NUMBER OF UNDERGRADUATE STUDENTS:
Quarter |
Chem |
Math |
Phys |
Applied Phys |
ENSP, B.A. |
ESS (all majors) |
Unde |
S2014 |
399 |
488 |
140 |
0 |
|
213 |
187 |
S2015 |
375 |
580 |
162 |
0 |
|
232 |
165 |
S2016 |
379 |
735 |
196 |
0 |
|
204 |
232 |
S2017 |
423 |
960 |
184 |
25 |
|
209 |
189 |
S2018 |
483 |
1051 |
204 |
76 |
|
237 |
162 |
S2019 |
485 |
1105 |
227 |
94 |
48 |
169 |
201 |
![]()
NUMBER OF GRADUATE STUDENTS:
|
S19 |
CHEMISTRY |
213 |
CHM-CHM AND MATL PHY |
9 |
EARTH SYSTEM SCIENCE |
53 |
MATHEMATICS |
100 |
PHY-CHM AND MATL PHY |
21 |
PHYSICS |
97 |
![]()
S19 LECTURE ENROLLMENTS:
Dept |
MATH |
ESS |
CHEM |
PHYSICS |
S2019 |
5988 |
1475 |
5126 |
3673 |
![]()
ENROLLMENTS BY DEPT:
Quarterly Summary for S2019 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Level |
LEC |
DIS |
LAB |
LAB LEC |
RES |
SEM |
TUT |
FLD |
COL |
|
|
|
|
|
|
|
|
|
|
|
CHEM |
Lower-Div |
3330 |
3330 |
2426 |
1242 |
|
|
|
|
|
|
Upper-Div |
405 |
405 |
187 |
|
93 |
6 |
35 |
|
|
|
Grad |
149 |
115 |
|
|
213 |
349 |
114 |
|
|
|
Total |
3884 |
3850 |
2613 |
1242 |
306 |
355 |
149 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
ESS |
Lower-Div |
1188 |
931 |
258 |
|
|
|
|
|
|
|
Upper-Div |
257 |
|
112 |
|
27 |
20 |
|
2 |
|
|
Grad |
30 |
|
|
|
51 |
38 |
18 |
|
|
|
Total |
1475 |
931 |
370 |
0 |
78 |
58 |
18 |
2 |
0 |
|
|
|
|
|
|
|
|
|
|
|
MATH |
Lower-Div |
4564 |
4443 |
121 |
|
|
|
|
|
|
|
Upper-Div |
1251 |
1230 |
32 |
|
83 |
|
7 |
7 |
|
|
Grad |
173 |
50 |
|
|
63 |
127 |
|
|
|
|
Total |
5988 |
5723 |
153 |
0 |
146 |
127 |
7 |
7 |
0 |
|
|
|
|
|
|
|
|
|
|
|
PHYS |
Lower-Div |
3310 |
3244 |
1646 |
|
|
12 |
|
|
|
|
Upper-Div |
245 |
166 |
37 |
|
25 |
|
|
|
|
|
Grad |
118 |
19 |
|
|
105 |
42 |
38 |
|
9 |
|
Total |
3673 |
3429 |
1683 |
0 |
130 |
54 |
38 |
0 |
9 |
CHEMISTRY ENROLLMENTS FOR SPRING 2019 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CHEM |
1B |
DIS |
502 |
|
CHEM |
192 |
TUT |
29 |
CHEM |
1B |
LEC |
502 |
|
CHEM |
193 |
LEC |
7 |
CHEM |
1C |
DIS |
1326 |
|
CHEM |
199 |
TUT |
6 |
CHEM |
1C |
LEC |
1326 |
|
CHEM |
205 |
DIS |
19 |
CHEM |
1LC |
LAB |
1184 |
|
CHEM |
205 |
LEC |
19 |
CHEM |
H2C |
DIS |
64 |
|
CHEM |
218 |
DIS |
15 |
CHEM |
