next up previous
Next: Ground State Energy and Up: Lecture 2 Previous: Quantum Theory of Electrons

Density of States Per Unit Energy

Most of the properties of the electron states are governed by energy, and sometimes, direction of propagation. So it is convenient to write

$\displaystyle \int d^3k \longrightarrow \int d\Omega \int k^2dk = \int
\frac{d\Omega}{4\pi} \cdot 4\pi \int k^2dk$      

If the property we are considering does not depend on angle, $ \int
\frac{\textstyle d\Omega }{\textstyle 4\pi} = 1$ and we are left with $ 4\pi \int
k^2dk$.

Often it is more convenient to integrate over energy. Since $ \varepsilon = \varepsilon
(\vert k\vert)$ depends only on the magnitude of $ \vec{k}$, $ \Delta\varepsilon = (\frac{\textstyle
d\varepsilon }{\textstyle dk})\Delta k$.

$\displaystyle \int d^3k \longrightarrow 4\pi\int k^2 dk = 4\pi \int k^2 \frac{dk}{d\varepsilon }d\varepsilon$      

To summarize, for quantities which do not depend on angle or spin, we have
$\displaystyle \sum\limits_{\vec{k}\sigma} \longrightarrow \frac{2V}{(2\pi )^3} ...
...2\frac{dk}{d\varepsilon } d\varepsilon \equiv \int g(\varepsilon ) d\varepsilon$      

where $ g(\varepsilon ) = \frac{\textstyle 2V}{\textstyle (2\pi )^3}\; 4\pi k^2\;\frac...
...
dk}{\textstyle d\varepsilon } = \frac{\textstyle dn}{\textstyle d\varepsilon }$ is the number of states in the interval $ \Delta \varepsilon $. It is called the density of states. This formula is valid in 3D.

For a free electron gas, $ \varepsilon (k) = \frac{\textstyle \hbar^2k^2}{\textstyle 2m}$, $ \frac{\textstyle d\varepsilon }{\textstyle dk} = \frac{\textstyle \hbar^2k}{\textstyle m}$

\fbox{
$g(\varepsilon ) = V\frac{\textstyle mk}{\textstyle \hbar^2\pi^2} = V \fr...
... \sqrt{\frac{\textstyle 2m}{\textstyle \hbar^2}}\;\varepsilon ^{\frac{1}{2}}$ }
For $ \varepsilon < 0$, $ g(\varepsilon )=0$. Note $ g(\varepsilon )\propto V$.
=2.0 true in \epsfbox{dos.eps}

Fermi-Dirac Statistics

Electrons are fermions, hence the total wavefunction is antisymmetric. There can be no more than one electron per state $ \vert k\sigma\rangle $. At $ T = 0$, the ground state is obtained by filling up the lowest possible energy states (assuming a fixed number of electrons). In this way, we fill up a sphere in $ k$-space. The radius of the sphere is fixed by the condition

$\displaystyle N = \sum\limits_{k\sigma}   n_{k\sigma} =  $   total number of occupied states      

Call the radius of the sphere $ k_F$. Then
$\displaystyle N = \frac{4}{3} \pi k^3_F\cdot \frac{2V}{(2\pi )^3} = \frac{V k^3_F}{3\pi^2}$      

Thus the radius of the filled sphere is given by
\fbox{
$k^3_F = \frac{\textstyle N}{\textstyle V} \cdot 3\pi^2$}
$ k_F$ is called the Fermi wavevector. $ (k_F = \frac{\textstyle 1.92}{\textstyle
r_s})$ The filled sphere is called the Fermi sphere. Fermi momentum = $ p_F = \hbar k_F$. The Fermi energy
$\displaystyle \varepsilon _F = \frac{p^2_F}{2m} = \frac{\hbar^2}{2m} \left( 3\pi^2
\frac{N}{V}\right)^{2/3}$      

Fermi velocity $ = v_F = \frac{\textstyle p_F}{\textstyle m}$. Note that all these depend only on the density $ N/V$.

Typical values: $ k_F \sim 10^8$cm$ ^{-1}$ ( $ \sim 1\AA^{-1}$), $ v_F
\sim 10^8$ cm/sec $ ( < 0.01$c), $ \varepsilon _F \sim$ a few eV $ \sim$ atomic energies which is no coincidence. We can also define a Fermi temperature $ T_F = \frac{\textstyle \varepsilon _F}{\textstyle k_B}$. $ T_F \sim 10^4 - 10^5 K$. (Note $ T
\ll T_F$ for all temperatures where substance is a solid or a liquid.)


next up previous
Next: Ground State Energy and Up: Lecture 2 Previous: Quantum Theory of Electrons
Clare Yu 2006-10-03