NUMBER OF UNDERGRADUATE STUDENTS:
Quarter |
Chem |
Math |
Phys |
ESS (all majors) |
Unde |
W2011 |
501 |
370 |
117 |
124 |
92 |
W2012 |
464 |
356 |
123 |
138 |
131 |
W2013 |
427 |
420 |
129 |
148 |
152 |
W2014 |
426 |
501 |
156 |
192 |
197 |
W2015 |
405 |
594 |
164 |
236 |
152 |
W2016 |
415 |
750 |
203 |
208 |
219 |
![]()
NUMBER OF GRADUATE STUDENTS:
|
W16 |
CHEMISTRY |
205 |
CHM-CHM AND MATL PHY |
13 |
EARTH SYSTEM SCIENCE |
48 |
MATHEMATICS |
100 |
PHY-CHM AND MATL PHY |
40 |
PHYSICS |
79 |
![]()
W16 LECTURE ENROLLMENTS:
Dept |
MATH |
ESS |
CHEM |
PHYSICS |
W2016 |
5718 |
1257 |
5153 |
3124 |
![]()
ENROLLMENTS BY DEPT:
Quarterly Summary for W2016 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Level |
LEC |
DIS |
LAB |
LAB LEC |
RES |
SEM |
TUT |
FLD |
COL |
|
|
|
|
|
|
|
|
|
|
|
CHEM |
Lower-Div |
3472 |
3472 |
1566 |
1210 |
|
|
|
|
|
|
Upper-Div |
348 |
497 |
165 |
|
58 |
0 |
36 |
|
|
|
Grad |
123 |
94 |
|
|
203 |
304 |
103 |
|
|
|
Total |
3943 |
4063 |
1731 |
1210 |
261 |
304 |
139 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
ESS |
Lower-Div |
1000 |
783 |
217 |
|
|
|
|
|
|
|
Upper-Div |
221 |
35 |
53 |
|
19 |
28 |
|
3 |
|
|
Grad |
36 |
|
0 |
|
40 |
27 |
17 |
|
|
|
Total |
1257 |
818 |
270 |
0 |
59 |
55 |
17 |
3 |
0 |
|
|
|
|
|
|
|
|
|
|
|
MATH |
Lower-Div |
4742 |
4452 |
43 |
|
|
|
|
|
|
|
Upper-Div |
775 |
754 |
39 |
|
16 |
|
|
8 |
|
|
Grad |
201 |
|
|
|
44 |
129 |
|
|
|
|
Total |
5718 |
5206 |
82 |
0 |
60 |
129 |
0 |
8 |
0 |
|
|
|
|
|
|
|
|
|
|
|
PHYS |
Lower-Div |
2849 |
2742 |
1518 |
|
|
|
307 |
|
|
|
Upper-Div |
159 |
133 |
12 |
|
14 |
|
|
|
|
|
Grad |
116 |
39 |
5 |
|
83 |
36 |
34 |
|
4 |
|
Total |
3124 |
2914 |
1535 |
0 |
97 |
36 |
341 |
0 |
4 |
CHEMISTRY ENROLLMENTS FOR WINTER 2016 |
|
|
|
|
|
|
|
|
|
|
|
|
|
CHEM |
1A |
DIS |
802 |
|
CHEM |
204 |
DIS |
13 |
CHEM |
1A |
LEC |
802 |
|
CHEM |
204 |
LEC |
13 |
CHEM |
1B |
DIS |
1453 |
|
CHEM |
217 |
DIS |
6 |
CHEM |
1B |
LEC |
1453 |
|
CHEM |
217 |
LEC |
6 |
CHEM |
1LD |
LAB |
105 |
|
CHEM |
219 |
DIS |
18 |
CHEM |
1LE |
LAB |
243 |
|
CHEM |
219 |
LEC |
19 |
CHEM |
H2B |
DIS |
80 |
|
CHEM |
225 |
DIS |
6 |
CHEM |
H2B |
LEC |
80 |
|
CHEM |
225 |
LEC |
6 |
CHEM |
H2LB |
LAB |
73 |
|
CHEM |
228 |
DIS |
3 |
CHEM |
H2LB |
LAB LEC |
74 |
|
CHEM |
228 |
LEC |
3 |
CHEM |
M2LB |
LAB |
69 |
|
CHEM |
231B |
DIS |
14 |
CHEM |
M2LB |
LAB LEC |
68 |
|
CHEM |
231B |
LEC |
14 |
CHEM |
51B |
DIS |
1137 |
|
CHEM |
232A |
DIS |
21 |
