Beyond the beamspot

Disappearing tracks, out-of-time jets, and other signatures of exotic long-lived particles

Wells Wulsin The Ohio State University

11 Aug 2015 UC Irvine High Energy Physics Seminar

There are many reasons to expect physics beyond the Standard Model

dark matter

stabilizing the Higgs mass

Source of neutrino masses, baryon asymmetry of the universe, quantum theory of gravity, dark energy, and others...

Despite a broad search program, no clear signs of physics Beyond the Standard Model

Probe *up to* the quoted mass limit

Where is BSM physics hiding?

Relatively sparse limits on particles with long lifetimes.

Most SUSY searches target prompt decays,⁻ d₀ ~< mm.

Large parameter space available for particles with long lifetimes.

Each entry is a point in 19-D <u>pMSSM</u> parameter space.

27% of pMSSM points have NLSP (chargino) with $c\tau > 1$ cm.

Most SUSY searches target prompt decays, d₀ ~< mm.

Various mechanisms could lead to long lifetimes.

Long-lived particle highlighted

Selected CMS results 0 LL particle may be Calorimete neutral or charged (or both) Region of BSM particle decay Phys. Lett. B 743, 15 (2015) displaced jets **ATLAS** Preliminary lepton jets [HEP 11, 088 (2014) displaced leptons _arXiv:1411.6977 & CMS-PAS-EXO-14-012 🏅 Phys. Rev. Lett. 114, 061801 (2015) displaced vertices ATLAS Preliminary (paper in preparation) displaced / delayed photons Phys. Rev. D 90, 112005 (2014) 🐒 Phys. Rev. D 88, 112003 (2013) stopped particles arXiv:1501.05603 JHEP 07 (2013) 122 💦 JHEP 01, 068 (2015) heavy stable charged particles ATLAS-CONF-2015-013 & ATLAS Preliminary Phys. Rev. D 88, 112006 (2013) disappearing tracks <u>|HEP 01 (2015) 096</u> 🔀 ATLAS-CONF-2014-037 🦹 reinterpretations arXiv:1502.02522

Selected CMS searches for exotic long-lived particles

Fractionally charged particles

Phys. Rev. D 87 (2013) 092008 arXiv:1210.2311

Stopped particles

Eur. Phys. J. C 75 (2015) 151 arXiv:1501.05603

JHEP=0:4⊳:(20:4≤5)∨096 arXiv:1411.6006

Selected CMS searches for exotic long-lived particles

Fractionally charged particles

Phys. Rev. D 87 (2013) 092008 arXiv:1210.2311

JHEP 01 (2015) 096 arXiv:1411.6006

Disappearing tracks

Stopped particles

Eur. Phys. J. C 75 (2015) 151 arXiv:1501.05603

A theory paper sparked our interest

Meade, et al. proposed "new odd tracks" (NOTs) to explain CDF data excess above QCD prediction at large p_T

NOTs could come in several forms:

- kinked tracks
- displaced vertices
- anomalous dE/dx
- anomalous timing
- intermittent hits
- anomalous curvature
- disappearing tracks

If the p_T of the NOTs is mismeasured (e.g., from fractional charge), they could populate the region of the CDF excess.

Standard reconstruction/ simulation requires modification for fractionally charged particles

Fractionally charged particles have **pT mismeasured** by factor of 1/lql.

Stable fractionally charged particles **deposit less energy** in tracker, muon detectors. Reduced efficiency to trigger & reconstruct track offline. Important systematic uncertainty on signal efficiency.

Fractionally charged particles populate unchartered territory $-\left\langle \frac{dE}{dx} \right\rangle = Kq^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$ Bethe eqn: ionization energy loss is proportional to q² CMS √s = 8 TeV, L = 18.8 fb⁻¹ 20 Data (Vs = 8 TeV) 18 MC: Q=3 400 GeV/c² MC: Q=1 400 GeV/c²

Number of low-ionizing hits follows a binomial distribution

Binomial distribution results from uncorrelated measurements

First look at data: a signal?

Looked at sample of data after a preliminary version of the selection.

Several events had tracks with many low-dE/ dx hits \rightarrow expected signature of signal!

But, upon examination of event displays these events had signature of cosmic ray muons \rightarrow muon hits 180 degrees opposite the candidate track.

Suppressed the cosmic ray bkgd by adding cuts on several variables (quality of primary vertex, # pixel hits, d_{xy}, d_z, IP time, 3D angle between candidate track and any other highpT track).

