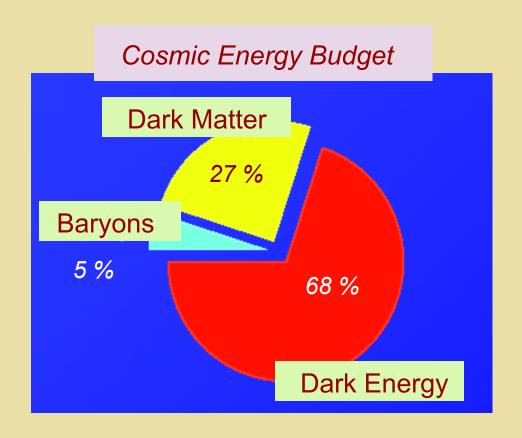
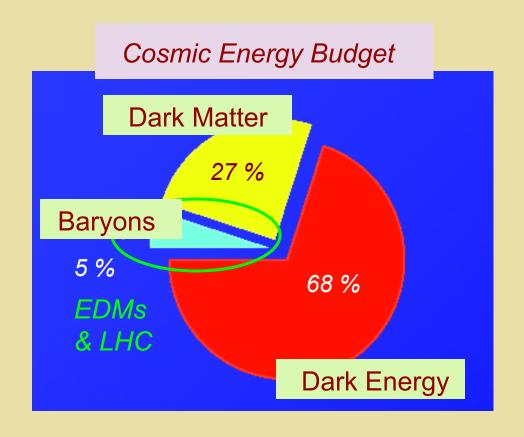
Electroweak Baryogenesis: Searching for New Scalars and New CPV

M.J. Ramsey-Musolf *U Mass Amherst*



http://www.physics.umass.edu/acfi/


UC Irvine Seminar January 2015

The Origin of Matter

Explaining the origin, identity, and relative fractions of the cosmic energy budget is one of the most compelling motivations for physics beyond the Standard Model

The Origin of Matter

Explaining the origin, identity, and relative fractions of the cosmic energy budget is one of the most compelling motivations for physics beyond the Standard Model

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

						-		
C	10	nc	lo	ro	ΙΛ	$\Lambda \cap$	de	اد
\mathbf{O}	.a	HU	a	ΙU	- IV	'	uc	;

BSM

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

×

/

×

1

Scenarios: leptogenesis, EW baryogenesis, Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

BSM

Standard Model

B violation (sphalerons)	✓	✓	
• C & CP violation	×	✓	
 Out-of-equilibrium or CPT violation 	*	~	

Scenarios: leptogenesis, EW baryogenesis. Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

Testable

Standard Model

BSM

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

t v

×

Recent Developments:

- Discovery of BEH-like boson → Paradigm of symmetry-breaking in particle physics driven by a fundamental scalar likely correct
- Non-observation (so far) of physics beyond the Standard Model at the LHC
- New stringent limits on permanent electric dipole moments

• Discovery of BEH-like scalar at the LHC

Non-observation (so far) of sub-TeV particles at LHC

New stringent limits on EDMs

- Discovery of BEH-like scalar at the LHC
 - Idea of φ-driven spontaneous EW symmetry breaking is likely correct
- Non-observation (so far) of sub-TeV particles at LHC

New stringent limits on EDMs

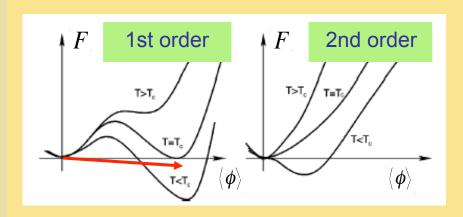
- Discovery of BEH-like scalar at the LHC
 - Idea of φ-driven spontaneous EW symmetry breaking is likely correct
- Non-observation (so far) of sub-TeV particles at LHC
 - Sub-TeV BSM spectrum is compressed
 - Sub-TeV BSM is purely EW or Higgs portal
 - BSM physics lies at very different mass scale
- New stringent limits on EDMs

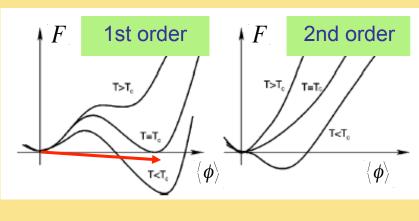
- Discovery of BEH-like scalar at the LHC
 - Idea of φ-driven spontaneous EW symmetry breaking is likely correct
- Non-observation (so far) of sub-TeV particles at LHC
 - Sub-TeV BSM spectrum is compressed
 - Sub-TeV BSM is purely EW or Higgs portal
 - BSM physics lies at very different mass scale
- New stringent limits on EDMs
 - BSM CPV lies at high mass scale
 - BSM CPV doesn't talk directly to SM fermions
 - BSM CPV is flavor non-diagonal

Outline

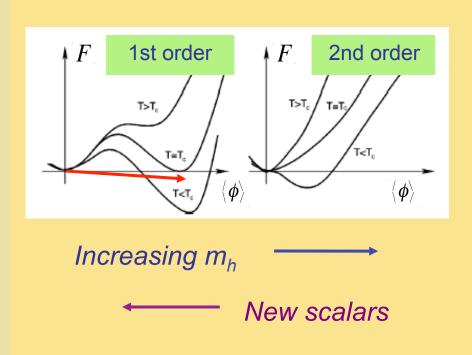
- EWB in a Nutshell
- EW Phase Transition: new scalars, new patterns of symmetry-breaking & LHC phenomenology
- BSM CPV: unflavored CPV & EDMs, flavored CPV & heavy flavors

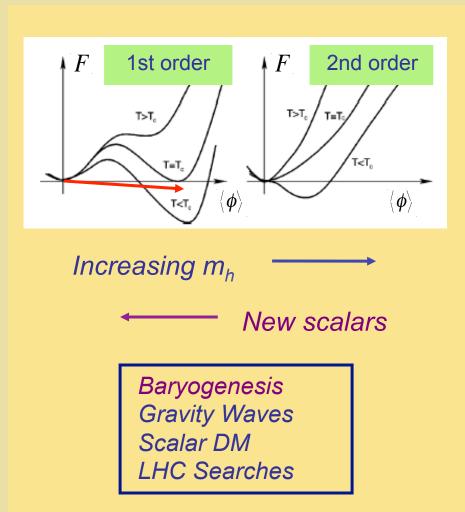
Focus on Higgs Portal

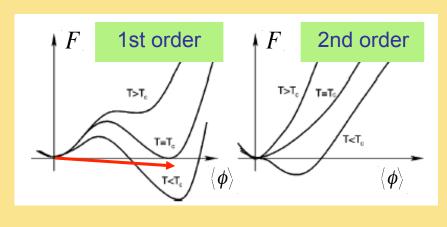

Outline


- EWB in a Nutshell
- EW Phase Transition: new scalars, new patterns of symmetry-breaking & LHC phenomenology
- BSM CPV: unflavored CPV & EDMs, flavored CPV & heavy flavors