H2C |
LEC |
64 |
|
CHEM |
218 |
LEC |
15 |
CHEM |
H2LC |
LAB |
63 |
|
CHEM |
221A |
DIS |
12 |
CHEM |
H2LC |
LAB LEC |
63 |
|
CHEM |
221A |
LEC |
12 |
CHEM |
M3C |
DIS |
53 |
|
CHEM |
225 |
DIS |
21 |
CHEM |
M3C |
LEC |
53 |
|
CHEM |
225 |
LEC |
21 |
CHEM |
M3LC |
LAB |
110 |
|
CHEM |
231C |
DIS |
10 |
CHEM |
M3LC |
LAB LEC |
110 |
|
CHEM |
231C |
LEC |
10 |
CHEM |
51A |
DIS |
216 |
|
CHEM |
232B |
DIS |
9 |
CHEM |
51A |
LEC |
216 |
|
CHEM |
232B |
LEC |
9 |
CHEM |
51C |
DIS |
1116 |
|
CHEM |
241 |
LEC |
15 |
CHEM |
51C |
LEC |
1116 |
|
CHEM |
248 |
DIS |
19 |
CHEM |
51LC |
LAB |
985 |
|
CHEM |
248 |
LEC |
19 |
CHEM |
51LC |
LAB LEC |
985 |
|
CHEM |
251 |
LEC |
3 |
CHEM |
H52LC |
LAB |
6 |
|
CHEM |
252 |
LEC |
11 |
CHEM |
H52LC |
LAB LEC |
6 |
|
CHEM |
266 |
LEC |
5 |
CHEM |
M52LC |
LAB |
78 |
|
CHEM |
268 |
DIS |
10 |
CHEM |
M52LC |
LAB LEC |
78 |
|
CHEM |
268 |
LEC |
10 |
CHEM |
H90 |
DIS |
53 |
|
CHEM |
280 |
RES |
213 |
CHEM |
H90 |
LEC |
53 |
|
CHEM |
290 |
SEM |
148 |
CHEM |
107L |
DIS |
81 |
|
CHEM |
291 |
SEM |
119 |
CHEM |
107L |
LAB |
82 |
|
CHEM |
292 |
SEM |
82 |
CHEM |
125 |
DIS |
85 |
|
CHEM |
299 |
TUT |
1 |
CHEM |
125 |
LEC |
85 |
|
CHEM |
399 |
TUT |
113 |
CHEM |
132C |
DIS |
217 |
|
|
|
|
|
CHEM |
132C |
LEC |
217 |
|
|
|
|
|
CHEM |
138 |
DIS |
13 |
|
|
|
|
|
CHEM |
138 |
LAB |
13 |
|
|
|
|
|
CHEM |
138 |
LEC |
13 |
|
|
|
|
|
CHEM |
153 |
LAB |
19 |
|
|
|
|
|
CHEM |
153 |
LEC |
19 |
|
|
|
|
|
CHEM |
156 |
LAB |
45 |
|
|
|
|
|
CHEM |
156 |
LEC |
45 |
|
|
|
|
|
CHEM |
177L |
DIS |
9 |
|
|
|
|
|
CHEM |
177L |
LAB |
9 |
|
|
|
|
|
CHEM |
180 |
RES |
87 |
|
|
|
|
|
CHEM |
180W |
LAB |
19 |
|
|
|
|
|
CHEM |
180W |
LEC |
19 |
|
|
|
|
|
CHEM |
H180C |
RES |
6 |
|
|
|
|
|
CHEM |
H181W |
SEM |
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ESS ENROLLMENTS FOR SPRING 2019 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EARTHSS |
3 |
DIS |
70 |
|
|
|
|
|
EARTHSS |
3 |
LEC |
70 |
|
|
|
|
|
EARTHSS |
5 |
DIS |
395 |
|
|
|
|
|
EARTHSS |
5 |
LEC |
395 |
|
|
|
|
|
EARTHSS |
7 |
LAB |
199 |
|
|
|
|
|
EARTHSS |
7 |
LEC |
198 |
|
|
|
|
|
EARTHSS |
21 |
DIS |
385 |
|
|
|
|
|
EARTHSS |
21 |
LEC |
385 |
|
|
|
|
|
EARTHSS |
H30C |
DIS |
