Novel Techniques for Detecting sub-GeV Dark Matter

Tien-Tien Yu YITP - Stony Brook

with Rouven Essig, Marivi Fernandez Serra, Jeremy Mardon, Adrián Soto, Tomer Volansky 1504.XXXX

April 29, 2015 UC Irvine Theory Seminar

candidates for DM

candidates for DM

current state of affairs

current state of affairs

$$m_{\chi} = 100 \text{ GeV}, E_R \sim 1 \text{ MeV}$$

$$m_{\chi} = 100 \text{ MeV}, E_R \sim 1 \text{ eV}$$

candidates for DM

sub-GeV DM is theoretically motivated

Boddy et al [1408.6532] Hochberg et al [1402.5143,1411.3727]

electron scattering

XENON10 limits

R. Essig, A. Manalaysay, J. Mardon, P. Sorenson, T. Volansky

electron energy

- noble gases: ~10 eV
- semiconductors: ~I eV

Calculation Ingredients

 $\frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}\ln E_R} = \frac{\overline{\sigma_e}}{8\mu_{\chi e}^2} \int q \, \mathrm{d}q |f(k,q)|^2 |F_{DM}(q)|^2 \eta(v_{min})$

$$\overline{\sigma}_e = \frac{\mu_{\chi e}^2}{16\pi m_{\chi}^2 m_e^2} \overline{\left|\mathcal{M}_{\chi e}(q)\right|}_{q^2 = \alpha^2 m_e^2}^2$$

$$\sigma(q) = \overline{\sigma}_e \times |F_{DM}(q)|^2$$

 $\frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}\ln E_R} = \frac{\overline{\sigma}_e}{8\mu_{\chi e}^2} \int q \, \mathrm{d}q |f(k,q)|^2 |F_{DM}(q)|^2 \eta(v_{min})$ $\eta(v_{min}) = \int_{v_{min}} \frac{\mathrm{d}^3 v}{v} f_{MB}(\vec{v})$

$$v_{min} = \frac{E_R + E_B}{q} + \frac{q}{2m_\chi}$$

solid state physics $\frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}\ln E_R} = \frac{\overline{\sigma}_e}{8\mu_{ve}^2} \int q \, \mathrm{d}q [f(k,q)|^2 F_{DM}(q)|^2 \eta(v_{min})$

$$\left| f_{i \to i'}(\vec{q}, \vec{k}) \right|^2 = \frac{V}{(2\pi)^3} \int_{BZ} d^3k' \left| \int d^3x \psi^*_{i', \vec{k}'}(\vec{x}) \psi_{i, \vec{k}}(\vec{x}) e^{i\vec{q}\cdot\vec{x}} \right|^2$$

probability of going from state i to i'

solid state physics

$$\frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}\ln E_R} = \frac{\overline{\sigma}_e}{8\mu_{\chi e}^2} \int q \, \mathrm{d}q [f(k,q)|^2] F_{DM}(q)|^2 \eta(v_{min})$$

$$\left| f_{i \to i'}(\vec{q}, \vec{k}) \right|^2 = \frac{V}{(2\pi)^3} \int_{BZ} d^3k' \left| \int d^3x \psi^*_{i', \vec{k}'}(\vec{x}) \psi_{i, \vec{k}}(\vec{x}) e^{i\vec{q}\cdot\vec{x}} \right|^2$$

analytic approximations

- semi-classical approach
- initial wave functions are spherical
- plane wave final states with altered mass
- no interference
- good for high q

Single-electron detection

Single-electron detection

*assumed single-electron detection

Recoil energy spectrum

What happens in step 2?

Energy to create an electron-hole pair

previously, we thought of the experimental parameter as recoil energy thresholds.

Instead, experimentalists measure actual number of electrons.

Can use the following conversion: **Ge**: 2.9 eV/electron **Si**: 3.6 eV/electron

Recoil energy spectrum

interlude

semiconductors

Band structure

semiconductors

- electron wave functions inside a crystal are complicated, but there are methods to approximate them
- we assume a wavefunction of the form:

$$\psi_{i,\vec{k}}(\vec{x}) = \frac{1}{\sqrt{V}} \sum_{G} \psi_i(\vec{k} + \vec{G}) e^{i(\vec{k} + \vec{G})\vec{x}}$$

$$\begin{bmatrix} \text{lives in} \\ \text{Brillouin Zone} \end{bmatrix}$$
reciprocal lattice vector

solid state physics

$$\frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}\ln E_R} = \frac{\overline{\sigma}_e}{8\mu_{\chi e}^2} \int q \, \mathrm{d}q [f(k,q)|^2] F_{DM}(q)|^2 \eta(v_{min})$$

$$\left| f_{i \to i'}(\vec{q}, \vec{k}) \right|^2 = \frac{V}{(2\pi)^3} \int_{BZ} d^3k' \left| \int d^3x \psi^*_{i', \vec{k}'}(\vec{x}) \psi_{i, \vec{k}}(\vec{x}) e^{i\vec{q}\cdot\vec{x}} \right|^2$$

probability of exciting an electron from valence band i to conduction band i'

solid state physics

$$\frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}\ln E_R} = \frac{\overline{\sigma}_e}{8\mu_{\chi e}^2} \int q \, \mathrm{d}q [f(k,q)|^2] F_{DM}(q)|^2 \eta(v_{min})$$

$$\begin{aligned} \left| f_{i \to i'}(\vec{q}, \vec{k}) \right|^2 &= \frac{V}{(2\pi)^3} \int_{BZ} d^3k' \left| \int d^3x \psi^*_{i', \vec{k}'}(\vec{x}) \psi_{i, \vec{k}}(\vec{x}) e^{i\vec{q}\cdot\vec{x}} \right|^2 \\ & \left| f_{i \to i'}(\vec{q}, \vec{k}) \right|^2 = \left| \sum_{G} \psi^*_{i'}(\vec{k} + \vec{G} + \vec{q}) \psi_i(\vec{k} + \vec{G}) \right|^2 \\ & \text{mild directional dependence} \end{aligned}$$

we ignore for now

http://www.quantum-espresso.org/

- open source code that calculates electronic structure within density functional theory (DFT) using plane waves and pseudopotentials
- use a mesh of 64 k-vectors, 100 bands, and a regular grid of G-vectors $\frac{\left|\vec{k} + \vec{G}\right|^2}{2m} < E_c \text{ cut-off energy ~70 Ry}$

choosing parameters

end of interlude

Cross-section reach vs. detector threshold

Si wins at high masses and low thresholds

Cross-section reach vs. detector threshold

Ge wins at low masses and high thresholds

Experimental projections

annual modulation

annual modulation

could also consider gravitational focusing, c.f. 1308.1953

annual modulation

*preliminary

conclusions

- sub-GeV dark matter is theoretically motivated
- but this mass range is currently unexplored by direct detection experiments, which rely on nuclear recoil.
- exchanging nuclear recoil for electron recoil is a possible resolution
- The best projections so far are theory predictions for noble gases
- semiconductor experiments have the potential to have a further reach due to the small band gap
- ongoing discussions with CDMS and DAMIC