next up previous
Next: Quantum Theory of Electrons Up: Lecture 2 Previous: Lecture 2

Seebeck Effect - Thermopower

=2.5 true in \epsfbox{thermopower.eps}

The fact that higher energy electrons move faster means that setting up a temperature gradient would give rise to an electric current. So, if we could set up a temperature gradient on a closed circuit, a current would flow up the gradient (since electrons are negatively charged). On an open circuit, the flow gives rise to a build-up of charge at the ends, and a steady state is obtained when the field $ \vec{E}$ produced is sufficient to cancel the drift. Hence we expect

$\displaystyle \vec{E}= Q\nabla T$      

where the thermopower $ Q$ should be $ < 0$.

Let's calculate $ Q$ in the Drude model.
Strategy: In steady state

$\displaystyle \frac{d\vec{\j}}{dt}\bigg\vert _{total} = \frac{d\vec{\j}_Q}{dt}\bigg\vert _{\it diffusion} + \frac{d\vec{\j}_E}{dt}\bigg\vert _{field} = 0$      

Diffusion

=2.5 true in \epsfbox{thermopower2.eps}

Suppose the gradient is along the $ x$-direction. Consider the electrons crossing the $ x = 0$ plane a time $ t$ after the start of the operation. An electron with velocity $ \vec{v}$ will come from a point $ \vec{r} = -
\vec{v}t$ away and will have a velocity appropriate to $ \vec{r}$. Let $ \nabla v_x \vert\vert\;\nabla T\;\vert\vert +{\hat x}$. The excess velocity at $ x = 0$ for the $ x$-component is

    $\displaystyle \delta v_x = - t \vec{v}\cdot \nabla v_x = - tv_x\nabla v_x = -
\frac{1}{2}t\nabla v_x^2= - \frac{1}{6} t\nabla \overline{v^2}$  


    $\displaystyle \frac{\partial v_x}{\partial t} = - \frac{1}{6} \nabla \overline{...
...rline{v^2} = + \frac{1}{6}
ne\frac{\partial \overline{v^2}}{\partial T}\nabla T$  

where we used $ \vec{\j}= - n e v$. $ \vec{\j}_Q$ is the electric current due to the thermal gradient.

E-field current

Recall

$\displaystyle \left( \frac{\partial \vec{\j}}{\partial t}\right)_{field} = \frac{ne^2\vec{E}}{m}$      

Steady-State: (Heat current cancels $ \vec{E}$-field current)
    $\displaystyle \frac{d\vec{\j}}{dt}\bigg\vert _{tot} =\frac{d\vec{\j}_Q}{dt}\bigg\vert _{\it diff} +
\frac{d\vec{\j}}{dt}\bigg\vert _{\vec{E}} =0$  


$\displaystyle \frac{ne^2 \vec{E}}{m}$ $\displaystyle =$ $\displaystyle - \frac{1}{6}ne \frac{\partial \overline{v^2}}{\partial
T}\nabla T$  
$\displaystyle \vec{E}$ $\displaystyle =$ $\displaystyle Q \nabla T$  

where
\fbox{\parbox{2.5in}{$\quad Q = - \frac{\textstyle 1}{\textstyle 6e} \frac{\text...
...) = - \frac{\textstyle 1}{\textstyle 3e} \frac{\textstyle
c_v}{\textstyle n}$}}
In the Kinetic Theory of Gases,
$\displaystyle c_v = \frac{3}{2} nk_B \Rightarrow Q = - \frac{k_B}{2e} \sim \left({100
\times \mbox{too} \atop \mbox{\quad large for expt.}}\right)$      


next up previous
Next: Quantum Theory of Electrons Up: Lecture 2 Previous: Lecture 2
Clare Yu 2006-10-03