First limits on 0<|q|<1 stable particles at LHC

Selected CMS searches for exotic long-lived particles

Fractionally charged particles

Phys. Rev. D 87 (2013) 092008 arXiv: JHEP 040 (2015) √096 arXiv:1411.6006

Disappearing tracks

Stopped particles

Eur. Phys. J. C 75 (2015) 151 arXiv:1501.05603

Motivation: fill important gap in parameter space

- Explore $0.1 < c\tau < 1$ m, a region well-motivated for a variety of reasons.
 - Important lifetime region (**peak** in pMSSM plot at right)
 - Distinct experimental signature.
 - Few Standard Model backgrounds.

Disappearing track signature

- Disappearing track: stops partway through the tracker
- Produced by charged BSM particle if decay products are undetected because they are low-momentum or neutral/weakly-interacting.
- Striking signature of new physics
- Would provide multiple handles to study a BSM particle, e.g., lifetime, mass, recovery of some decay products.
- Signature-driven search, not designed for particular model.

Benchmark signal model

Anomaly-Mediated SUSY Breaking (Nucl. Phys. B 557, 79 (1999))

- small mass splitting between the lightest chargino (χ[±]) and neutralino (χ⁰)
- χ^{\pm} decays to $\chi^{\pm} \rightarrow \chi^{0} \pi^{\pm}$ with lifetime ~ 1 ns
- χ^0 interacts only weakly and π^{\pm} has too little momentum to be reconstructed
- direct electroweak production: $pp \rightarrow \chi^{\pm}\chi^{\mp} \& pp \rightarrow \chi^{\pm}\chi^{0}$

Many other models could produce disappearing tracks: Phys. Rev. D 85, 095011 (2012), JHEP 36, 1 (2013), JHEP 2, 126 (2013), arXiv:1212.6971.

Disappearing tracks, W. Wulsin

Candidate Track Selection

Data sample: 19.5 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV

Trigger on MFT		HLT_MonoCentralPFJet80_PFMETnoMu95_NHEF0p95
	Triggers	HLT_MonoCentralPFJet80_PFMETnoMu105_NHEF0p95
(produced by recoil		HLT_MET120_HBHENoiseCleaned
of vv from ISR ipt)	Missing Energy	$E_T > 100 \text{GeV}$
		$p_T > 110 { m GeV}$
		$ \eta < 2.4$
		charged hadron energy fraction > 0.2
lot Critoria	Leading jet criteria	neutral hadron energy fraction < 0.7
Jet Offiena		charged EM energy fraction < 0.5
		neutral EM energy fraction < 0.7
	Additional jet criteria	no jet pairs with $\Delta \phi > 2.5$ $\Delta \phi > 0.5$ E ₋ f-f- 2 bigbost n_{-} jets
		$\Delta \psi > 0.5 - \mu_T \&\& 2 \text{ Highest-}p_T \text{ jets}$
		n < 2.1
		$d_0 < 0.02 \mathrm{cm}$
	Track quality	$d_z < 0.5 {\rm cm}$
	1 2	\geq 7 valid hits
		0 missing middle hits
Candidate Track		0 missing inner hits
	Track isolation	$(\Sigma p_T^{\Delta R < 0.3} - p_T) / p_T < 0.05$
Criteria		$\Delta R > 0.5$ between track and any jet
		In ECAL barrel-endcap crack, $1.42 < \eta < 1.65$
		In DT wheel 0 gap, $0.15 < \eta < 0.35$
		within $\Lambda R < 0.05$ of dead or poisy FCAL cluster
	Lepton vetoes	within $\Delta R < 0.25$ of errant CSC
		within $\Delta R < 0.15$ of e , $p_T > 10$ GeV && mvaNonTrigV0 > 0
		!within $\Delta R < 0.15$ of μ , $p_T > 10$ GeV
		!within $\Delta R < 0.15$ of τ , $p_T > 30$ GeV, $ \eta < 2.3$, loose tau ID

Disappearing Track Criteria

We promote a candidate track to a "disappearing track" if it ... disappears

- Missing outer hits are the characteristic sign of a disappearing track
- N_{miss}^{outer} ≥ 3 rejects most SM tracks, which pass through all layers of the tracker
- But electrons and charged hadrons can produce missing outer hits

To avoid these SM sources of tracks with missing outer hits, we additionally require....