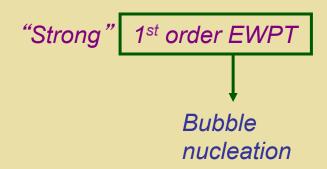
Focus on Higgs Portal

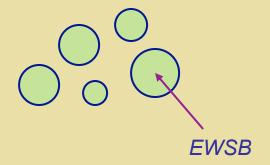

Formal issues: back up slides


I. EWB in a Nutshell

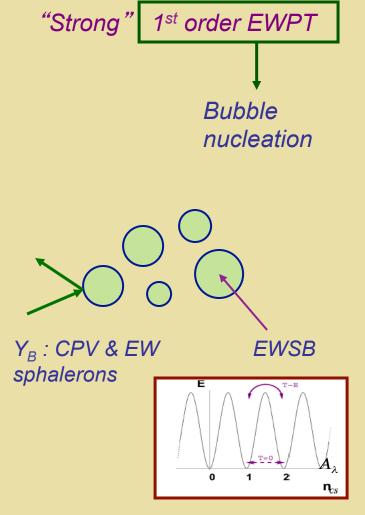


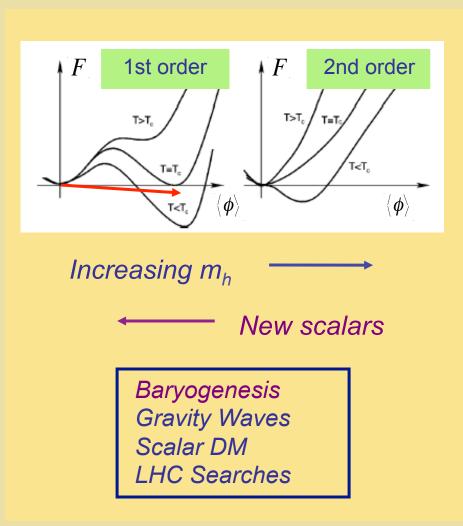
Increasing m_h

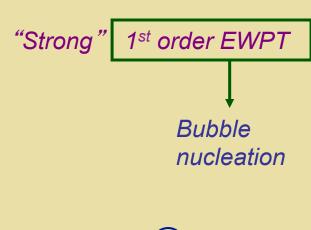

"Strong" 1st order EWPT

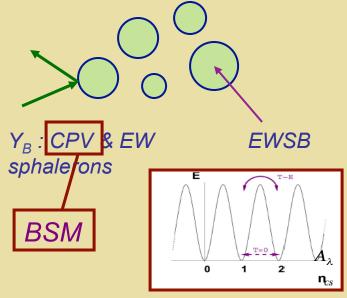


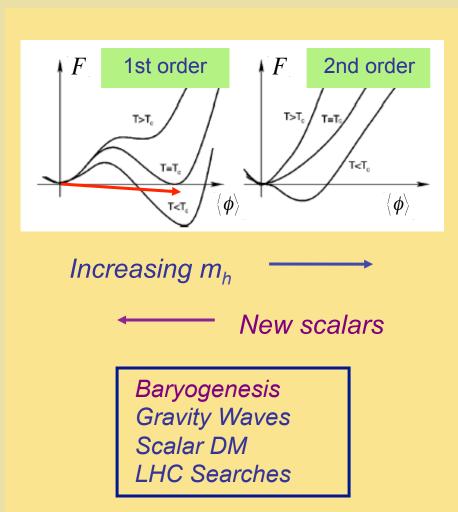
Increasing m_h

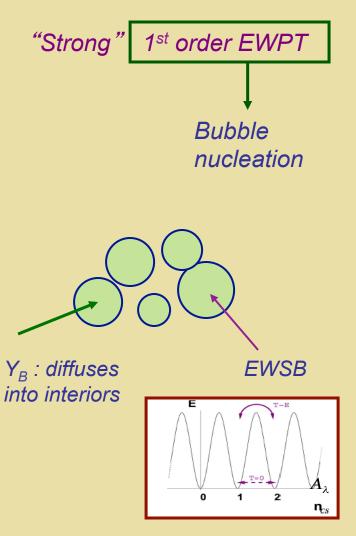

—— New scalars

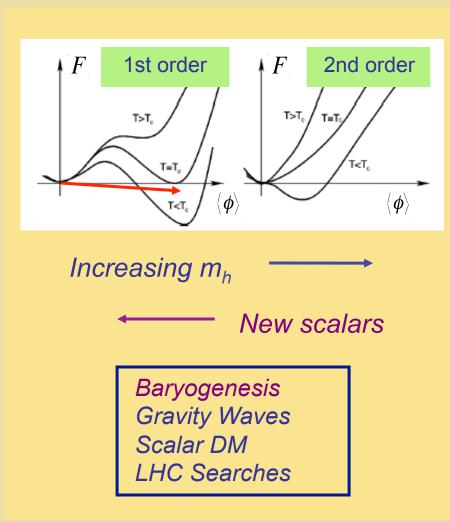

Baryogenesis Gravity Waves Scalar DM LHC Searches

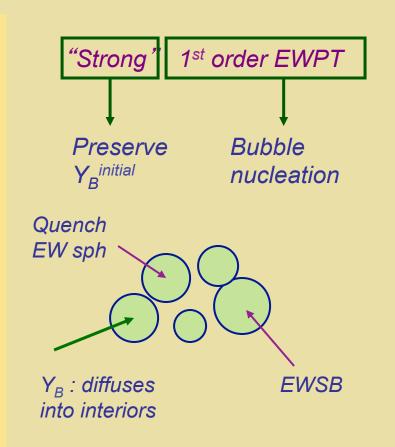


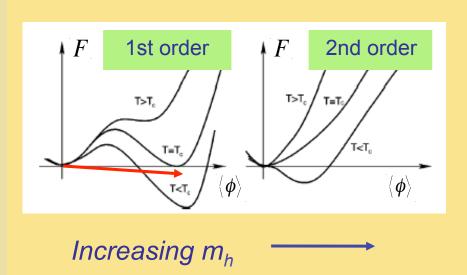




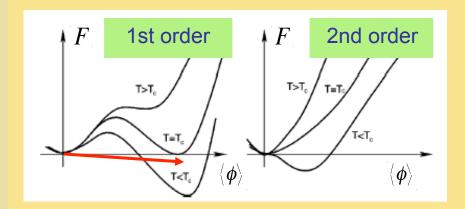








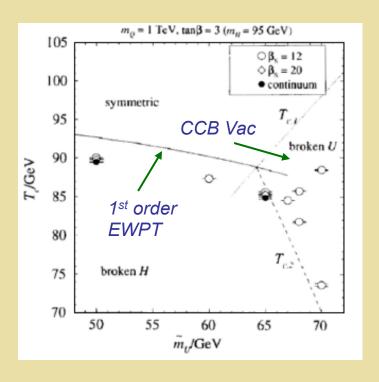
II. Electroweak Phase Transition


EW Phase Transition: St'd Model

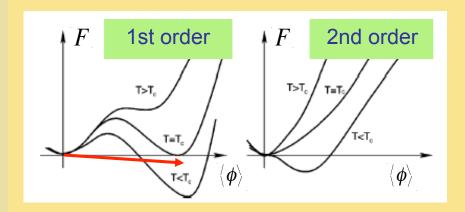
Lattice: Endpoint

Authors	$M_{\rm h}^C$ (GeV)
[76]	80 ± 7
[74]	72.4 ± 1.7
[72]	72.3 ± 0.7
[70]	72.4 ± 0.9
	[76] [74] [72]

S'td Model: 1st order EWPT requires light Higgs


Increasing m_h

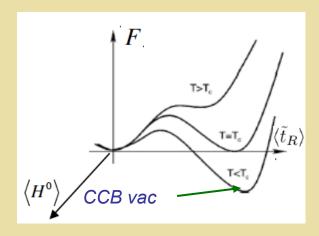
← New scalars

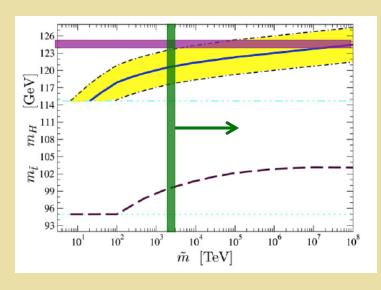

MSSM: Light RH stops

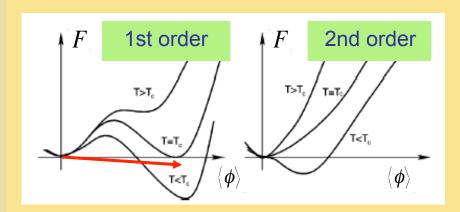
PT: Carena et al,...

Lattice: Laine, Rummukainen

Decreasing RH stop mass

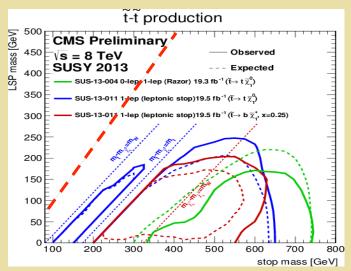


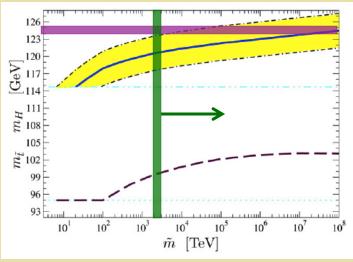

Increasing m_h

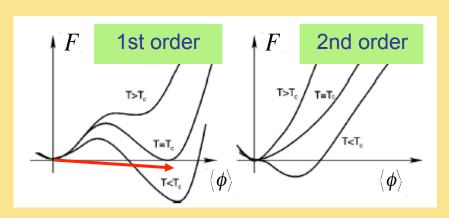

—— New scalars

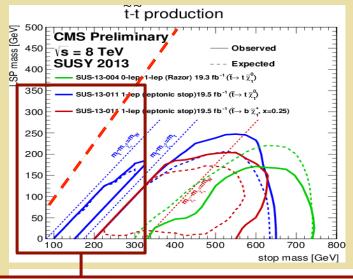
MSSM: Light RH stops

Carena et al 2008: Higgs

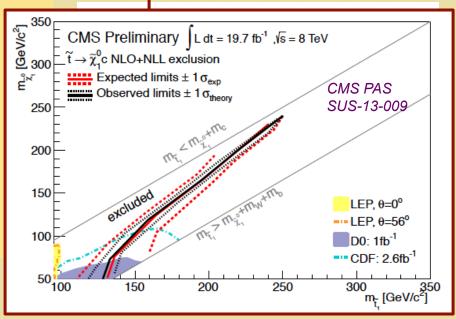


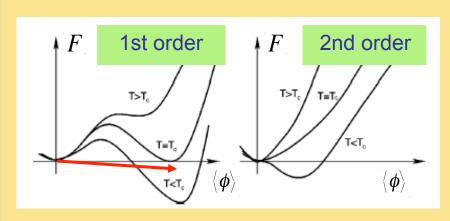

Increasing m_h

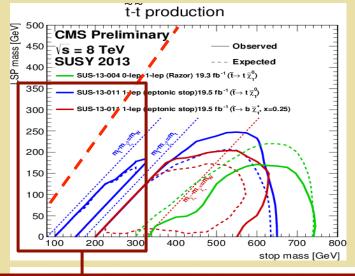

New scalars


MSSM: Light RH stops

Carena et al 2008: Higgs

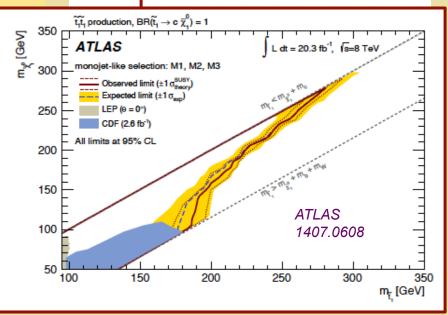



Increasing m_h

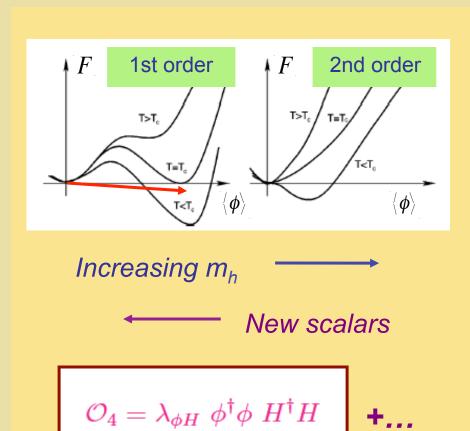

New scalars

MSSM: Light RH stops

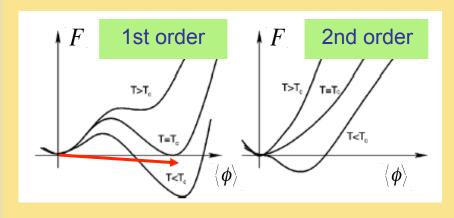
Carena et al 2008: Higgs



Increasing m_h

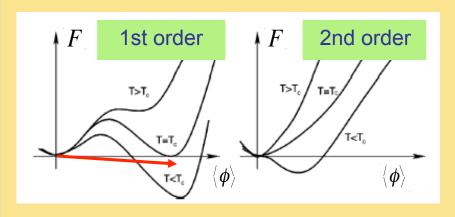

—— New scalars

MSSM: Light RH stops


Carena et al 2008: Higgs

EW Phase Transition: Higgs Portal

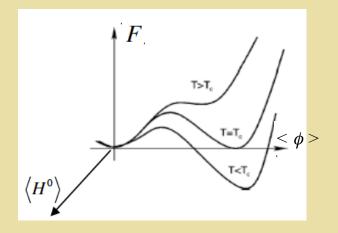
EW Phase Transition: Higgs Portal



Increasing m_h

$$\mathcal{O}_4 = \lambda_{\phi H} \; \phi^\dagger \phi \; H^\dagger H$$

- Renormalizable
- φ : singlet or charged under SU(2)_L x U(1)_Y
- Generic features of full theory (NMSSM, GUTS...)
- More robust vacuum stability
- Novel patterns of SSB


EW Phase Transition: Higgs Portal

Increasing m_h

← New scalars

$$\mathcal{O}_4 = \lambda_{\phi H} \; \phi^\dagger \phi \; H^\dagger H$$

- Renormalizable
- φ : singlet or charged under SU(2)_L x U(1)_Y
- Generic features of full theory (NMSSM, GUTS...)
- More robust vacuum stability
- Novel patterns of SSB

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet	1	V	*
Real singlet	1	*	~
Complex Singlet	2	/	V
Real Triplet	3	/	~

May be low-energy remnants of UV complete theory & illustrative of generic features

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet	1	/	*
Real singlet	1	*	~
Complex Singlet	2	V	~
Real Triplet	3	/	/

May be low-energy remnants of UV complete theory & illustrative of generic features

The Simplest Extension

Simplest extension of the SM scalar sector: add one real scalar S (SM singlet)

$$V_{\rm HS} = \frac{a_1}{2} \left(H^{\dagger} H \right) S + \frac{a_2}{2} \left(H^{\dagger} H \right) S^2$$

EWPT:
$$a_{1,2} \neq 0 \& ~~\neq 0~~$$

EWPT:
$$a_{1,2} \neq 0$$
 & $~~\neq 0~~$
DM: $a_1 = 0$ & $~~= 0~~$

O'Connel, R-M, Wise; Profumo, R-M, Shaugnessy; Barger, Langacker, McCaskey, R-M Shaugnessy; He, Li, Li, Tandean, Tsai; Petraki & Kusenko; Gonderinger, Li, Patel, R-M; Cline, Laporte, Yamashita; Ham, Jeong, Oh; Espinosa, Quiros; Konstandin & Ashoorioon...

