHEM |
204 |
DIS |
29 |
CHEM |
H2LB |
LAB LEC |
69 |
|
CHEM |
204 |
LEC |
26 |
CHEM |
M2B |
DIS |
87 |
|
CHEM |
217 |
DIS |
15 |
CHEM |
M2B |
LEC |
87 |
|
CHEM |
217 |
LEC |
15 |
CHEM |
M2LB |
LAB |
87 |
|
CHEM |
228 |
DIS |
5 |
CHEM |
M2LB |
LAB LEC |
87 |
|
CHEM |
228 |
LEC |
5 |
CHEM |
51B |
DIS |
1290 |
|
CHEM |
231B |
DIS |
7 |
CHEM |
51B |
LEC |
1290 |
|
CHEM |
231B |
LEC |
7 |
CHEM |
51LB |
LAB |
1163 |
|
CHEM |
232A |
DIS |
19 |
CHEM |
51LB |
LAB LEC |
1163 |
|
CHEM |
232A |
LEC |
19 |
CHEM |
H52LB |
LAB |
9 |
|
CHEM |
245B |
DIS |
15 |
CHEM |
H52LB |
LAB LEC |
9 |
|
CHEM |
245B |
LEC |
15 |
CHEM |
M52LB |
LAB |
68 |
|
CHEM |
245C |
LEC |
9 |
CHEM |
M52LB |
LAB LEC |
68 |
|
CHEM |
249 |
LEC |
24 |
CHEM |
107L |
DIS |
67 |
|
CHEM |
263 |
DIS |
18 |
CHEM |
107L |
LAB |
66 |
|
CHEM |
263 |
LEC |
18 |
CHEM |
127 |
DIS |
66 |
|
CHEM |
273 |
LEC |
5 |
CHEM |
127 |
LEC |
66 |
|
CHEM |
280 |
RES |
190 |
CHEM |
128 |
DIS |
89 |
|
CHEM |
290 |
SEM |
151 |
CHEM |
128 |
LEC |
89 |
|
CHEM |
291 |
SEM |
91 |
CHEM |
128L |
DIS |
78 |
|
CHEM |
292 |
SEM |
70 |
CHEM |
128L |
LAB |
78 |
|
CHEM |
299 |
TUT |
1 |
CHEM |
132B |
DIS |
222 |
|
CHEM |
399 |
TUT |
91 |
CHEM |
132B |
LEC |
222 |
|
|
|
|
|
CHEM |
141 |
DIS |
28 |
|
|
|
|
|
CHEM |
141 |
LEC |
28 |
|
|
|
|
|
CHEM |
145B |
DIS |
1 |
|
|
|
|
|
CHEM |
145B |
LEC |
1 |
|
|
|
|
|
CHEM |
150L |
LAB |
5 |
|
|
|
|
|
CHEM |
150L |
LEC |
5 |
|
|
|
|
|
CHEM |
152 |
DIS |
43 |
|
|
|
|
|
CHEM |
152 |
LAB |
43 |
|
|
|
|
|
CHEM |
152 |
LEC |
43 |
|
|
|
|
|
CHEM |
177 |
DIS |
18 |
|
|
|
|
|
CHEM |
177 |
LEC |
18 |
|
|
|
|
|
CHEM |
177L |
DIS |
6 |
|
|
|
|
|
ESS ENROLLMENTS FOR WINTER 2018 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EARTHSS |
3 |
DIS |
401 |
|
|
|
|
|
EARTHSS |
3 |
LEC |
401 |
|
|
|
|
|
EARTHSS |
7 |
LAB |
182 |
|
|
|
|
|
EARTHSS |
7 |
LEC |
182 |
|
|
|
|
|
EARTHSS |
19 |
LAB |
76 |
|
|
|
|
|
EARTHSS |
19 |
LEC |
76 |
|
|
|
|
|
EARTHSS |
23 |
DIS |
238 |
|
|
|
|
|
EARTHSS |
23 |
LEC |
238 |
|
|
|
|