23 |
|
|
|
|
|
EARTHSS |
H30C |
LEC |
23 |
|
|
|
|
|
EARTHSS |
40C |
LAB |
59 |
|
|
|
|
|
EARTHSS |
40C |
LEC |
59 |
|
|
|
|
|
EARTHSS |
55 |
DIS |
58 |
|
|
|
|
|
EARTHSS |
55 |
LEC |
58 |
|
|
|
|
|
EARTHSS |
100 |
LEC |
19 |
|
|
|
|
|
EARTHSS |
114 |
LAB |
38 |
|
|
|
|
|
EARTHSS |
114 |
LEC |
38 |
|
|
|
|
|
EARTHSS |
115 |
LAB |
17 |
|
|
|
|
|
EARTHSS |
115 |
LEC |
17 |
|
|
|
|
|
EARTHSS |
116 |
LAB |
35 |
|
|
|
|
|
EARTHSS |
116 |
LEC |
35 |
|
|
|
|
|
EARTHSS |
138 |
LAB |
22 |
|
|
|
|
|
EARTHSS |
138 |
LEC |
22 |
|
|
|
|
|
EARTHSS |
144 |
LEC |
35 |
|
|
|
|
|
EARTHSS |
164 |
LEC |
12 |
|
|
|
|
|
EARTHSS |
171 |
LEC |
11 |
|
|
|
|
|
EARTHSS |
177W |
LEC |
14 |
|
|
|
|
|
EARTHSS |
190CW |
SEM |
20 |
|
|
|
|
|
EARTHSS |
191 |
LEC |
46 |
|
|
|
|
|
EARTHSS |
197 |
FLD |
2 |
|
|
|
|
|
EARTHSS |
198W |
LEC |
5 |
|
|
|
|
|
EARTHSS |
H198 |
LEC |
3 |
|
|
|
|
|
EARTHSS |
199 |
RES |
27 |
|
|
|
|
|
EARTHSS |
225 |
LEC |
5 |
|
|
|
|
|
EARTHSS |
256 |
LEC |
5 |
|
|
|
|
|
EARTHSS |
264 |
LEC |
5 |
|
|
|
|
|
EARTHSS |
280C |
SEM |
19 |
|
|
|
|
|
EARTHSS |
286C |
SEM |
4 |
|
|
|
|
|
EARTHSS |
290 |
SEM |
15 |
|
|
|
|
|
EARTHSS |
298 |
LEC |
15 |
|
|
|
|
|
EARTHSS |
299 |
RES |
51 |
|
|
|
|
|
EARTHSS |
399 |
TUT |
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MATH ENROLLMENTS FOR SPRING 2019 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MATH |
2A |
DIS |
455 |
|
MATH |
133A |
LEC |
102 |
MATH |
2A |
LEC |
455 |
|
MATH |
133B |
DIS |
38 |
MATH |
2B |
DIS |
1083 |
|
MATH |
133B |
LEC |
38 |
MATH |
2B |
LEC |
1083 |
|
MATH |
133C |
DIS |
32 |
MATH |
2D |
DIS |
620 |
|
MATH |
133C |
LEC |
32 |
MATH |
2D |
LEC |
620 |
|
MATH |
140A |
DIS |
113 |
MATH |
2E |
DIS |
564 |
|
MATH |
140A |
LEC |
113 |
MATH |
2E |
LEC |
564 |
|
MATH |
140B |
DIS |
83 |
MATH |
H2E |
DIS |
3 |
|
MATH |
140B |
LEC |
83 |
MATH |
H2E |
LEC |
3 |
|
MATH |
140C |
DIS |
19 |
MATH |
3A |
DIS |
674 |
|
MATH |
140C |
LEC |
19 |
MATH |
3A |
LEC |
674 |
|
MATH |
H140C |
LEC |
7 |
MATH |
3D |
DIS |
433 |
|
MATH |
141 |
DIS |
11 |
MATH |
3D |
LEC |
433 |
|
MATH |
141 |
LEC |
11 |
MATH |
4 |
DIS |
236 |
|
MATH |
147 |
DIS |
58 |
MATH |
4 |
LEC |
236 |
|
MATH |
147 |
LEC |
58 |
MATH |
5A |