The Simplest Extension, Cont'd

Mass matrix

$$M^2 = \begin{pmatrix} \mu_h^2 & \mu_{hs}^2/2 \\ \mu_{hs}^2/2 & \mu_s^2 \end{pmatrix}$$

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & -\sin \theta \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix}$$

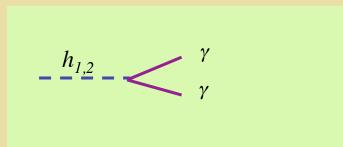
Mass matrix
$$\mu_h^2 \equiv \frac{\partial^2 V}{\partial h^2} = 2\bar{\lambda}_0 v_0^2$$

$$M^2 = \begin{pmatrix} \mu_h^2 & \mu_{hs}^2/2 \\ \mu_{hs}^2/2 & \mu_s^2 \end{pmatrix}$$

$$\mu_s^2 \equiv \frac{\partial^2 V}{\partial s^2} = b_3 x_0 + 2b_4 x_0^2 - \frac{a_1 v_0^2}{4x_0}$$

$$\mu_{hs}^2 \equiv \frac{\partial^2 V}{\partial h \partial s} = a_1 + 2a_2 x_0 v_0$$

$$x_0 = \langle S \rangle$$


$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & -\sin \theta \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix}$$

$$\tan \theta = \frac{y}{1 + \sqrt{1 + y^2}}, \quad y \equiv \frac{\mu_{hs}^2}{\mu_h^2 - \mu_s^2}$$

$$m_{1,2}^2 = \frac{\mu_h^2 + \mu_s^2}{2} \pm \frac{\mu_h^2 - \mu_s^2}{2} \sqrt{1 + y^2}$$

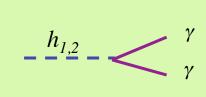
The Simplest Extension, Cont'd

Mass matrix

$$- h_{j} = \begin{cases} h_{k} & b \\ \overline{b} & \gamma \\ h_{k} & \gamma \end{cases}$$

Mass matrix
$$\mu_h^2 \equiv \frac{\partial^2 V}{\partial h^2} = 2\bar{\lambda}_0 v_0^2$$

$$\mu_s^2 \equiv \frac{\partial^2 V}{\partial s^2} = b_3 x_0 + 2b_4 x_0^2 - \frac{a_1 v_0^2}{4x_0}$$


$$\mu_{hs}^2 \equiv \frac{\partial^2 V}{\partial h \partial s} = a_1 + 2a_2 x_0 v_0$$

$$\tan \theta = \frac{y}{1 + \sqrt{1 + y^2}}, \quad y \equiv \frac{\mu_{hs}^2}{\mu_h^2 - \mu_s^2}$$

$$m_{1,2}^2 = \frac{\mu_h^2 + \mu_s^2}{2} \pm \frac{\mu_h^2 - \mu_s^2}{2} \sqrt{1 + y^2}$$

The Simplest Extension, Cont'd

Mass matrix

$$--\frac{h_{j}}{h_{k}} = \begin{cases} b \\ \overline{b} \\ \gamma \\ \gamma \end{cases}$$

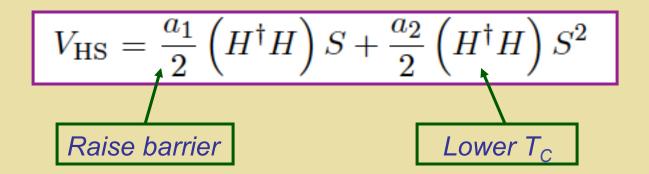
Mass matrix
$$\mu_h^2 \equiv \frac{\partial^2 V}{\partial h^2} = 2\bar{\lambda}_0 v_0^2$$

$$\mu_s^2 \equiv \frac{\partial^2 V}{\partial s^2} = b_3 x_0 + 2b_4 x_0^2 - \frac{a_1 v_0^2}{4x_0}$$

$$\mu_{hs}^2 \equiv \frac{\partial^2 V}{\partial h \partial s} = a_1 + 2a_2 x_0 v_0$$

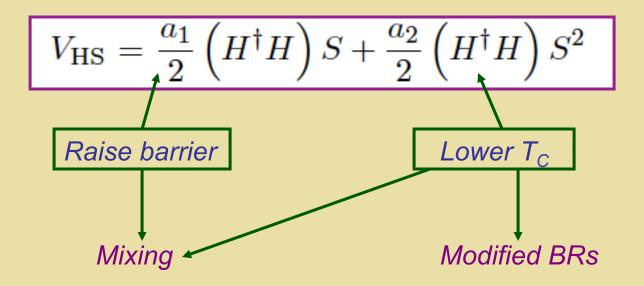
$$x_0 = \langle S \rangle$$

$$\tan \theta = \frac{y}{1 + \sqrt{1 + y^2}}, \quad y \equiv \frac{\mu_{hs}^2}{\mu_h^2 - \mu_s^2}$$


Stable S (dark matter)

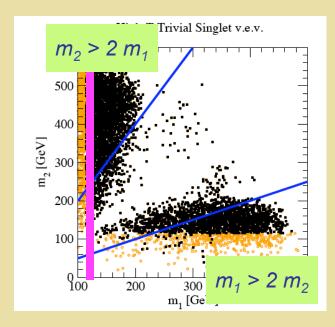
- Tree-level Z_2 symmetry: $a_1=0$ to prevent s-h mixing and one-loop s→hh
- $x_0 = 0$ to prevent h-s mixing & s \rightarrow hh

Real Singlet: EWPT


$$V_{\rm HS} = \frac{a_1}{2} \left(H^{\dagger} H \right) S + \frac{a_2}{2} \left(H^{\dagger} H \right) S^2$$

Real Singlet: EWPT

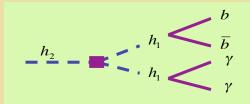
Real Singlet: EWPT

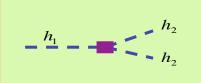

Low energy phenomenology

Two mixed (singlet-doublet) states w/ reduced SM branching ratios

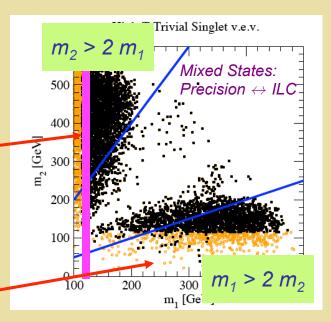
EWPT & LHC Phenomenology

Signatures



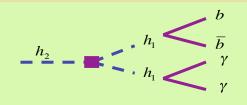

Scan: EWPT-viable model parameters

Light: all models
Black: LEP allowed


EWPT & LHC Phenomenology

Signatures

LHC: reduced $BR(h \rightarrow SM)$

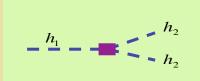


Scan: EWPT-viable model parameters

Light: all models
Black: LEP allowed

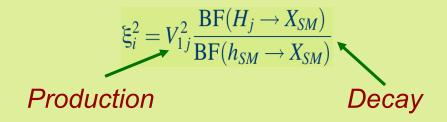
EWPT & LHC Phenomenology

Signatures



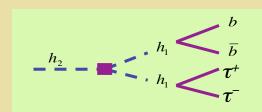
Trivial Singlet v.e.v. $m_2 > 2 m_1$ Mixed States:

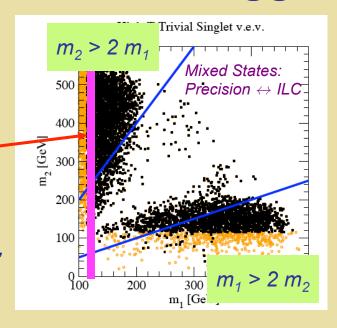
Precision \leftrightarrow ILC $m_2 > 2 m_1$ $m_1 > 2 m_2$ $m_1 > 2 m_2$


Scan: EWPT-viable model parameters

Light: all models
Black: LEP allowed

LHC: reduced $BR(h \rightarrow SM)$

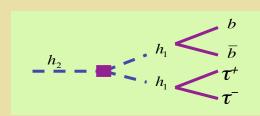

Signal Reduction Factor


Profumo, R-M, Shaugnessy '07

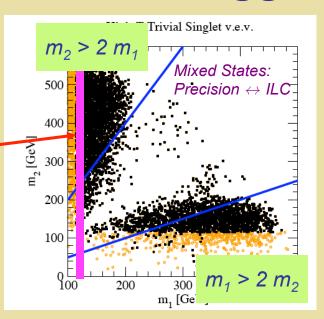
EWPT: Resonant Di-Higgs Production

Signatures

 m_2 = 270 GeV "un-boosted" m_2 = 370 GeV "boosted"


Scan: EWPT-viable model parameters

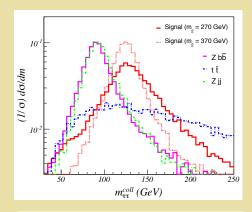
Light: all models
Black: LEP allowed

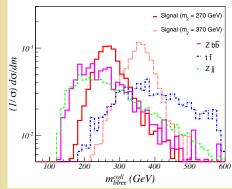

 $bb\tau^+\tau^-$: discovery with ~ 100 fb⁻¹ in " τ_{lep} τ_{had} " channel

EWPT: Resonant Di-Higgs Production

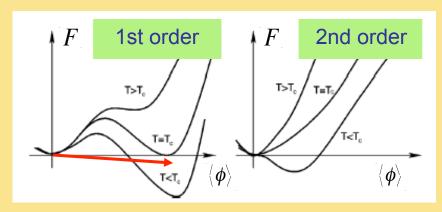
Signatures

 m_2 = 270 GeV "un-boosted" m_2 = 370 GeV "boosted"

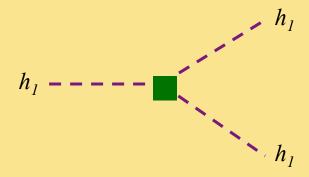


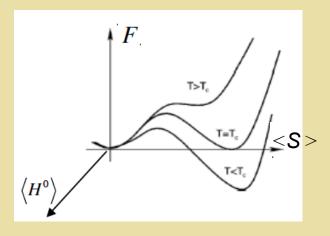

 $bb\tau^+\tau^-$: discovery with ~ 100 fb⁻¹ in " τ_{lep} τ_{had} " channel

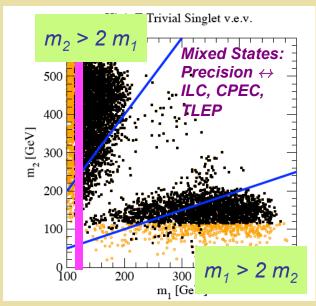
	$h_2 \rightarrow h_1 h_1$	$tar{t}$		$Zbar{b}$	Zjj
	$bb\tau_{\mathrm{lep}}\tau_{\mathrm{had}}$	$bb\ell au_{ m had}$	$bb\tau_{\mathrm{lep}}\tau_{\mathrm{had}}$	$bb\tau_{\rm lep}\tau_{\rm had}$	$jj\tau_{\mathrm{lep}}\tau_{\mathrm{had}}$
Event selection (see section V.C)	19.17	5249	762	601	98
$\Delta R_{bb} > 2.1, P_{T,b_1} > 45 \text{ GeV}, P_{T,b_2} > 30 \text{ GeV}$	11.45	2639	384	188	10.8
h_1 -mass: 90 GeV $< m_{bb} < 140$ GeV	8.00	531	80	69	3.68
Collinear x_1, x_2 Cuts	4.81	209	36.4	41.6	2.41
$\Delta R_{\ell\tau} > 2$	4.10	129	23.1	26.5	2.03
$m_T^{\ell} < 30 \text{ GeV}$	3.44	30.9	11.1	24.4	1.90
h_1 -mass: 110 GeV $< m_{\tau\tau}^{\rm coll} < 150$ GeV	1.56	4.97	2.05	4.92	0.38
$E_T^{ m miss} < 50 { m GeV}$	1.37	3.31	0.87	4.29	0.36
h_2 -mass: 230 GeV $< m_{bb\tau\tau}^{\rm coll} < 300$ GeV	1.29	0.39	0.17	1.21	0.13