|
EARTHSS |
H30B |
LAB |
24 |
|
|
|
|
|
EARTHSS |
H30B |
LEC |
24 |
|
|
|
|
|
EARTHSS |
40A |
LAB |
17 |
|
|
|
|
|
EARTHSS |
40A |
LEC |
17 |
|
|
|
|
|
EARTHSS |
53 |
DIS |
60 |
|
|
|
|
|
EARTHSS |
53 |
LEC |
60 |
|
|
|
|
|
EARTHSS |
60B |
DIS |
56 |
|
|
|
|
|
EARTHSS |
60B |
LEC |
56 |
|
|
|
|
|
EARTHSS |
100 |
LEC |
21 |
|
|
|
|
|
EARTHSS |
118 |
LAB |
28 |
|
|
|
|
|
EARTHSS |
118 |
LEC |
28 |
|
|
|
|
|
EARTHSS |
130 |
DIS |
6 |
|
|
|
|
|
EARTHSS |
130 |
LEC |
6 |
|
|
|
|
|
EARTHSS |
142 |
DIS |
35 |
|
|
|
|
|
EARTHSS |
142 |
LEC |
43 |
|
|
|
|
|
EARTHSS |
146 |
LEC |
20 |
|
|
|
|
|
EARTHSS |
162 |
LEC |
29 |
|
|
|
|
|
EARTHSS |
176W |
LEC |
20 |
|
|
|
|
|
EARTHSS |
180 |
LEC |
86 |
|
|
|
|
|
EARTHSS |
190B |
SEM |
14 |
|
|
|
|
|
EARTHSS |
197 |
FLD |
8 |
|
|
|
|
|
EARTHSS |
199 |
RES |
27 |
|
|
|
|
|
EARTHSS |
H199B |
RES |
7 |
|
|
|
|
|
EARTHSS |
224 |
LEC |
7 |
|
|
|
|
|
EARTHSS |
226 |
LEC |
7 |
|
|
|
|
|
EARTHSS |
228 |
LEC |
9 |
|
|
|
|
|
EARTHSS |
280B |
SEM |
40 |
|
|
|
|
|
EARTHSS |
286B |
SEM |
2 |
|
|
|
|
|
EARTHSS |
290 |
SEM |
5 |
|
|
|
|
|
EARTHSS |
299 |
RES |
46 |
|
|
|
|
|
EARTHSS |
399 |
TUT |
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MATH ENROLLMENTS FOR WINTER 2018 |
|
|
|
|
|
|
|
|
|
|
MATH |
130B |
DIS |
103 |
MATH |
1B |
LEC |
278 |
|
MATH |
130B |
LEC |
103 |
MATH |
2A |
DIS |
1088 |
|
MATH |
133A |
DIS |
79 |
MATH |
2A |
LEC |
1088 |
|
MATH |
133A |
LEC |
79 |
MATH |
2B |
DIS |
1607 |
|
MATH |
133B |
DIS |
37 |
MATH |
2B |
LEC |
1607 |
|
MATH |
133B |
LEC |
39 |
MATH |
2D |
DIS |
573 |
|
MATH |
140A |
DIS |
65 |
MATH |
2D |
LEC |
573 |
|
MATH |
140A |
LEC |
65 |
MATH |
2E |
DIS |
281 |
|
MATH |
140B |
DIS |
85 |
MATH |
2E |
LEC |
281 |
|
MATH |
140B |
LEC |
85 |
MATH |
H2D |
DIS |
39 |
|
MATH |
H140B |
LEC |
6 |
MATH |
H2D |
LEC |
39 |
|
MATH |
147 |
DIS |
29 |
MATH |
3A |
DIS |
681 |
|
MATH |
147 |
LEC |
29 |
MATH |
3A |
LEC |
681 |
|
MATH |
161 |
DIS |
29 |
MATH |
3D |
DIS |
483 |
|
MATH |
161 |
LEC |
29 |
MATH |