- We require there be not much energy in the calorimeter in the region geometrically associated to the our candidate track
 - $E_{calo} < 10 \text{ GeV}$
- Ensures that missing outer hits are not from brem or nuclear interaction.

Candidate tracks with missing outer hits and little associated calorimeter energy form the search sample

Missing outer hits: algorithmic sources

We were surprised to discover that **muons** sometimes produce missing outer hits.

For a single pixel seed, the trajectory with the largest quality score Q is retained: $Q = 5^*(\# \text{ found hits}) - 20^*(\# \text{ lost hits}) - X^2$

Sometimes the wrong set of hits is chosen: trajectory with missing outer hits has larger Q than one without missing outer hits.

In muon particle gun events, 11% of tracks produce \geq 1 missing outer hit.

- 7.3%: track passes through a glue joint (near local y=0) (now fixed in software)
- 2.7%: trajectory without missing outer hits has larger X^2
- 0.7%: the last hit is mistakenly removed (now fixed in software)

All tracks are impacted by these algorithmic sources of "fake" missing outer hits.

Missing outer hits: pass through glue joint

Backgrounds arise from reconstruction failure modes

- **1. Electrons:** Can survive electron veto if directed toward a dead or noisy ECAL crystal.
- **2. Muons:** Can survive muon veto from decay in flight, secondary electromagnetic shower, or no recorded hit in muon system.
- **3. Taus:** Can survive tau veto if pion track from $\tau \rightarrow \pi v$ has mismeasured p_T .
- 4. Fake tracks: False trajectories from pattern recognition failure → mimic signal.

Background Sources: Electrons

An electron track can survive the electron veto if its energy is not fully measured by the ECAL. Therefore we avoid regions where this is likely to happen.

- Veto tracks in the ECAL barrel-endcap gap.
- Veto tracks within ∆R<0.05 of an ECAL channel known to be dead/ noisy.
- Veto any tracks pointing toward additional problematic ECAL channels, identified with a Z→ee tag/² probe study.

Background Sources: Muons

Veto tracks from global/standalone/tracker muon.

We avoid regions where muon reconstruction can fail:

Veto η regions of large inefficiency

450

• Veto tracks within $\Delta R < 0.25$ of bad CSC

Bkad MC

- Even after fiducial cuts, muon may be unreconstructed when i decays in flight or produces a secondary electromagnetic shower. Even after fiducial cuts, muon
- From muon particle gun sample $\widehat{\overline{\Xi}}$ muon reconstruction inefficiency $\frac{3}{2}$ is 6.8 x 10⁻⁵. Very rare! 0 Entries per bin

Background Sources: Taus

A charged hadron track from a tau decay can survive if its p_T is mismeasured (which is easier to do for a disappearing track)

We require ≥ 7 hits to reduce the fraction of tracks with mismeasured p_T .

Fake macro are made majorities macrosult more name pattern recognition or a combination of random hits in the event.

- Mostly rejected by track isolation and track quality requirements.
- With each additional hit, probability to find a fake track decreases: large N^{miss}out.
- Hits not produced by a single particle: little E_{calo} .

Lepton Background Estimates

- Developed a factorized data/MC estimate.
- Use MC only to model lepton inefficiency.
- Don't rely on MC to model missing outer hits or other selection criteria.
- \cdot Test the simulation of $\mathsf{P}^{\mathsf{lep}}$ with tag and probe samples.

$$N^i = N^i_{ctrl} P^i$$

 N^{i}_{ctrl} (data): # events passing search region criteria, without the lepton veto P^{i} (MC): probability of track from lepton to survive the lepton veto

	Electrons	Muons	Taus
Criteria removed to	e veto	μ veto	$\tau_{\rm h}$ veto
select control sample	$E_{\rm calo} < 10 {\rm GeV}$		$E_{\rm calo} < 10 {\rm GeV}$
$N_{\rm ctrl}^i$ from data	7785	4138	29
P^i from simulation	$< 6.3 \times 10^{-5}$	$1.6^{+3.6}_{-1.3} \times 10^{-4}$	< 0.019
$N^i = N^i_{\rm ctrl} P^i$	< 0.49 (stat)	$0.64^{+1.47}_{-0.53}$ (stat)	$< 0.55 ({\rm stat})$
P^i systematic uncertainty	31%	50%	36%
N^i	< 0.50 (stat+syst)	$0.64^{+1.47}_{-0.53}$ (stat) ± 0.32 (syst)	< 0.57 (stat+syst)

Fake Track Background Estimate

- The fake track rate is independent of the underlying physics process.
- Developed entirely data-driven bkgd estimate.