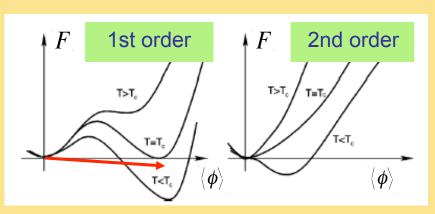

Scan: EWPT-viable model parameters

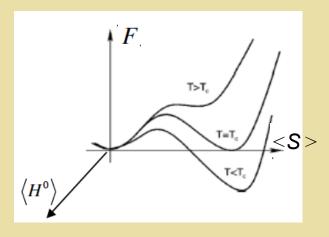
Light: all models
Black: LEP allowed

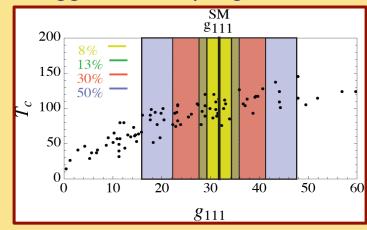


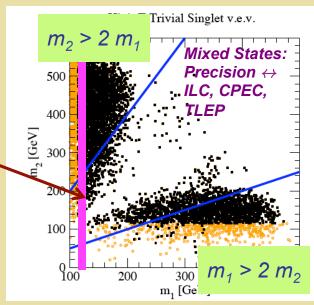


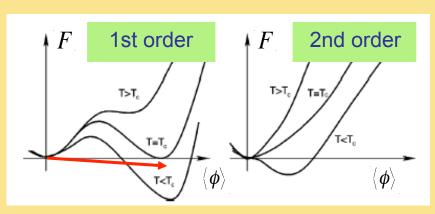

R-M & No, arXiv:1310.6035

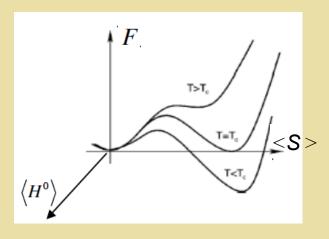


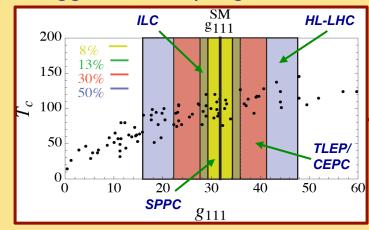

Modified Higgs Self-Coupling

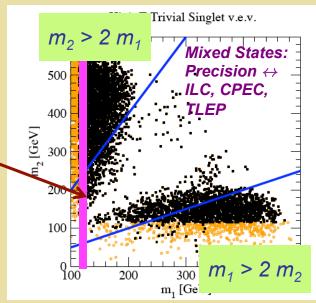


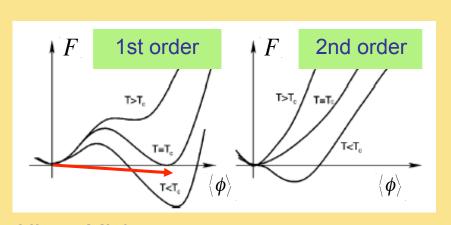


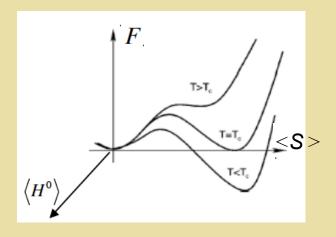


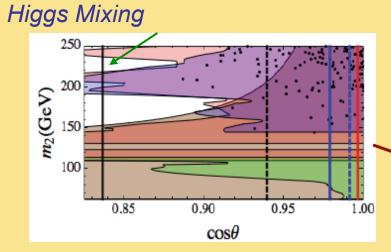


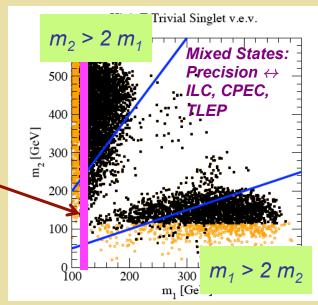



Profumo, R-M, Wainwright, Winslow: 1407.5342

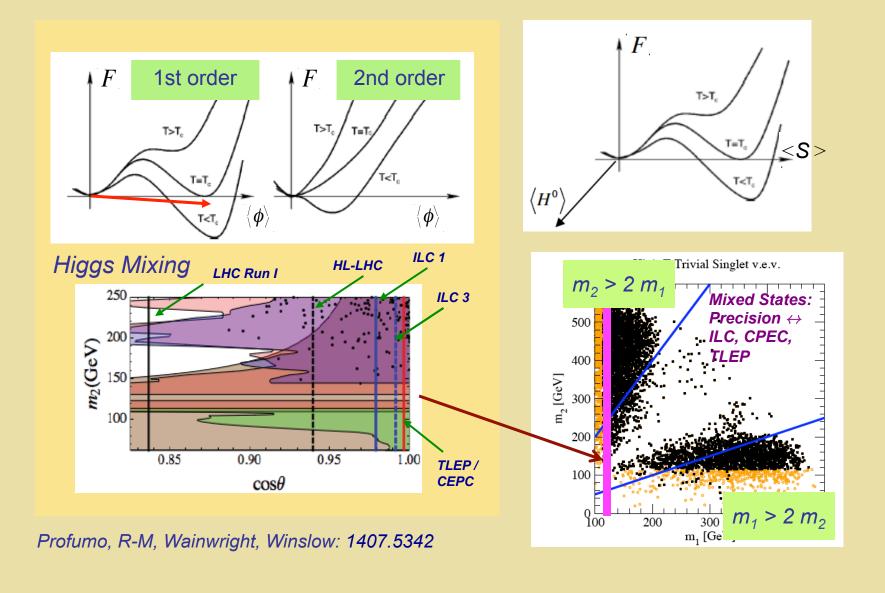








Profumo, R-M, Wainwright, Winslow: 1407.5342



Profumo, R-M, Wainwright, Winslow: 1407.5342

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet	1	V	*
Real singlet	1	*	~
Complex Singlet	2	V	~
Real Triplet	3	V	V

Back up slides

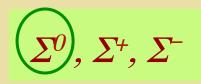

May be low-energy remnants of UV complete theory & illustrative of generic features

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet	1	/	*
Real singlet	1	*	V
Complex Singlet	2	V	/
Real Triplet	3	V	~

Simplest non-trivial EW multiplet

Real Triplet

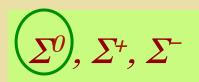


Fileviez-Perez, Patel, Wang, R-M: PRD 79: 055024 (2009); 0811.3957 [hep-ph]

$$V_{H\Sigma} = \frac{a_1}{2}H^{\dagger}\Sigma H + \frac{a_2}{2}H^{\dagger}H \text{ Tr } \Sigma^2$$

EWPT: $a_{1,2} \neq 0$ & $<\Sigma^0> \neq 0$ DM & EWPT: $a_1 = 0$ & $<\Sigma^0> = 0$

Real Triplet

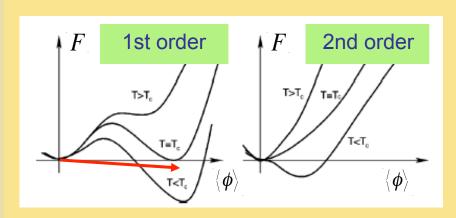

Fileviez-Perez, Patel, Wang, R-M: PRD \sim (1, 3, 0) 79: 055024 (2009); 0811.3957 [hep-ph] Fileviez-Perez, Patel, Wang, R-M: PRD

$$V_{H\Sigma} = \frac{a_1}{2} H^{\dagger} \Sigma H + \frac{a_2}{2} H^{\dagger} H \text{ Tr } \Sigma^2$$

EWPT: $a_{1,2} \neq 0$ & $\leq \Sigma^0 > \neq 0$ DM & EWPT: $a_1 = 0$ & $< \Sigma^0 > = 0$

Small: ρ -param

Real Triplet: DM

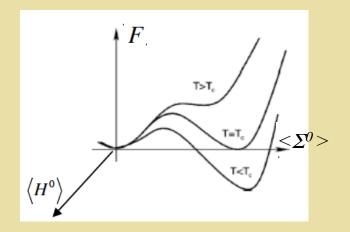

Fileviez-Perez, Patel, Wang, R-M: PRD 79: 055024 (2009); 0811.3957 [hep-ph] Fileviez-Perez, Patel, Wang, R-M: PRD

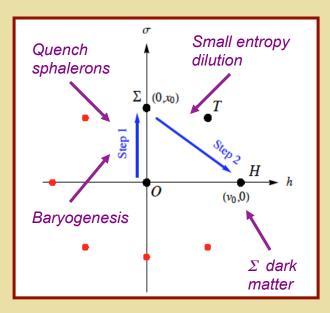
$$V_{H\Sigma} = \frac{a_2}{2} H^{\dagger} H \text{ Tr } \Sigma^2$$

EWPT: $a_{1,2} \neq 0 \ \& <\Sigma^0> \neq 0$ DM & EWPT: $a_1 = 0 \ \& <\Sigma^0> = 0$

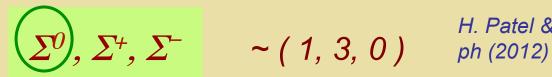
Small: ρ -param

EW Phase Transition: Higgs Portal



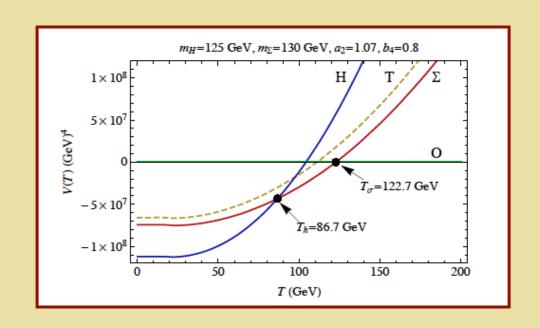

Increasing m_h

← New scalars


Real Triplet $\Sigma \sim (1,3,0)$

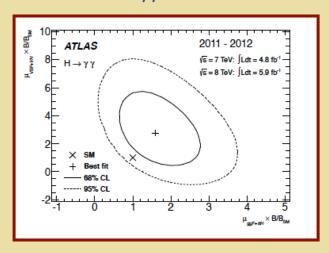
Two-step EWPT & dark matter

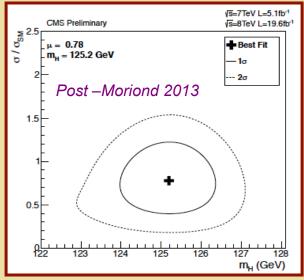
Patel, R-M: arXiv 1212.5652; Fileviez-Perez, Patel, RM, Wang