3D |
LEC |
483 |
|
MATH |
162A |
DIS |
21 |
MATH |
4 |
DIS |
221 |
|
MATH |
162A |
LEC |
21 |
MATH |
4 |
LEC |
221 |
|
MATH |
173B |
LEC |
20 |
MATH |
5A |
DIS |
19 |
|
MATH |
175 |
DIS |
13 |
MATH |
5A |
LEC |
19 |
|
MATH |
175 |
LEC |
13 |
MATH |
5B |
DIS |
22 |
|
MATH |
176 |
DIS |
105 |
MATH |
5B |
LEC |
22 |
|
MATH |
176 |
LEC |
105 |
MATH |
9 |
LAB |
45 |
|
MATH |
180A |
DIS |
46 |
MATH |
9 |
LEC |
45 |
|
MATH |
180A |
LEC |
46 |
MATH |
13 |
DIS |
199 |
|
MATH |
192 |
FLD |
10 |
MATH |
13 |
LEC |
199 |
|
MATH |
192 |
LEC |
10 |
MATH |
105B |
DIS |
45 |
|
MATH |
199B |
RES |
28 |
MATH |
105B |
LEC |
45 |
|
MATH |
205B |
LEC |
15 |
MATH |
105LB |
LAB |
45 |
|
MATH |
206B |
LEC |
10 |
MATH |
112B |
DIS |
47 |
|
MATH |
210B |
LEC |
19 |
MATH |
112B |
LEC |
47 |
|
MATH |
218B |
LEC |
9 |
MATH |
113B |
DIS |
11 |
|
MATH |
220B |
LEC |
19 |
MATH |
113B |
LEC |
11 |
|
MATH |
222B |
LEC |
9 |
MATH |
117 |
DIS |
23 |
|
MATH |
226B |
LEC |
5 |
MATH |
117 |
LEC |
23 |
|
MATH |
227B |
LEC |
12 |
MATH |
120A |
DIS |
135 |
|
MATH |
230B |
LEC |
12 |
MATH |
120A |
LEC |
135 |
|
MATH |
232B |
LEC |
16 |
MATH |
120B |
DIS |
33 |
|
MATH |
245B |
LEC |
11 |
MATH |
120B |
LEC |
33 |
|
MATH |
260B |
LEC |
5 |
MATH |
H120B |
LEC |
8 |
|
MATH |
271B |
LEC |
5 |
MATH |
121A |
DIS |
52 |
|
MATH |
282B |
LEC |
7 |
MATH |
121A |
LEC |
52 |
|
MATH |
290B |
LEC |
5 |
MATH |
121B |
DIS |
54 |
|
MATH |
295B |
LEC |
11 |
MATH |
121B |
LEC |
54 |
|
MATH |
296 |
LEC |
9 |
MATH |
130A |
DIS |
59 |
|
MATH |
298B |
SEM |
128 |
MATH |
130A |
LEC |
59 |
|
MATH |
299B |
RES |
61 |
PHYSICS ENROLLMENTS FOR WINTER 2018 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PHYSICS |
2 |
DIS |
178 |
|
PHYSICS |
137 |
LEC |
22 |
PHYSICS |
2 |
LEC |
178 |
|
PHYSICS |
138 |
DIS |
10 |
PHYSICS |
2 |
TUT |
178 |
|
PHYSICS |
138 |
LEC |
10 |
PHYSICS |
3A |
DIS |
361 |
|
PHYSICS |
193 |
LEC |
4 |
PHYSICS |
3A |
LEC |
361 |
|
PHYSICS |
195 |
RES |
10 |
PHYSICS |
3B |
DIS |
727 |
|
PHYSICS |
196B |
RES |