N^{fake} = N^{fake}ctrl P^{fake}

N^{kin}: number of events in search sample, before track selection criteria P^{fake}: fake track rate from $Z \rightarrow \mu\mu$ control sample

Ratio of P^{fake} in the search sample and $Z \rightarrow \mu\mu$ control sample

Systematic uncertainty from P^{fake} for 4 hits: **35%.**

Background validation & summary

Validate the background estimates in two looser p_T ($p_T > 30$ GeV), sideband regions:

- Replace $N^{outer}_{miss} \ge 3$ with $N^{outer}_{miss} \le 2$
- Replace $E_{calo} < 10$ GeV with $E_{calo} > 10$ GeV

E _{calo} sideband	197	195 ± 13	1.01 ± 0.10
N _{outer} sideband	112	103 ± 9	1.09 ± 0.14

The background estimates are consistent with the yield from data in these control regions.

After the full selection, the expected background is 1.4 ± 1.2 events.

90H

80F

70F

60E

50E

40F

30E

20Ē

10Ē

Results

Observed 2 data events, consistent with the expected background of 1.4±1.2.

Limits

- Generic chargino limits
- Region to the left of the solid curve is excluded at 95% C.L.
- Maximum sensitivity for lifetimes of 7 ns, exclude charginos with mass less than 505 GeV

- Constraint on mass of chargino and mass difference between the chargino and neutralino in AMSB
- Exclude charginos with mass of 260 GeV i.e. lifetime of ~0.2 ns and mass difference of 160 MeV

Different search strategies

Inclusive approach: Exploit difference in shape of a discriminating variable between signal vs. backgrounds (e.g., track p_T).

Exclusive approach: Identify, understand, mitigate, and estimate each source of background.

Event source	Yield			
Electrons	<0.49 (stat.)	<0.50 (stat+syst)		
Muons	$0.64^{+1.47}_{-0.53}$ (sta	at.) \pm 0.32 (syst.)		
Taus	<0.55 (stat.)	<0.57 (stat+syst)		
Fake tracks	$0.36^{+0.47}_{-0.23}$ (sta	at.) \pm 0.13 (syst.)		

Phys Rev D 88, 112006 (2013), arXiv:1310.3675

Disappearing tracks reinterpretation

Parameterize signal efficiency in terms of 2 generator-level quantities

Parameterized efficiency allows setting limits on an arbitrary model.

Used to find coverage of disappearing tracks search in pMSSM model space.

Sensitive to previously-uncovered gap in parameter space.

Selected CMS searches for exotic long-lived particles

Fractionally charged particles

Phys. Rev. D 87 (2013) 092008 arXiv:

JHEP 01 (2015) 096 arXiv:1411.6006

Disappearing tracks

Stopped particles

Eur. Phys. J. C 75 (2015) 151 arXiv:1501.05603

Stopped particles overview

Look for calorimeter cluster **asynchronous** with p-p collisions. 281 hours of trigger livetime.

z[cm]

R-hadrons typically stop in calorimeters or muon yoke flux return.

Stopped particles backgrounds

Instrumental noise (HCAL)

Combat with cuts on jet topology and timing.

Cosmic ray muons

Cosmic veto was found to introduce energy dependence in the signal efficiency, so the offline cuts were modified.

Beam halo muons

Caused by stray protons striking beam pipe & collimators

CMS Experiment at LHC, CERN Data recorded: Sun Sep 25 22:44:58 2011 EDT Run/Event: 177141 / 310347764 Lumi section: 205

Period	Trigger livetime (h)	$N_{\rm noise}^{\rm bkg}$	$N_{ m cosmic}^{ m bkg}$	$N_{ m halo}^{ m bkg}$	$N_{ m total}^{ m bkg}$	$N^{\rm obs}$
2010	253	$0.0^{+2.3}_{-0.0}$	4.8 ± 3.6	_	$4.8^{+4.3}_{-3.6}$	2
2012	281	$0.0\substack{+2.6 \\ -0.0}$	5.2 ± 2.5	8.0 ± 0.4	$13.2^{+3.6}_{-2.5}$	10

Stopped particles: challenges

- Use dedicated trigger, with unusual requirement of no beam present within ±1 bunch crossing.
- Unusual backgrounds are not well-studied. For example, one peculiar type of HCAL noise was from a few towers that sometimes unlatched from LHC clock and fired 1-2 bunch crossings early, causing a dijet event to be split between 2 events.
- Signal simulation is performed in two steps. First, find stopping position by simulating pair production of gluinos or stops (Pythia8), Rhadronization (PYRHAD), and detector interactions via cloud model (GEANT). Second, simulate R-hadron decay at position from first step.