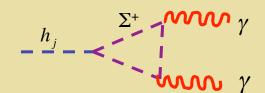

H. Patel & R-M, 1212.5652/hep-

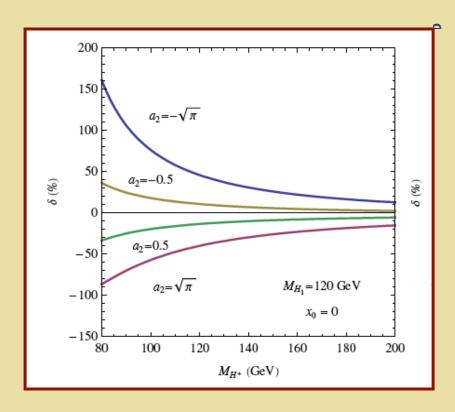
$$V_{H\Sigma} =$$

$$\frac{a_2}{2}H^{\dagger}H \text{ Tr } \Sigma^2$$

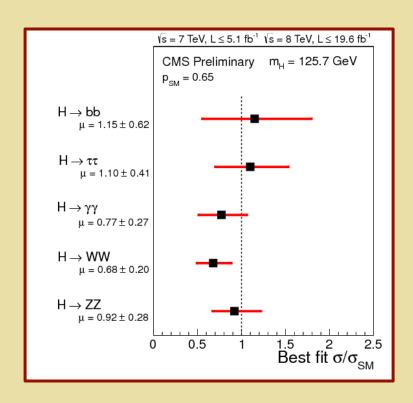

Two-step EWSB

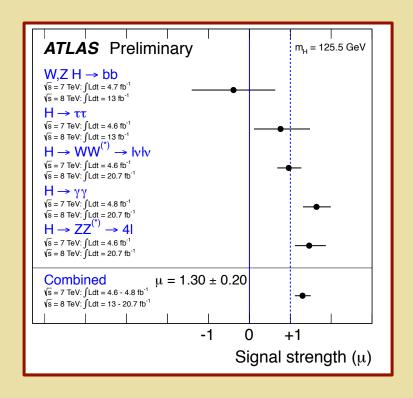

- 1. Break SU(2), x $U(1)_Y w/\Sigma vev$
- 2. Transition to Higgs phase w/ small or zero Σ vev

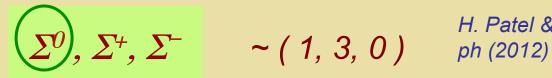



Higgs Diphoton Decays

LHC: $H \rightarrow \gamma \gamma$

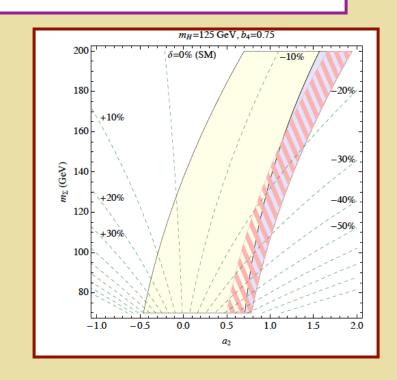


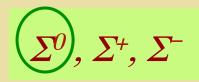




Fileviez-Perez, Patel, Wang, R-M: PRD 79: 055024 (2009); 0811.3957 [hep-ph]

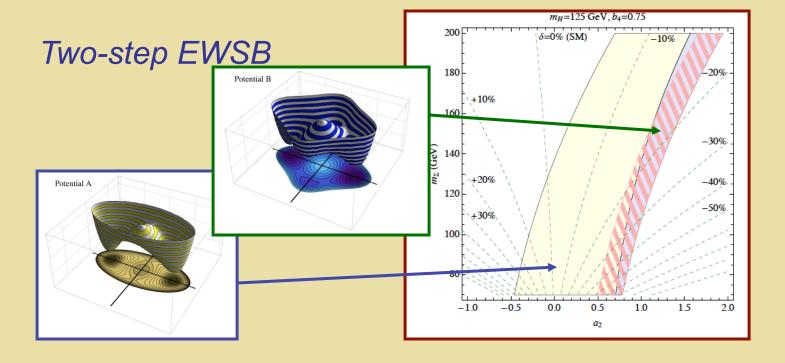
Higgs Decays: All Channels


H. Patel & R-M, 1212.5652/hep-


$$V_{H\Sigma} =$$

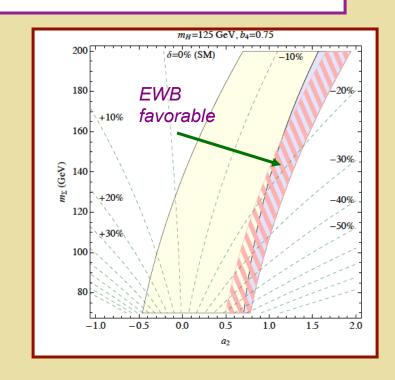
$$\frac{a_2}{2}H^{\dagger}H \text{ Tr } \Sigma^2$$

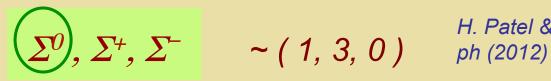
Two-step EWSB


- 1. Break SU(2), x $U(1)_Y w/\Sigma vev$
- 2. Transition to Higgs phase w/ small or zero Σ vev

 Σ^{0} , Σ^{+} , Σ^{-} ~ (1, 3, 0) H. Patel & R-M, 1212.5652/hep-ph (2012)

$$V_{H\Sigma} = \frac{a_2}{2} H^{\dagger} H \text{ Tr } \Sigma^2$$

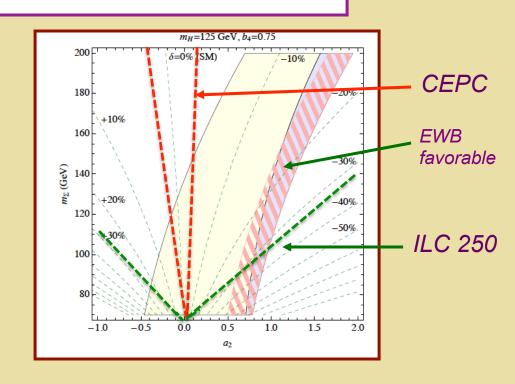

H. Patel & R-M, 1212.5652/hep-


$$V_{H\Sigma} =$$

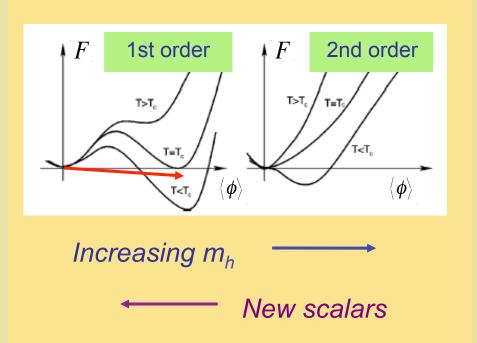
$$\frac{a_2}{2}H^{\dagger}H \text{ Tr } \Sigma^2$$

Two-step EWSB

- 1. Break SU(2), x $U(1)_Y w/\Sigma vev$
- 2. Transition to Higgs phase w/ small or zero Σ vev

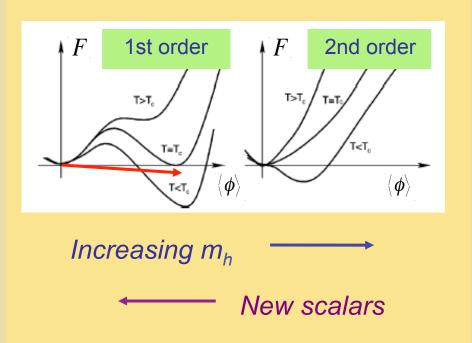


H. Patel & R-M, 1212.5652/hep-


$$V_{H\Sigma} = \frac{a_2}{2} H^{\dagger} H \text{ Tr } \Sigma^2$$

Two-step EWSB

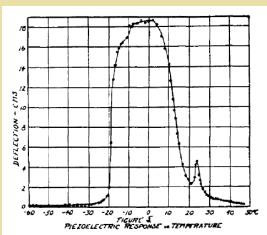
- 1. Break SU(2), x $U(1)_Y w/\Sigma vev$
- 2. Transition to Higgs phase w/ small or zero Σ vev


EW Phase Transition: Higgs Portal

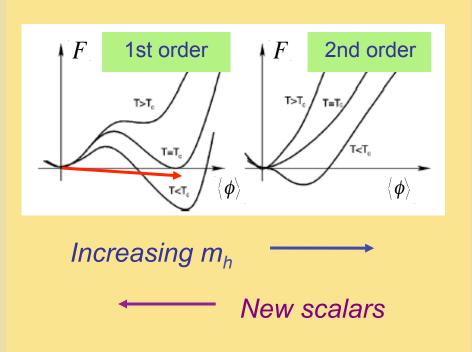
Do good symmetries today need to be good symmetries in the early Universe?

Patel, R-M, Wise: PRD 88 (2013) 015003

Symmetry Breaking & Restoration


Do good symmetries today need to be good symmetries in the early Universe?

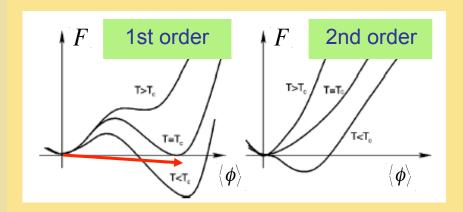
Rochelle salt: KNaC₄H₄O₆ 4H₂0


J. Valasek

Piezoelectricity

Increasing $T \rightarrow$

EW Phase Transition: Higgs Portal



Do good symmetries today need to be good symmetries in the early Universe? No

- •O(n) x O(n): Weinberg (1974)
- SU(5), CP...: Dvali, Mohapatra, Senjanovic ('79, 80's, 90's)
- Cline, Moore, Servant et al (1999)
- EM: Langacker & Pi (1980)
- SU(3)_C: Patel, R-M, Wise: PRD 88 (2013) 015003

Patel, R-M, Wise: PRD 88 (2013) 015003

EW Phase Transition: Higgs Portal

Increasing m_h

← New scalars

Colored Scalars

Color breaking & restoration

Do good symmetries today need to be good symmetries in the early Universe? No

- •O(n) x O(n): Weinberg (1974)
- SU(5), CP...: Dvali, Mohapatra, Senjanovic ('79, 80's, 90's)
- Cline, Moore, Servant et al (1999)
- EM: Langacker & Pi (1980)
- *SU*(3)_C: *Patel, R-M, Wise: PRD* 88 (2013) 015003

Patel, R-M, Wise: PRD 88 (2013) 015003

Color Breaking & Restoration

Two illustrative cases:

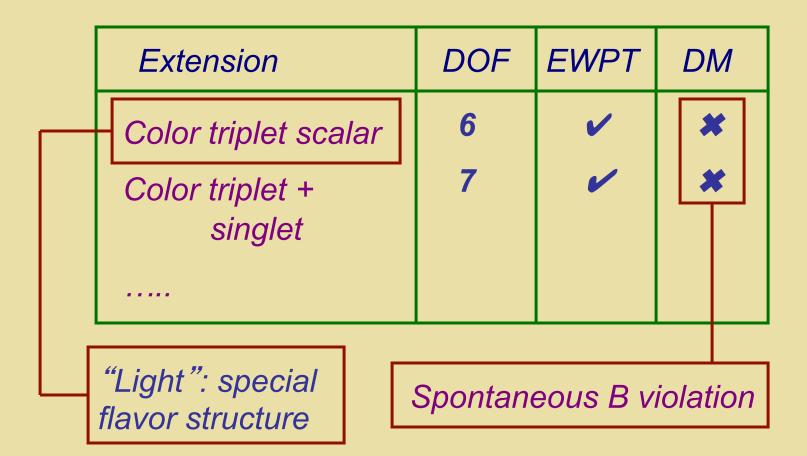
H. Patel, R-M, Wise 1303.1140 (2013)

Extension	DOF	EWPT	DM
Color triplet scalar	6	~	*
Color triplet + singlet	7		*

Color Breaking & Restoration

Two illustrative cases:

H. Patel, R-M, Wise 1303.1140 (2013)

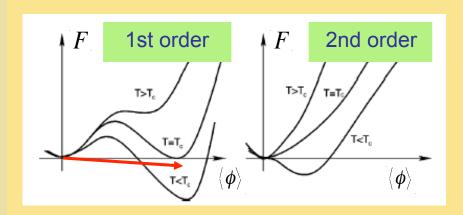

Extension	DOF	EWPT	DM
Color triplet scalar	6	~	*
Color triplet + singlet	7		*

Spontaneous B violation

Color Breaking & Restoration

Two illustrative cases:

H. Patel, R-M, Wise 1303.1140 (2013)

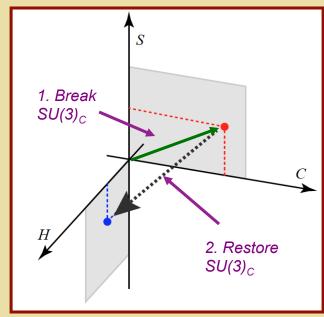

Color Breaking & Restoration

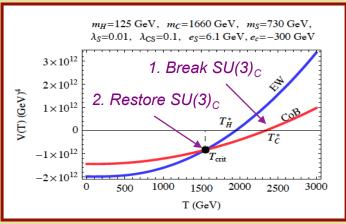
Two illustrative cases:

H. Patel, R-M, Wise 1303.1140 (2013)

	Extension	DOF	EWPT	DM	
	Color triplet scalar	6	✓	*	
	Color triplet +	7	/	*	
	singlet				
Ιг					
	heavy: generic flavor structure Spontaneous B violation				

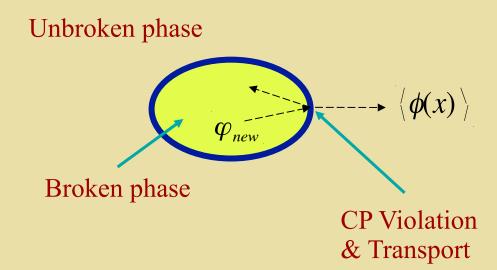
EW Phase Transition: Higgs Portal

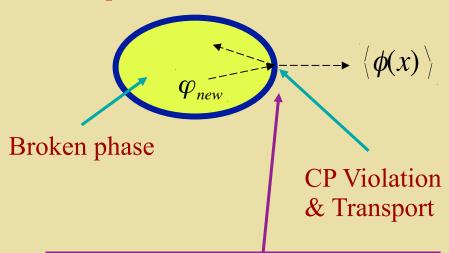

Increasing m_h


── New scalars

Colored Scalars (triplet)

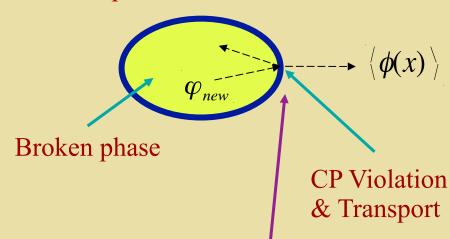
Color breaking & restoration


Patel, R-M, Wise: PRD 88 (2013) 015003


III. CPV: EDMs & Scalar Sector

CPV in EW Baryogenesis

CPV in EW Baryogenesis


Transport: A Competition R-M et al

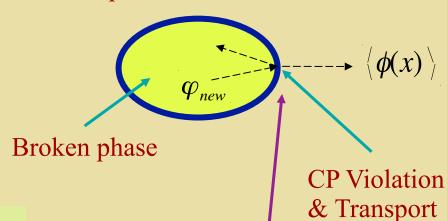
$$\Gamma(A+B\to C) \neq \Gamma(\bar{A}+\bar{B}\to \bar{C})$$
 CPV

$$\Gamma(A+B \leftrightarrow C)$$
 Chem Eq

$$\Gamma(A+B \leftrightarrow A+B)$$
 Diffusion

Unbroken phase

CP Conserving Interactions

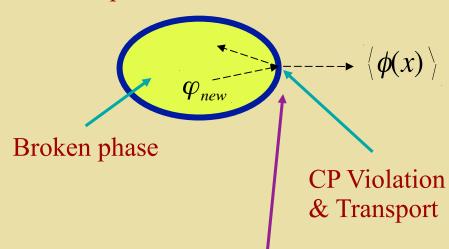

$$\Gamma_Y(\tilde{Q} \to t\tilde{H})$$
 $A^{CP}_{BSM} \to A^{CP}_{SM}$

$$\Gamma_V(\tilde{Q} \to Q\tilde{V})$$
 "Superequilibrium"

$$\Gamma_D(\tilde{Q}+q
ightarrow \tilde{Q}+q)$$
 Diffusion

Transport: A Competition R-M et al
$$\Gamma(A+B\to C) \neq \Gamma(\bar{A}+\bar{B}\to \bar{C})$$
 CPV $\Gamma(A+B\leftrightarrow C)$ Chem Eq $\Gamma(A+B\leftrightarrow A+B)$ Diffusion

Unbroken phase


CP Violating Sources

$$\begin{split} W_{\text{MSSM}} &= \bar{u} \mathbf{y_u} Q H_u - \bar{d} \mathbf{y_d} Q H_d - \bar{e} \mathbf{y_e} L H_d + \mu H_u H_d \\ \mathcal{L}_{\text{soft}} &= -\frac{1}{2} (M_3) \tilde{g} \tilde{g} + M_2 \tilde{\mathcal{V}} \tilde{\mathcal{W}} + M_1 \tilde{\mathcal{B}} \tilde{\mathcal{B}}) + c.c. \\ &- (\tilde{u} \mathbf{a_u} \tilde{Q}) H_u - (\bar{d} \mathbf{a_d} \tilde{\mathcal{O}} H_d - (\tilde{e} \mathbf{a_e}) \tilde{L} H_d) + c.c. \\ &- \tilde{Q}^{\dagger} \mathbf{m_Q^2} \tilde{Q} - \tilde{L}^{\dagger} \mathbf{m_L^2} \tilde{L} - \tilde{u} \mathbf{m_u^2} \tilde{u}^{\dagger} - \tilde{d} \mathbf{m_d^2} \tilde{d}^{\dagger} - \tilde{e} \mathbf{m_e^2} \tilde{e}^{\dagger} \\ &- m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d + (b) H_u H_d + c.c.) \end{split}$$

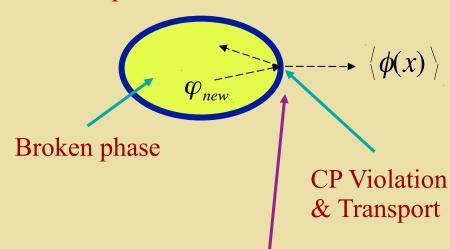
$$\phi_j = arg \left(\mu M_j b^* \right) \qquad \phi_A = arg \left(A_f M_j \right) \end{split}$$

Transport: A Competition R-M et al $\Gamma(A+B\to C) \neq \Gamma(\bar{A}+\bar{B}\to \bar{C})$ CPV $\Gamma(A+B\leftrightarrow C)$ Chem Eq $\Gamma(A+B\leftrightarrow A+B)$ Diffusion

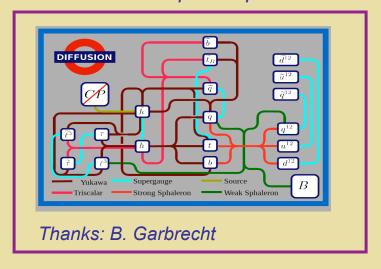
Unbroken phase

MSSM: ~ 30 Coupled Eqns

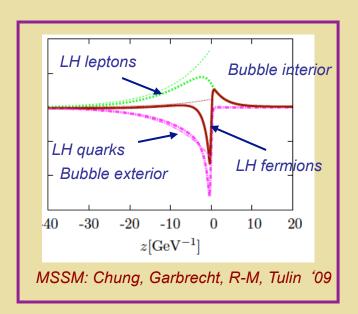
$$\begin{split} \partial_{\mu}\widetilde{t}^{\mu} &= -\Gamma_{Y}^{(\overline{t},\overline{q},H_{1})} \left(\frac{\widetilde{t}}{k_{\overline{t}}} - \frac{\widetilde{q}}{k_{\overline{q}}} - \frac{H_{1}}{k_{H_{1}}} \right) - \Gamma_{Y}^{(\overline{t},\overline{q},H_{2})} \left(\frac{\widetilde{t}}{k_{\overline{t}}} - \frac{\widetilde{q}}{k_{\overline{q}}} - \frac{H_{2}}{k_{H_{2}}} \right) + S_{\overline{t}}^{\mathcal{P}} \\ &- \Gamma_{Y}^{(\overline{t},q,\overline{H})} \left(\frac{\widetilde{t}}{k_{\overline{t}}} - \frac{q}{k_{q}} - \frac{\widetilde{H}}{k_{\overline{H}}} \right) - \Gamma_{\overline{V}}^{(t,\overline{t})} \left(\frac{\widetilde{t}}{k_{\overline{t}}} - \frac{t}{k_{t}} \right) - \Gamma_{M}^{(\overline{t},\overline{q})} \left(\frac{\widetilde{t}}{k_{\overline{t}}} - \frac{\widetilde{q}}{k_{\overline{q}}} \right) \end{split}$$

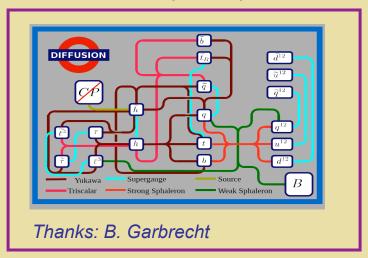

Transport: A Competition R-M et al

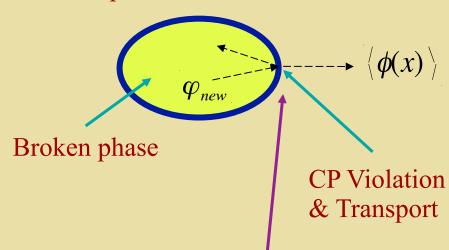
$$\Gamma(A+B\to C)
eq \Gamma(\bar{A}+\bar{B}\to \bar{C})$$
 CPV

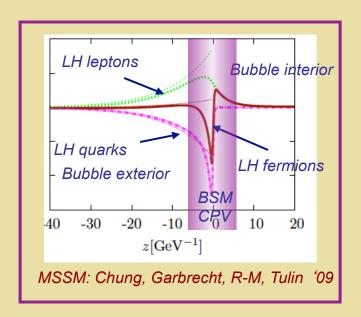

$$\Gamma(A+B\leftrightarrow C)$$
 Chem Eq

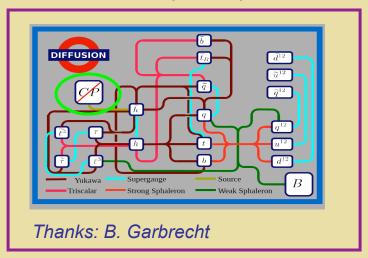
$$\Gamma(A+B \leftrightarrow A+B)$$
 Diffusion

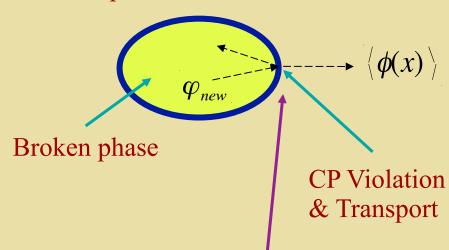

Unbroken phase


MSSM: ~ 30 Coupled Eqns


Transport: A Competition R-M et al
$$\Gamma(A+B\to C) \neq \Gamma(\bar{A}+\bar{B}\to \bar{C})$$
 CPV $\Gamma(A+B\leftrightarrow C)$ Chem Eq $\Gamma(A+B\leftrightarrow A+B)$ Diffusion