CHEM |
51B |
LEC |
1137 |
|
CHEM |
232A |
LEC |
21 |
CHEM |
51LB |
LAB |
1011 |
|
CHEM |
249 |
LEC |
23 |
CHEM |
51LB |
LAB LEC |
1003 |
|
CHEM |
252 |
DIS |
2 |
CHEM |
H52LB |
LAB |
10 |
|
CHEM |
252 |
LEC |
4 |
CHEM |
H52LB |
LAB LEC |
10 |
|
CHEM |
263 |
DIS |
11 |
CHEM |
M52LB |
LAB |
55 |
|
CHEM |
263 |
LEC |
9 |
CHEM |
M52LB |
LAB LEC |
55 |
|
CHEM |
273 |
LEC |
5 |
CHEM |
107L |
DIS |
67 |
|
CHEM |
280 |
RES |
203 |
CHEM |
107L |
LAB |
67 |
|
CHEM |
290 |
SEM |
126 |
CHEM |
127 |
DIS |
34 |
|
CHEM |
291 |
SEM |
102 |
CHEM |
127 |
LEC |
34 |
|
CHEM |
292 |
SEM |
76 |
CHEM |
128 |
DIS |
94 |
|
CHEM |
299 |
TUT |
3 |
CHEM |
128 |
LEC |
94 |
|
CHEM |
399 |
TUT |
100 |
CHEM |
128L |
DIS |
89 |
|
|
|
|
|
CHEM |
128L |
LAB |
89 |
|
|
|
|
|
CHEM |
131B |
DIS |
176 |
|
|
|
|
|
CHEM |
131B |
LEC |
176 |
|
|
|
|
|
CHEM |
177 |
DIS |
28 |
|
|
|
|
|
CHEM |
177 |
LEC |
28 |
|
|
|
|
|
CHEM |
177L |
DIS |
9 |
|
|
|
|
|
CHEM |
177L |
LAB |
9 |
|
|
|
|
|
CHEM |
180 |
RES |
46 |
|
|
|
|
|
CHEM |
H180B |
RES |
12 |
|
|
|
|
|
CHEM |
192 |
TUT |
30 |
|
|
|
|
|
CHEM |
193 |
LEC |
16 |
|
|
|
|
|
CHEM |
199 |
TUT |
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ESS ENROLLMENTS FOR WINTER 2016 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EARTHSS |
3 |
DIS |
397 |
|
|
|
|
|
EARTHSS |
3 |
LEC |
397 |
|
|
|
|
|
EARTHSS |
7 |
LAB |
135 |
|
|
|
|
|
EARTHSS |
7 |
LEC |
135 |
|
|
|
|
|
EARTHSS |
15 |
DIS |
273 |
|
|
|
|
|
EARTHSS |
15 |
LEC |
273 |
|
|
|
|
|
EARTHSS |
19 |
LAB |
82 |
|
|
|
|
|
EARTHSS |
19 |
LEC |
82 |
|
|
|
|
|
EARTHSS |
53 |
DIS |
57 |
|
|
|
|
|
EARTHSS |
53 |
LEC |
57 |
|
|
|
|
|
EARTHSS |
60B |
DIS |
56 |
|
|
|
|
|
EARTHSS |
60B |
LEC |
56 |
|
|
|
|
|
EARTHSS |
112 |
LEC |
7 |
|
|
|
|
|
EARTHSS |
118 |
LAB |
17 |
|
|
|
|
|
EARTHSS |
118 |
LEC |
17 |
|
|
|
|
|
EARTHSS |
130 |
DIS |
7 |
|
|
|
|
|
EARTHSS |
130 |
LEC |
7 |
|
|
|
|
|
EARTHSS |
134 |
LAB |
36 |
|
|
|
|
|
EARTHSS |
134 |
LEC |
36 |
|
|
|
|
|
EARTHSS |
142 |
DIS |
28 |
|
|
|
|
|
EARTHSS |
142 |
LEC |
28 |
|
|
|
|
|
EARTHSS |
152 |
LEC |
12 |
|
|
|
|
|
EARTHSS |
164 |
LEC |
17 |
|
|
|
|
|
EARTHSS |
174 |
LEC |
4 |
|
|
|
|
|
EARTHSS |
176 |
LEC |
9 |
|
|
|
|
|
EARTHSS |
180 |
LEC |
84 |
|
|
|
|
|
EARTHSS |
190B |
SEM |
28 |
|
|
|
|
|
EARTHSS |
197 |
FLD |
3 |
|
|
|
|
|
EARTHSS |
199 |
RES |
18 |
|
|
|
|
|
EARTHSS |
H199B |
RES |
1 |
|
|
|
|
|
EARTHSS |
224 |
LEC |
11 |
|
|
|
|
|
EARTHSS |
226 |
LEC |
10 |
|
|
|
|
|
EARTHSS |
