next up previous
Next: About this document ... Up: Lecture 2 Previous: Density of States Per

Ground State Energy and Bulk Modulus of Electron Gas

The total number of electrons $ N = \sum\limits_{\textstyle \vec{k}\sigma}  
n_{\textstyle \vec{k}\sigma} = ...
...\limits^{\textstyle \varepsilon _F}_{\textstyle 0}g(\varepsilon ) d\varepsilon $. We could check our expression for $ g(\varepsilon )$ by plugging it in to see if we get $ N$ back. The total energy is

$\displaystyle E = \sum\limits_{\vec{k}\sigma} \varepsilon _{k} n_{k\sigma} =
\int\limits^{\varepsilon _F}_{0} \varepsilon g(\varepsilon ) d\varepsilon$      

Now $ g(\varepsilon ) = A\varepsilon ^{1/2}$ (It won't matter what $ A$ is.)
$\displaystyle \Rightarrow N = \frac{2}{3} A  \varepsilon ^{3/2}_{F}\quad {\rm and}\quad E =
\frac{2}{5} A\varepsilon ^{5/2}_{F}.$      

Thus \fbox{$\frac{\textstyle E}{\textstyle N} = \frac{\textstyle 3}{\textstyle 5}\varepsilon _F$} $ \qquad$ (no dependence on $ A$)
(Contrast w/ classical gas $ \frac{\textstyle E}{\textstyle N} = \frac{\textstyle 3}{\textstyle 2} kT$)
Pressure: Note $ \varepsilon _F$ is proportional to $ (\frac{\textstyle N}{\textstyle
V})^{2/3}$, i.e., it depends on $ V$. If V is changed, the electron gas should exert a pressure. At $ T = 0$,
    $\displaystyle P = - \left( \frac{\partial E}{\partial V}\right)_N = \frac{2}{3}...
...}{V}\right)\varepsilon _F\qquad ({\rm use}\quad E =
\frac{3}{5}N\varepsilon _F)$  

Aside: Dimensions or units dictate $ -(\partial E/\partial V)_N=2E/3V$:
$\displaystyle \varepsilon _F$ $\displaystyle \sim$ $\displaystyle k^{2}_{F}\sim n^{2/3}\sim \left(\frac{N}{V}\right)^{2/3}$  
$\displaystyle E$ $\displaystyle =$ $\displaystyle A\varepsilon _F \quad\quad\quad \left(A=\frac{3}{5}N\right)$  
  $\displaystyle =$ $\displaystyle {\tilde A}\left(\frac{N}{V}\right)^{2/3}$  
$\displaystyle \frac{dE}{dV}$ $\displaystyle =$ $\displaystyle \frac{2}{3}{\tilde A}N^{2/3}V^{-5/3}$  
  $\displaystyle =$ $\displaystyle \frac{2}{3}\frac{E}{V}$  

where $ {\tilde A}$ is a constant. The inverse compressibility (or bulk modulus $ B$) is defined as $ -V(\frac{\textstyle dP}{\textstyle dV})$. (At $ T = 0$, the derivative is taken with $ N = const.)$ Since
$\displaystyle P \propto \frac{\varepsilon _F}{V} \propto V^{-5/3}, \quad B = - V \frac{\partial
P}{\partial V} = \frac{5}{3} P$      

Using $ P = \frac{\textstyle 2}{\textstyle 3}\frac{\textstyle E}{\textstyle V}$, we obtain $ B =
\frac{\textstyle 10}{\textstyle 9} \frac{\textstyle E}{\textstyle V} = \f...
...textstyle 2}{\textstyle 3}
(\frac{\textstyle N}{\textstyle V})\varepsilon _F .$

We would not expect $ B$ to represent the total bulk modulus (ions contribute, too!), but the fact that this gives the right order of magnitude means that the electronic contribution is substantial.


next up previous
Next: About this document ... Up: Lecture 2 Previous: Density of States Per
Clare Yu 2006-10-03