Stopped particles: lifetime sensitivity

Effective luminosity degrades for short lifetimes because particles may decay within ±1 bunch crossing of a pp collision.

Lifetime hypothesis	$L_{\rm eff}~({\rm fb}^{-1})$	Trigger livetime (s)	Expected bkg.	Observed
50 ns	0.121	$5.0 imes10^4$	$0.66\substack{+0.18\\-0.07}$	0
75 ns	0.271	$1.0 imes10^5$	$1.3\substack{+0.4 \\ -0.2}$	3
100 ns	0.512	$2.0 imes 10^5$	$2.6\substack{+0.7 \\ -0.5}$	3
$1\mu s$	2.864	$8.4 imes10^5$	$11.0\substack{+3.0\\-2.1}$	6
$10\mu s$	3.885	$1.0 imes10^6$	$13.1^{+3.6}_{-2.4}$	10
$100\mu s$	3.972	$1.0 imes10^6$	$13.2\substack{+3.6 \\ -2.5}$	10
$10^{3} { m s}$	3.868	$1.0 imes10^6$	$13.2\substack{+3.6\\-2.5}$	10
$10^4\mathrm{s}$	3.004	$1.0 imes10^6$	$13.2^{+3.6}_{-2.5}$	10
$10^5 \mathrm{s}$	1.727	$1.0 imes10^6$	$13.2^{+3.6}_{-2.5}$	10
10 ⁶ s	1.181	$1.0 imes10^6$	$13.2^{+3.6}_{-2.5}$	10

Effective luminosity degrades for very long lifetimes because particles may decay after data collection has stopped. Complementary with HSCP analysis in terms of particle velocity.

Stopped particles results

Limits on gluino, stop mass for **over 13 orders of magnitude**!

Outlook: Run 2 has (barely) begun

We are here

We'll soon be here

With 8 fb⁻¹ of 13 TeV data, the mass reach for systems of >1 TeV will exceed that of 20 fb⁻¹ of 8 TeV data

$8 + 34 + 47 = 89 \, \text{fb}^{-1}$ by end of 2017

2015 2016	2017	2018	2019	2020	2021
JFMAMJJASONDJFMAMJJA	SONDJFMAMJJASON	DJFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND
	EYETS		LS2		

Shutdown/Technical stop Protons physics Commissioning Ions

http://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC-long-term.htm

Outlook: Efforts underway to repeat & improve these searches at $\sqrt{s}=13$ TeV

Fractionally charged particles: search techniques incorporated into 8 TeV search for Heavy Stable Charged Particles, for Iql<1, Iql=1, Iql>1 (JHEP 07, 122 (2013), arXiv:1305.0491).

Disappearing tracks: Implemented a new dedicated trigger path for Run 2 that selects events with MET>75 GeV and an isolated track with $p_T>50$ GeV.

Stopped particles: Plan to exploit shape of jet energy distribution to improve sensitivity.

Beyond the beamspot

is an important place to look for new physics.

- Many models predict new particles with long lifetimes.
- Backgrounds typically small but unusual.
- Standard reconstruction algorithms often inadequate.
- Novel analysis techniques are needed.

Despite a lot of searching, no signs of BSM physics yet...

... and we can't be sure where new physics will show up...

... so a comprehensive BSM search program should pursue a wide range of signatures and lifetimes.

Thank you

Additional material

Observed Event 1

195397:822:1049991863 (2012B)

- p_T = 70.8 GeV
- $\eta = -1.16, \ \varphi = 3.00$
- number of valid hits = 7

- $\cdot E_{calo} = 7.7 \text{ GeV}$
- $N^{outer}_{miss} = 6$
- MET = 151.7 GeV
- · Leading jet $p_T = 132.5 \text{ GeV}$

Observed Event 2

208353:177:218831628 (2012D)

- p_T = 129.2 GeV
- $\eta = 1.21, \, \varphi = 3.13$
- number of valid hits = 12

- $\cdot E_{calo} = 3.3 \text{ GeV}$
- $N^{outer}_{miss} = 4$
- MET = 132.4 GeV
- Leading jet $p_T = 111.5 \text{ GeV}$