228 |
LEC |
11 |
|
|
|
|
|
EARTHSS |
252 |
LEC |
4 |
|
|
|
|
|
EARTHSS |
280B |
SEM |
18 |
|
|
|
|
|
EARTHSS |
290 |
SEM |
9 |
|
|
|
|
|
EARTHSS |
299 |
RES |
40 |
|
|
|
|
|
EARTHSS |
399 |
TUT |
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MATH ENROLLMENTS FOR WINTER 2016 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MATH |
1B |
LEC |
246 |
|
MATH |
130B |
LEC |
111 |
MATH |
2A |
DIS |
1002 |
|
MATH |
133A |
DIS |
47 |
MATH |
2A |
LEC |
1002 |
|
MATH |
133A |
LEC |
47 |
MATH |
2B |
DIS |
1479 |
|
MATH |
140A |
DIS |
58 |
MATH |
2B |
LEC |
1479 |
|
MATH |
140A |
LEC |
58 |
MATH |
2D |
DIS |
450 |
|
MATH |
140B |
DIS |
59 |
MATH |
2D |
LEC |
450 |
|
MATH |
140B |
LEC |
59 |
MATH |
2E |
DIS |
216 |
|
MATH |
H140B |
LEC |
5 |
MATH |
2E |
LEC |
216 |
|
MATH |
147 |
DIS |
30 |
MATH |
3A |
DIS |
472 |
|
MATH |
147 |
LEC |
30 |
MATH |
3A |
LEC |
473 |
|
MATH |
161 |
DIS |
13 |
MATH |
3D |
DIS |
443 |
|
MATH |
161 |
LEC |
13 |
MATH |
3D |
LEC |
443 |
|
MATH |
162A |
DIS |
9 |
MATH |
4 |
DIS |
240 |
|
MATH |
162A |
LEC |
9 |
MATH |
4 |
LEC |
240 |
|
MATH |
175 |
DIS |
7 |
MATH |
5A |
DIS |
21 |
|
MATH |
175 |
LEC |
7 |
MATH |
5A |
LEC |
21 |
|
MATH |
176 |
DIS |
62 |
MATH |
5B |
DIS |
24 |
|
MATH |
176 |
LEC |
62 |
MATH |
5B |
LEC |
24 |
|
MATH |
180A |
DIS |
25 |
MATH |
9 |
LAB |
43 |
|
MATH |
180A |
LEC |
25 |
MATH |
9 |
LEC |
43 |
|
MATH |
192 |
FLD |
8 |
MATH |
13 |
DIS |
105 |
|
MATH |
192 |
LEC |
9 |
MATH |
13 |
LEC |
105 |
|
MATH |
199B |
RES |
16 |
MATH |
105B |
DIS |
40 |
|
MATH |
205B |
LEC |
11 |
MATH |
105B |
LEC |
40 |
|
MATH |
206B |
LEC |
16 |
MATH |
105LB |
LAB |
39 |
|
MATH |
210B |
LEC |
25 |
MATH |
112B |
DIS |
44 |
|
MATH |
218B |
LEC |
13 |
MATH |
112B |
LEC |
44 |
|
MATH |
220B |
LEC |
20 |
MATH |
113B |
DIS |
6 |
|
MATH |
226B |
LEC |
13 |
MATH |
113B |
LEC |
6 |
|
MATH |
227B |
LEC |
11 |
MATH |
117 |
DIS |
10 |
|
MATH |
230B |
LEC |
20 |
MATH |
117 |
LEC |
10 |
|
MATH |
232B |
LEC |
8 |
MATH |
120A |
DIS |
81 |
|
MATH |
245B |
LEC |
6 |
MATH |
120A |
LEC |
81 |
|
MATH |
260B |
LEC |
4 |
MATH |
120B |
DIS |
25 |
|
MATH |
270B |
LEC |
10 |
MATH |
120B |
LEC |
25 |
|
MATH |
271B |
LEC |
10 |
MATH |
H120B |
LEC |
7 |
|
MATH |
280B |
LEC |
6 |
MATH |
121A |
DIS |
50 |
|
MATH |
290B |
LEC |
11 |
MATH |
121A |
LEC |
50 |
|
MATH |
295B |
LEC |
11 |
MATH |
121B |
DIS |
26 |
|
MATH |
296 |
LEC |
6 |
MATH |
121B |
LEC |
26 |
|
MATH |
298B |
SEM |
129 |
MATH |
130A |
DIS |
51 |