4 |
PHYSICS |
3B |
LEC |
727 |
|
PHYSICS |
H196B |
RES |
6 |
PHYSICS |
3LB |
LAB |
672 |
|
PHYSICS |
199 |
RES |
2 |
PHYSICS |
7C |
DIS |
742 |
|
PHYSICS |
213A |
DIS |
30 |
PHYSICS |
7C |
LEC |
741 |
|
PHYSICS |
213A |
LEC |
30 |
PHYSICS |
7D |
DIS |
476 |
|
PHYSICS |
214A |
LEC |
29 |
PHYSICS |
7D |
LEC |
476 |
|
PHYSICS |
215B |
DIS |
28 |
PHYSICS |
7E |
DIS |
63 |
|
PHYSICS |
215B |
LEC |
28 |
PHYSICS |
7E |
LEC |
63 |
|
PHYSICS |
220 |
LAB |
2 |
PHYSICS |
7LC |
LAB |
694 |
|
PHYSICS |
220 |
LEC |
2 |
PHYSICS |
7LD |
LAB |
475 |
|
PHYSICS |
228 |
DIS |
1 |
PHYSICS |
18 |
LEC |
52 |
|
PHYSICS |
228 |
LEC |
1 |
PHYSICS |
20A |
DIS |
228 |
|
PHYSICS |
234B |
LEC |
6 |
PHYSICS |
20A |
LEC |
228 |
|
PHYSICS |
238B |
LEC |
9 |
PHYSICS |
20B |
DIS |
149 |
|
PHYSICS |
239C |
LEC |
4 |
PHYSICS |
20B |
LEC |
149 |
|
PHYSICS |
240C |
LEC |
5 |
PHYSICS |
20E |
DIS |
157 |
|
PHYSICS |
246 |
LEC |
29 |
PHYSICS |
20E |
LEC |
157 |
|
PHYSICS |
260B |
SEM |
1 |
PHYSICS |
21 |
DIS |
22 |
|
PHYSICS |
261B |
SEM |
7 |
PHYSICS |
21 |
LEC |
22 |
|
PHYSICS |
263B |
SEM |
8 |
PHYSICS |
52B |
LAB |
55 |
|
PHYSICS |
265B |
SEM |
5 |
PHYSICS |
52B |
LEC |
55 |
|
PHYSICS |
273 |
LEC |
6 |
PHYSICS |
61A |
DIS |
74 |
|
PHYSICS |
291 |
SEM |
28 |
PHYSICS |
61A |
LEC |
74 |
|
PHYSICS |
295 |
RES |
58 |
PHYSICS |
H90 |
DIS |
46 |
|
PHYSICS |
296 |
RES |
25 |
PHYSICS |
H90 |
LEC |
46 |
|
PHYSICS |
298 |
COL |
3 |
PHYSICS |
111B |
DIS |
49 |
|
PHYSICS |
299 |
RES |
3 |
PHYSICS |
111B |
LEC |
49 |
|
PHYSICS |
395 |
LEC |
22 |
PHYSICS |
112A |
DIS |
69 |
|
PHYSICS |
399 |
TUT |
43 |
PHYSICS |
112A |
LEC |
69 |
|
|
|
|
|
PHYSICS |
113C |
DIS |
8 |
|
|
|
|
|
PHYSICS |
113C |
LEC |
8 |
|
|
|
|
|
PHYSICS |
120 |
LAB |
12 |
|
|
|
|
|
PHYSICS |
120 |
LEC |
12 |
|
|
|
|
|
PHYSICS |
121W |
LAB |
18 |
|
|
|
|
|
PHYSICS |
121W |
LEC |
18 |
|
|
|
|
|
PHYSICS |
125A |
DIS |
44 |
|
|
|
|
|
PHYSICS |
125A |
LEC |
44 |
|
|
|
|
|
PHYSICS |
136 |
LEC |
6 |
|
|
|
|
|
PHYSICS |
137 |
DIS |
22 |
|
|
|
|
|