DIS |
90 |
|
MATH |
161 |
DIS |
39 |
MATH |
5A |
LEC |
90 |
|
MATH |
161 |
LEC |
39 |
MATH |
5B |
DIS |
77 |
|
MATH |
162B |
DIS |
8 |
MATH |
5B |
LEC |
77 |
|
MATH |
162B |
LEC |
8 |
MATH |
8 |
DIS |
16 |
|
MATH |
180B |
DIS |
8 |
MATH |
8 |
LEC |
16 |
|
MATH |
180B |
LEC |
8 |
MATH |
9 |
LAB |
84 |
|
MATH |
184 |
DIS |
28 |
MATH |
9 |
LEC |
84 |
|
MATH |
184 |
LEC |
28 |
MATH |
10 |
LAB |
37 |
|
MATH |
184L |
LAB |
18 |
MATH |
10 |
LEC |
37 |
|
MATH |
192 |
FLD |
7 |
MATH |
13 |
DIS |
192 |
|
MATH |
192 |
LEC |
7 |
MATH |
13 |
LEC |
192 |
|
MATH |
192 |
TUT |
7 |
MATH |
107 |
DIS |
14 |
|
MATH |
199C |
RES |
83 |
MATH |
107 |
LEC |
14 |
|
MATH |
205C |
LEC |
1 |
MATH |
107L |
LAB |
14 |
|
MATH |
206C |
LEC |
7 |
MATH |
110B |
DIS |
29 |
|
MATH |
210C |
DIS |
24 |
MATH |
110B |
LEC |
29 |
|
MATH |
210C |
LEC |
24 |
MATH |
112C |
DIS |
4 |
|
MATH |
218C |
LEC |
4 |
MATH |
112C |
LEC |
4 |
|
MATH |
220C |
DIS |
13 |
MATH |
115 |
DIS |
45 |
|
MATH |
220C |
LEC |
13 |
MATH |
115 |
LEC |
45 |
|
MATH |
222C |
LEC |
5 |
MATH |
120A |
DIS |
59 |
|
MATH |
225C |
LEC |
6 |
MATH |
120A |
LEC |
59 |
|
MATH |
227C |
LEC |
13 |
MATH |
120B |
DIS |
93 |
|
MATH |
230C |
DIS |
13 |
MATH |
120B |
LEC |
93 |
|
MATH |
230C |
LEC |
14 |
MATH |
120C |
DIS |
14 |
|
MATH |
233C |
LEC |
13 |
MATH |
120C |
LEC |
14 |
|
MATH |
235C |
LEC |
7 |
MATH |
H120C |
LEC |
7 |
|
MATH |
240C |
LEC |
10 |
MATH |
121A |
DIS |
138 |
|
MATH |
250C |
LEC |
9 |
MATH |
121A |
LEC |
138 |
|
MATH |
260C |
LEC |
8 |
MATH |
121B |
DIS |
59 |
|
MATH |
270C |
LEC |
10 |
MATH |
121B |
LEC |
59 |
|
MATH |
280C |
LEC |
5 |
MATH |
130A |
DIS |
89 |
|
MATH |
290C |
LEC |
3 |
MATH |
130A |
LEC |
89 |
|
MATH |
295C |
LEC |
7 |
MATH |
130B |
DIS |
113 |
|
MATH |
296 |
LEC |
14 |
MATH |
130B |
LEC |
113 |
|
MATH |
298C |
SEM |
127 |
MATH |
130C |
DIS |
34 |
|
MATH |
299C |
RES |
63 |
MATH |
130C |
LEC |
34 |
|
|
|
|
|
MATH |
133A |
DIS |
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PHYSICS ENROLLMENTS FOR SPRING 2019 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PHYSICS |
3A |
DIS |
263 |
|
PHYSICS |
133 |
LEC |
6 |
PHYSICS |
3A |
LEC |
263 |
|
PHYSICS |
135 |
LEC |
8 |
PHYSICS |