|
MATH |
299B |
RES |
44 |
MATH |
130A |
LEC |
51 |
|
|
|
|
|
MATH |
130B |
DIS |
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PHYSICS ENROLLMENTS FOR WINTER 2016 |
|
|
|
|
|
|
|
|
|
|
|
|
|
PHYSICS |
2 |
DIS |
307 |
|
PHYSICS |
134A |
DIS |
6 |
PHYSICS |
2 |
LEC |
307 |
|
PHYSICS |
134A |
LEC |
6 |
PHYSICS |
2 |
TUT |
307 |
|
PHYSICS |
136 |
LEC |
9 |
PHYSICS |
3A |
DIS |
348 |
|
PHYSICS |
137 |
DIS |
8 |
PHYSICS |
3A |
LEC |
348 |
|
PHYSICS |
137 |
LEC |
8 |
PHYSICS |
3B |
DIS |
529 |
|
PHYSICS |
138 |
DIS |
7 |
PHYSICS |
3B |
LEC |
529 |
|
PHYSICS |
138 |
LEC |
7 |
PHYSICS |
3LB |
LAB |
469 |
|
PHYSICS |
193 |
LEC |
5 |
PHYSICS |
7C |
DIS |
640 |
|
PHYSICS |
195 |
RES |
9 |
PHYSICS |
7C |
LEC |
640 |
|
PHYSICS |
196B |
RES |
5 |
PHYSICS |
7D |
DIS |
400 |
|
PHYSICS |
213A |
DIS |
16 |
PHYSICS |
7D |
LEC |
400 |
|
PHYSICS |
213A |
LEC |
16 |
PHYSICS |
7E |
DIS |
37 |
|
PHYSICS |
214A |
LEC |
15 |
PHYSICS |
7E |
LEC |
37 |
|
PHYSICS |
215B |
DIS |
16 |
PHYSICS |
7LC |
LAB |
619 |
|
PHYSICS |
215B |
LEC |
16 |
PHYSICS |
7LD |
LAB |
388 |
|
PHYSICS |
220 |
LAB |
5 |
PHYSICS |
18 |
LEC |
65 |
|
PHYSICS |
220 |
LEC |
5 |
PHYSICS |
20A |
DIS |
118 |
|
PHYSICS |
228 |
DIS |
7 |
PHYSICS |
20A |
LEC |
118 |
|
PHYSICS |
228 |
LEC |
7 |
PHYSICS |
20B |
DIS |
225 |
|
PHYSICS |
233B |
LEC |
1 |
PHYSICS |
20B |
LEC |
225 |
|
PHYSICS |
234B |
LEC |
9 |
PHYSICS |
21 |
DIS |
16 |
|
PHYSICS |
235B |
LEC |
8 |
PHYSICS |
21 |
LEC |
16 |
|
PHYSICS |
238B |
LEC |
6 |
PHYSICS |
52B |
LAB |
42 |
|
PHYSICS |
239B |
LEC |
1 |
PHYSICS |
52B |
LEC |
42 |
|
PHYSICS |
240B |
LEC |
5 |
PHYSICS |
61A |
DIS |
58 |
|
PHYSICS |
240C |
LEC |
3 |
PHYSICS |
61A |
LEC |
58 |
|
PHYSICS |
260B |
SEM |
4 |
PHYSICS |
H90 |
DIS |
64 |
|
PHYSICS |
261B |
SEM |
4 |
PHYSICS |
H90 |
LEC |
64 |
|
PHYSICS |
263B |
SEM |
4 |
PHYSICS |
111B |
DIS |
37 |
|
PHYSICS |
265B |
SEM |
4 |
PHYSICS |
111B |
LEC |
37 |
|
PHYSICS |
273 |
LEC |
5 |
PHYSICS |
112A |
DIS |
41 |
|
PHYSICS |
291 |
SEM |
20 |
PHYSICS |
112A |
LEC |
41 |
|
PHYSICS |
295 |
RES |
51 |
PHYSICS |
113C |
DIS |
6 |
|
PHYSICS |
296 |
RES |
27 |
PHYSICS |
113C |
LEC |
6 |
|
PHYSICS |
298 |
COL |
4 |
PHYSICS |
120 |
LAB |
2 |
|
PHYSICS |
299 |
RES |
5 |
PHYSICS |
120 |
LEC |
2 |
|
PHYSICS |
395 |
LEC |
19 |
PHYSICS |
121W |
LAB |
10 |
|
PHYSICS |
399 |
TUT |
34 |
PHYSICS |
121W |
LEC |
10 |
|
|
|
|
|
PHYSICS |
125A |
DIS |
28 |
|
|
|
|
|
PHYSICS |
125A |
LEC |
28 |
|
|
|
|
|