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Higgs-like Resonance

finally something really new!
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Critical Ising Model is 


Scale Invariant
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Unparticles
Georgi: 



   a different way to calculate in CFT’s



phase space looks like a fractional 


number of particles



Georgi hep-ph/0703260, 0704.2457
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AdS/CFT/Un Dictionary
“Georgi” “string theorist”

unparticle state created by a CFT operator

moose quiver model

unparticle action Legendre transform of a 
holographic boundary action

mass term double trace perturbation



Why (broken) CFT’s 
are Interesting 



  pure unparticles are equivalent to RS2



  IR cutoff at TeV turns RS2 into RS1



  IR brane cutoff is one type of scale breaking



  a new type of IR cutoff will lead to new


     LHC phenomenology





Soft-Wall

Karch, Katz, Son, Stephanov hep-ph/0602229


Gherghetta, Batell hep-th/0801.4383

Soft wall
Karch, Katz, Son, Stephanov ’06
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Minimal Gauge Coupling
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cf Mandelstam Ann Phys 19 (1962) 1
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Quantum Critical Higgs 
Model
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QC Higgs Model
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two mass scales: pole and cut threshold
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QC Higgs Model
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QC Higgs and MW
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Gauge invariance is maintained
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WW Scattering

QC Higgs exchange is insufficient 
to unitarize WW scattering

at large s

Mh = �i
g4

4M2
W (2��)µ2�2�

(�s)2��



WW Scattering

QC Higgs 6 point vertex does 
unitarize WW scattering

Stancato JT, hep-ph/0807.3961
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Figure 6: Contour plots of the bound on m in the d-µ plane. The darkest regions have the
lowest upper bound on m, Contour lines are shown for 100, 500, 1000, 1500, 2000, and 5000
GeV.
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Partial Wave Bound

Upon taking p ⇧ 0 and contracting with �(q1)µ�(q2)⌅�(q3)��(q4)⇥, the first two terms in
(3.20) clearly go to zero. The third term in (3.20) also goes to zero upon contracting with
the polarization vectors because 2p + 2q1 + 2q2 + 2q3 + q4 = 2p⇥ � q4 ⇧ �q4 when taking
p⇥ ⇧ 0.

So the only contribution from the four gauge boson vertex to the WW scattering ampli-
tude comes from (3.14) and is given by
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�ig4v2d

4

⇤
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s
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⌃
.

The total WW scattering amplitude is given by

M = MGauge,SM +Mh +M2h . (3.24)

Combining Eqs. (3.3), (3.10), (3.11), (3.22) and (3.23), we get

M =
1

4

ig2
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W

(s + t) + i
g2

4M2
W (2� d)µ2�2d

(�s)2�d + i
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� i
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4M2
W
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(�t)2�d

(2� d)µ2�2d

⌃
+O(s0) +O(t0) .

All of the terms that scale with positive powers of energy cancel in the full amplitude, and
therefore the Unhiggs does unitarize WW scattering.

However, partial wave unitarity can still be violated for certain values of the parameters µ,
m, and d. Therefore, we now examine the finite terms for s, t, µ2, m2 ⌅M2

W , M2
Z . Following

[16], we note that there is a bound on the coe⇥cient of the first partial wave such that

|a0| ⇤ 1 (3.26)
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Mass Divergence

Solve the little hierarchy problem?
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Figure 8: Qualitative behavior of �max as a function of d

Thus, Eq. (5.3) leads to a larger value of the maximum cuto⇥, �max, for larger values of d, as
in Figure 8. Thus, we can push the UV scale past the usual SM value of ⇥ 1 TeV for values
of d greater than 1. For example, the cuto⇥ can be near 10 TeV without much fine-tuning
for d ⇥ 1.7.

6 Loop Induced Kinetic Term

As we mentioned in Section 2, loop e⇥ects will also induce terms in the Lagrangian of the
form

Lkin = � C

�2d�2
H†D2H (6.1)

where C is a dimensionless coe⌅cient. Qualitatively, our analysis above is not a⇥ected by
this term. However, we can estimate its quantitative e⇥ect by comparing it with the kinetic
term in the original Lagrangian (2.3). The ratio, R, of the momentum scales between the
two terms is:

R =
C

�2d�2 p2

p2(2�d)
= C

�
p2

�2

⇥d�1

. (6.2)

Since we are considering values for an Unhiggs threshold around ⇤ 100 GeV, we take
p ⇤ 100 GeV. Inserting our previous value of � = 10 TeV, we find

R = C(.0001)d�1 . (6.3)

We expect C < 1 since it is a loop suppressed coe⌅cient. For values of d near one, R ⇤ C
and the loop induced term will have a relatively small quantitative e⇥ect. However, for
moderate values of d, R becomes extremely small and the term in Eq. (6.1) will have no
appreciable e⇥ect on the results of the previous sections. This loop induced term will a⇥ect
the region near d = 2 where a pure unparticle is highly gaugephobic [7] since it provides an
additional contribution to gauge couplings.

16

loop < tree
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Figure 4: The trajectories in the ∆S − ∆T plane for constant Unhiggs parameters ν, µ, R
and varying muh. For a given µ and ν, the UV scale Λ = 1/R is set to the maximum value
allowed by perturbativity (or to the Planck scale, if the former is larger). Different points
correspond to varying the Unhiggs mass muh in the range [50, 1000] GeV (red circles, from
left to right, in steps of hundred except for the first step). For reference, in each case we
plotted the trajectory in the SM when mh is varied in the range [50, 1000] GeV (solid black).

We conclude that the electroweak precision observables are consistent with the Unhiggs with
a mass gap of order 100 GeV, irrespectively of whether there is an isolated pole below the
continuum or not.

What about the direct searches at LEP? When the Unhiggs spectral function has a pole
well below the continuum (as is the case when muh

<
∼ µ), that pole behaves much like the

SM Higgs and the 115 GeV lower limit from LEP does apply. That is because in that case
the effective Unhiggs propagators reduce to the SM Higgs propagator for p2 ≪ µ2 (including
p2 ∼ m2

uh, where the resonance is located). If, on the other hand, there is no isolated pole,
then the physical properties of the Unhiggs are vastly different and the LEP limits have to
be reconsidered.

In the SM, the cross section for the Higgs production in the Higgsstrahlung process is
proportional to

σSM(E) ∼
∫

dĒfσ(E − Ē)
mhΓh(Ē2)

(Ē2 − m2
h)

2 + m2
hΓh(Ē2)2

. (14)

Here, fσ is a Gaussian distribution of width σ, which naively accounts for experimental
uncertainties (we take σ = 10 GeV). Next, E is the center-of-mass energy of the emitted
Higgs boson, and Γh is the Higgs width. We focus here on the energies accesible at LEP,
E ∼ 100 GeV, in which case the latter is in practice the width of the H → bb̄ decay. For the

9

Precision Measurements

Falkowski & Perez-Victoria, hep-ph/0901.3777
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Quantum Critical Higgs
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How do we test this?



LHC Interference
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LHC Experiment

Csáki, Hubisz, Lee, Serra,


Bellazzini, JT

QC
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Conclusions
The Electroweak Phase Transition seems 

to be close to a Quantum Critical Point



 



The LHC can test whether the Higgs 

has a non-trivial critical exponent







Unfermion Anomalies
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SUSY AdS/CFT

Cacciapaglia, Marandella, JT hep-th/0802.2946 
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