3B |
DIS |
225 |
|
PHYSICS |
144 |
LEC |
26 |
PHYSICS |
3B |
LEC |
225 |
|
PHYSICS |
193 |
LEC |
2 |
PHYSICS |
3C |
DIS |
629 |
|
PHYSICS |
195 |
RES |
15 |
PHYSICS |
3C |
LEC |
629 |
|
PHYSICS |
196C |
RES |
2 |
PHYSICS |
3LB |
LAB |
251 |
|
PHYSICS |
H196C |
RES |
5 |
PHYSICS |
3LC |
LAB |
392 |
|
PHYSICS |
199 |
RES |
3 |
PHYSICS |
7C |
DIS |
334 |
|
PHYSICS |
213B |
DIS |
13 |
PHYSICS |
7C |
LEC |
334 |
|
PHYSICS |
213B |
LEC |
13 |
PHYSICS |
7D |
DIS |
649 |
|
PHYSICS |
214C |
LEC |
19 |
PHYSICS |
7D |
LEC |
649 |
|
PHYSICS |
234C |
LEC |
10 |
PHYSICS |
7E |
DIS |
333 |
|
PHYSICS |
235A |
DIS |
6 |
PHYSICS |
7E |
LEC |
333 |
|
PHYSICS |
235A |
LEC |
6 |
PHYSICS |
7LC |
LAB |
304 |
|
PHYSICS |
238C |
LEC |
4 |
PHYSICS |
7LD |
LAB |
634 |
|
PHYSICS |
239A |
LEC |
5 |
PHYSICS |
20B |
DIS |
136 |
|
PHYSICS |
240A |
LEC |
8 |
PHYSICS |
20B |
LEC |
136 |
|
PHYSICS |
240C |
LEC |
13 |
PHYSICS |
20E |
DIS |
334 |
|
PHYSICS |
248 |
LEC |
3 |
PHYSICS |
20E |
LEC |
334 |
|
PHYSICS |
249 |
LEC |
4 |
PHYSICS |
21 |
DIS |
29 |
|
PHYSICS |
255 |
LEC |
9 |
PHYSICS |
21 |
LEC |
29 |
|
PHYSICS |
260C |
SEM |
4 |
PHYSICS |
51A |
DIS |
128 |
|
PHYSICS |
261C |
SEM |
8 |
PHYSICS |
51A |
LEC |
128 |
|
PHYSICS |
263C |
SEM |
7 |
PHYSICS |
52C |
LAB |
65 |
|
PHYSICS |
265C |
SEM |
4 |
PHYSICS |
52C |
LEC |
66 |
|
PHYSICS |
266 |
LEC |
7 |
PHYSICS |
53 |
DIS |
46 |
|
PHYSICS |
291 |
SEM |
19 |
PHYSICS |
53 |
LEC |
46 |
|
PHYSICS |
295 |
RES |
69 |
PHYSICS |
60 |
DIS |
49 |
|
PHYSICS |
296 |
RES |
34 |
PHYSICS |
60 |
LEC |
49 |
|
PHYSICS |
298 |
COL |
9 |
PHYSICS |
61B |
DIS |
36 |
|
PHYSICS |
299 |
RES |
2 |
PHYSICS |
61B |
LEC |
36 |
|
PHYSICS |
395 |
LEC |
17 |
PHYSICS |
61C |
DIS |
53 |
|
PHYSICS |
399 |
TUT |
38 |
PHYSICS |
61C |
LEC |
53 |
|
|
|
|
|
PHYSICS |
H80 |
SEM |
12 |
|
|
|
|
|
PHYSICS |
106W |
LAB |
15 |
|
|
|
|
|
PHYSICS |
106W |
LEC |
15 |
|
|
|
|
|
PHYSICS |
112B |
DIS |
65 |
|
|
|
|
|
PHYSICS |
112B |
LEC |
65 |
|
|
|
|
|
PHYSICS |
113A |
DIS |
87 |
|
|
|
|
|
PHYSICS |
113A |
LEC |
87 |
|
|
|
|
|
PHYSICS |
121W |
LAB |
22 |
|
|
|
|
|
PHYSICS |
121W |
LEC |
22 |
|
|
|
|
|
PHYSICS |
125B |
DIS |
14 |
|
|
|
|
|
PHYSICS |
125B |
LEC |
14 |
|
|
|
|
|