MSSM: ~ 30 Coupled Eqns


Unbroken phase


Transport: A Competition R-M et al
$$\Gamma(A+B\to C) \neq \Gamma(\bar{A}+\bar{B}\to \bar{C})$$
 CPV $\Gamma(A+B\leftrightarrow C)$ Chem Eq $\Gamma(A+B\leftrightarrow A+B)$ Diffusion

MSSM: ~ 30 Coupled Eqns

Unbroken phase

Transport: A Competition R-M et al
$$\Gamma(A+B\to C) \neq \Gamma(\bar{A}+\bar{B}\to \bar{C})$$
 CPV $\Gamma(A+B\leftrightarrow C)$ Chem Eq $\Gamma(A+B\leftrightarrow A+B)$ Diffusion

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 -31	10 ⁻²⁶

^{* 95%} CL ** e-equivalent

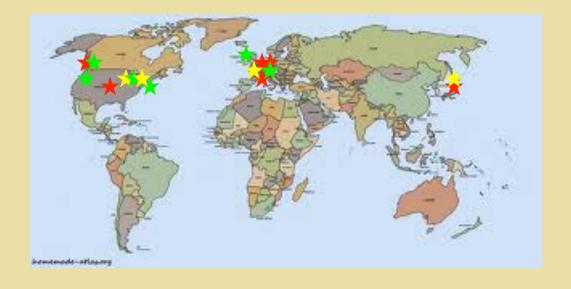
EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

^{* 95%} CL ** e-equivalent

Mass Scale Sensitivity

$$\psi$$
 φ $\sin\phi_{\rm CP} \sim 1 \to M > 5000~{
m GeV}$ $M < 500~{
m GeV} \to \sin\phi_{
m CP} < 10^{-2}$


$$\sin\phi_{CP} \sim 1 \rightarrow M > 5000 \text{ GeV}$$

M < 500 GeV
$$ightarrow$$
 sin $\phi_{ extsf{CP}}$ < 10-2

EDMs: New CPV?

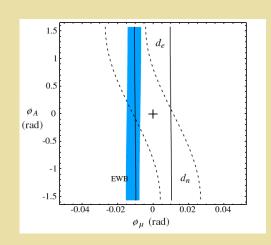
System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10-28
n	3.3 x 10 ⁻²⁶	10 - ³¹	10 ⁻²⁶


* 95% CL ** e- equivalent

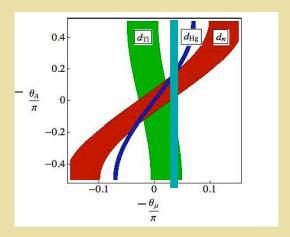
- * neutron
- proton& nuclei
- **★** atoms

~ 100 x better sensitivity

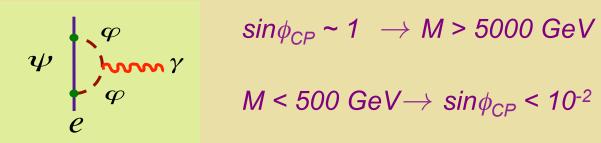
Not shown: muon


$$sin\phi_{CP} \sim 1 \rightarrow M > 5000 \text{ GeV}$$

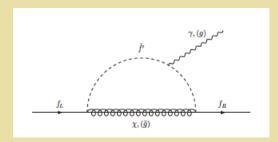
$$M < 500 \text{ GeV} \rightarrow \sin\phi_{CP} < 10^{-2}$$


Universal gaugino phases

 $Arg(\mu M_i b^*) =$


 $Arg(\mu M_i b^*)$

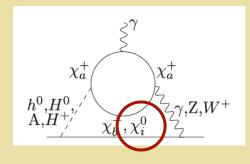
Cirigliano, R-M, Tulin, Lee '06


Ritz CIPANP 09 + Cirigliano, R-M, Tulin, Lee '06

$$sin\phi_{CP} \sim 1 \rightarrow M > 5000 \text{ GeV}$$

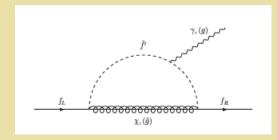
$$M < 500 \text{ GeV} \rightarrow \sin\phi_{CP} < 10^{-2}$$

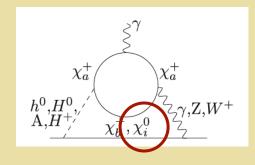
- Viable EWB & CPV:EDMs are 2-loopCPV is flavor non-diag


Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Viable EWB & CPV:

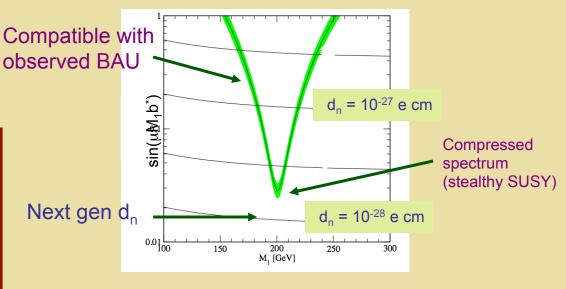
- EDMs are 2-loop
- CPV is flavor non-diag

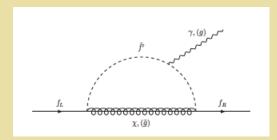

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

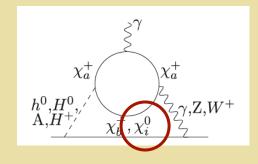

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

Viable EWB & CPV:

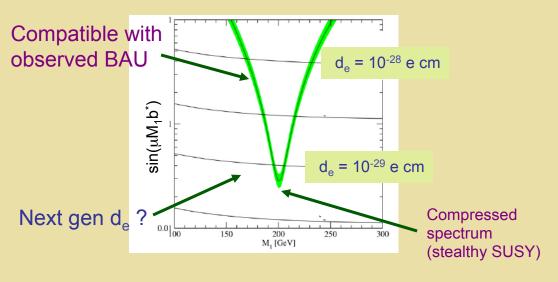
- EDMs are 2-loop
- CPV is flavor non-diag


Heavy sfermions: LHC consistent & suppress 1-loop EDMs


Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases


- EDMs are 2-loop
- CPV is flavor non-diag

Li, Profumo, RM '09-' 10


Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

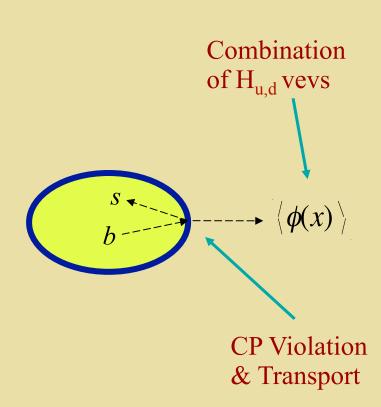
Viable EWB & CPV:

- EDMs are 2-loop
- CPV is flavor non-diag

Li, Profumo, RM '09-' 10

New Direction: Flavored CPV & EWB

CPV & 2HDM


$$\mathcal{L} = -y_{ij}^u \bar{Q}^i (\epsilon H_u^{\dagger}) u_R^j - y_{ij}^d \bar{Q}^i H_u d_R^j$$
$$-\lambda_{ij}^u \bar{Q}^i H_d u_R^j - \lambda_{ij}^d \bar{Q}^i (\epsilon H_d^{\dagger}) d_R^j + h.c..$$

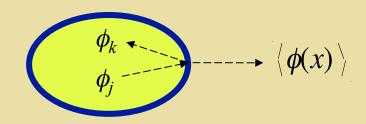
Liu, R-M, Shu '11; see also Tulin & Winslow '11; Cline et al '11

Update in progress

Viable EWB & CPV:

- EDMs are 2-loop
- CPV is flavor non-diag

Inoue, R-M, Zhang: 1403.4257


CPV & 2HDM: Type I & II

 $\lambda_{6.7} = 0$ for simplicity

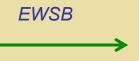
$$V = \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right]$$
$$- \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}.$$

Viable EWB & CPV:

- EDMs are 2-loop
- CPV is flavor non-diag

Scalar asym $\rightarrow n_L$ via Yukawa int

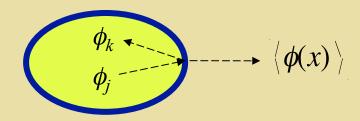
Inoue, R-M, Zhang: 1403.4257


CPV & 2HDM: Type I & II

 $\lambda_{6.7} = 0$ for simplicity

$$V = \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right]$$
$$- \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}.$$

$$\delta_1 = \text{Arg} \left[\lambda_5^* (m_{12}^2)^2 \right] ,$$


$$\delta_2 = \text{Arg} \left[\lambda_5^* (m_{12}^2) v_1 v_2^* \right]$$

$$\delta_2 \approx \frac{1 - \left| \frac{\lambda_5 v_1 v_2}{m_{12}^2} \right|}{1 - 2 \left| \frac{\lambda_5 v_1 v_2}{m_{12}^2} \right|} \delta_1$$

Viable EWB & CPV:

- EDMs are 2-loop
- CPV is flavor non-diag

Scalar asym \rightarrow n_L via Yukawa int

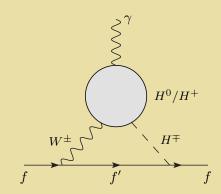
Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type I & II

 $\lambda_{6.7} = 0$ for simplicity

$$V = \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right]$$
$$- \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}.$$

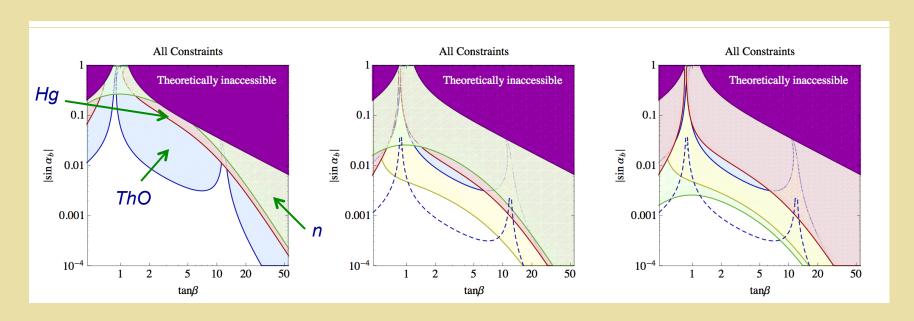
$$\delta_1 = \text{Arg} \left[\lambda_5^* (m_{12}^2)^2 \right] ,$$


$$\delta_2 = \text{Arg} \left[\lambda_5^* (m_{12}^2) v_1 v_2^* \right]$$

EWSB

$$\delta_2 \approx \frac{1 - \left| \frac{\lambda_5 v_1 v_2}{m_{12}^2} \right|}{1 - 2 \left| \frac{\lambda_5 v_1 v_2}{m_{12}^2} \right|} \delta_1$$

Viable EWB & CPV:


- EDMs are 2-loop
- CPV is flavor non-diag

Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type II illustration

 $\Lambda_{6.7} = 0$ for simplicity

Present

 $\sin \, \alpha_{\rm b}$: CPV scalar mixing

Future:

 $d_n \times 0.1$

 $d_A(Hg) \times 0.1$

 $d_{ThO} \times 0.1$

 $d_A(Ra)$

Future:

 $d_n \times 0.01$

 $d_A(Hg) \times 0.1$

 $d_{ThO} \times 0.1$

 $d_A(Ra)$

Summary

- Origin of visible matter remains a key unsolved problem at interface of particle & nuclear physics with cosmology
- Weak scale baryogenesis is a viable and testable scenario: EDM/LHC meeting ground
- EDM & LHC results inspire us to think more creatively about history of SSB & its interplay with CPV & flavor

Back Up Slides

Baryon Number Preservation

"Washout factor"

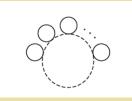
$$S \equiv \rho_B(\Delta t_{\rm EW})/\rho_B(0) > e^{-N}$$

Two qtys of interest:

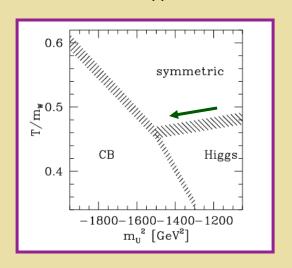

- T_C from V_{eff}
- ullet $E_{\it sph}$ from $\Gamma_{\it eff}$

Daisy Resummation

Convergence of PT: going beyond \hbar expansion


Light stop scenario

$$\begin{split} &V_{\mathrm{eff}}(\phi_{\mathrm{min}},T) - V_{\mathrm{eff}}(0,T) \sim \\ &- \hbar \frac{T}{12\pi} \Big[\left(m_{\tilde{t}}^2 + y_{\tilde{t}}^2 \phi^2 + \Sigma_{\tilde{t}}(T) \right)^{3/2} - \left(m_{\tilde{t}}^2 + \Sigma_{\tilde{t}}(T) \right)^{3/2} \Big] \;. \end{split}$$



For given T. increasingly negative $m_{\tilde{t}}^2$ increases difference between two minima

Increased $\Delta V \rightarrow$ Lowered T_C

Patel & R-M '11

Csikor '00

SM + Color Triplet

H. Patel, R-M, Wise 1303.1140 (2013)

$$V = -\mu_H^2(H^{\dagger}H) - \mu_C^2(C^{\dagger}C) + \frac{\lambda_H}{2}(H^{\dagger}H)^2 + \frac{\lambda_C}{2}(C^{\dagger}C)^2 + \lambda_{HC}(H^{\dagger}H)(C^{\dagger}C).$$

Decays: $C \rightarrow \langle C \rangle = v_C$: B violation

$$L_Y = C\bar{u}_R g_{uL} L_L + C\bar{Q}_L g_{Qe} e_R + \text{h.c.} \,. \label{eq:LY}$$

SM + Color Triplet

H. Patel, R-M, Wise 1303.1140 (2013)

$$V = -\mu_H^2(H^{\dagger}H) - \mu_C^2(C^{\dagger}C) + \frac{\lambda_H}{2}(H^{\dagger}H)^2 + \frac{\lambda_C}{2}(C^{\dagger}C)^2 + \lambda_{HC}(H^{\dagger}H)(C^{\dagger}C).$$

Upper bound on m_C:

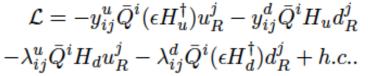
$$m_h^2 = 2\mu_H^2 = 2\lambda_H v_H^2 > 0$$

 $m_C^2 = -\mu_C^2 + \lambda_{HC} v_H^2 > 0$

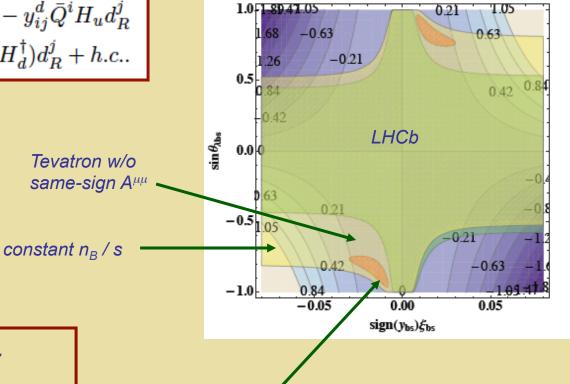
$$m_C < (\sqrt{\lambda_{HC}})v_H \simeq (174 \, \text{GeV})\sqrt{\lambda_{HC}}$$

SM + Color Triplet + Singlet

H. Patel, R-M, Wise 1303.1140 (2013)


$$\Delta V = -\frac{\mu_S^2}{2}S^2 + \frac{\lambda_S}{4}S^4 + \lambda_{HC}(H^{\dagger}H)(C^{\dagger}C)$$
$$+ \frac{\lambda_{HS}}{2}(H^{\dagger}H)S^2 + \frac{\lambda_{CS}}{2}(C^{\dagger}C)S^2$$
$$+ \frac{e_S}{3}S^3 + e_CC^{\dagger}CS + e_HH^{\dagger}HS.$$

Heavier colored scalar


$$m_C^2 = -\mu_C^2 + \lambda_{HC} v_H^2 + \frac{\lambda_{CS}}{2} v_S^2 + e_C v_S$$

New Direction: Flavored CPV & EWB

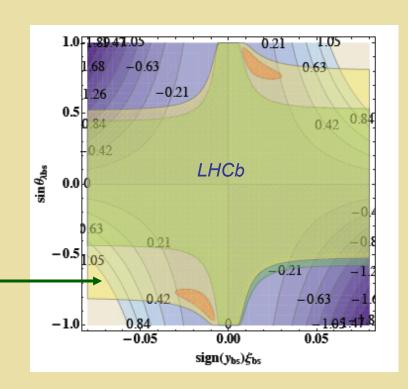
CPV & 2HDM

Liu, R-M, Shu '11; see also Tulin & Winslow '11; Cline et al '11

Viable EWB & CPV:

- EDMs are 2-loop
- CPV is flavor non-diag

Tevatron: same-sign Α^{μμ} included

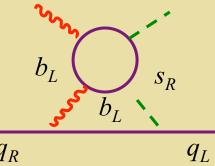

New Direction: Flavored CPV & EWB

CPV & 2HDM

$$\mathcal{L} = -y_{ij}^u \bar{Q}^i (\epsilon H_u^{\dagger}) u_R^j - y_{ij}^d \bar{Q}^i H_u d_R^j$$
$$-\lambda_{ij}^u \bar{Q}^i H_d u_R^j - \lambda_{ij}^d \bar{Q}^i (\epsilon H_d^{\dagger}) d_R^j + h.c..$$

Liu, R-M, Shu '11; see also Tulin & Winslow '11; Cline et al '11

constant n_B / s



Viable EWB & CPV:

- EDMs are 2-loop
- CPV is flavor non-diag

Wrong flavor & chiral structure for EDM

$$\frac{\zeta_{bs}^2}{\Lambda_{bs}^2}(\bar{b}_L s_R)(\bar{b}_L s_R)$$

Complex Singlet: EWB & DM?

Barger, Langacker, McCaskey, R-M Shaugnessy

Spontaneously & softly broken global U(1) < $S > \neq 0$

$$V_{HS} = \frac{\delta_2}{2} H^{\dagger} H |\tilde{S}|^2 = \frac{\delta_2}{2} H^{\dagger} H (S^2 + A^2)$$

Controls Ω_{CDM} , T_C , & H-S mixing

$$V_{\tilde{S}} = \frac{b_2}{2} |\tilde{S}|^2 + \frac{b_1}{2} \tilde{S}^2 + \text{c.c.} + \cdots$$

Gives non-zero MA

Complex Singlet: EWB & DM?

Barger, Langacker, McCaskey, R-M Shaugnessy

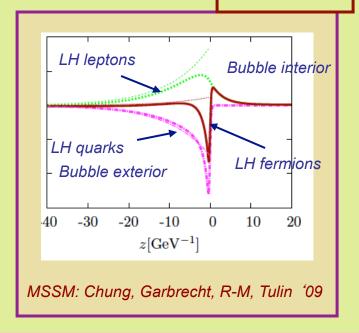
Consequences:

Three scalars: h_1 , h_2 : mixtures of h & S

A: dark matter

Phenomenology:

- Produce h_1 , h_2 w/ reduced σ
- Reduce BR $(h_i \rightarrow SM)$
- Observation of BR (invis)
- Possible obs of σ^{SI}

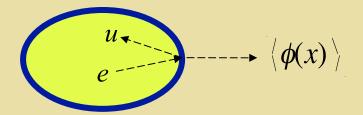

Collision Terms: Transfer Reactions

Formalism: Kadanoff-Baym to Boltzmann

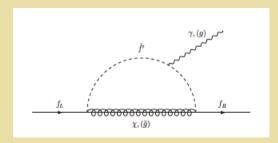
Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X), G^{<}(k,X) \right] - 2 \left[k \cdot \Sigma, G^{<}(k,X) \right] + \Lambda \left[G(k,X) \right]$$

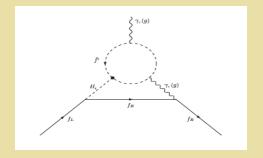
$$\begin{split} \partial_{\mu}\widetilde{t}^{\mu} &= -\Gamma_{Y}^{(\overline{t},\overline{q},H_{1})} \left(\frac{\widetilde{t}}{k_{\overline{t}}} - \frac{\widetilde{q}}{k_{\overline{q}}} - \frac{H_{1}}{k_{H_{1}}} \right) - \Gamma_{Y}^{(\overline{t},\overline{q},H_{2})} \left(\frac{\widetilde{t}}{k_{\overline{t}}} - \frac{\widetilde{q}}{k_{\overline{q}}} - \frac{H_{2}}{k_{H_{2}}} \right) + S_{\overline{t}}^{\mathcal{OP}} \\ &- \Gamma_{Y}^{(\overline{t},q,\overline{H})} \left(\frac{\widetilde{t}}{k_{\overline{t}}} - \frac{q}{k_{q}} - \frac{\widetilde{H}}{k_{\overline{H}}} \right) - \Gamma_{\overline{V}}^{(t,\overline{t})} \left(\frac{\widetilde{t}}{k_{\overline{t}}} - \frac{t}{k_{t}} \right) - \Gamma_{M}^{(\overline{t},\overline{q})} \left(\frac{\widetilde{t}}{k_{\overline{t}}} - \frac{\widetilde{q}}{k_{\overline{q}}} \right) \end{split}$$


Higgs Portal CPV

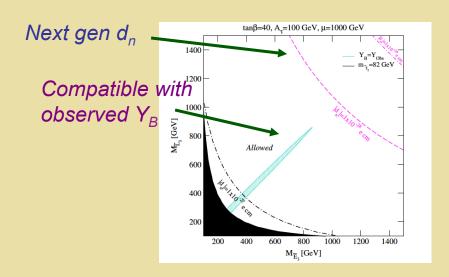
Color breaking


Decays:
$$C \rightarrow \langle C \rangle = v_C$$
: B violation

$$L_Y = C\bar{u}_R g_{uL} L_L + C\bar{Q}_L g_{Qe} e_R + \text{h.c.}$$


CPV phases

EDM Probes: EWB Implications


Light staus: LHC consistent & suppress 1-loop EDMs

No CEDM (199 Hg): EWB-viable but $m_H \rightarrow$ New scalars for EWPT

Viable EWB & CPV:

- EDMs are 2-loop
- · CPV is flavor non-diag

Kozaczuk, Wainwright, Profumo, RM

Theoretical Issues

Gauge-dependence in $V_{EFF}(\varphi, T)$

$$V_{\mathsf{EFF}}(\varphi\,,\,T\,) o V_{\mathsf{EFF}}(\varphi\,,\,T\,;\,\xi\,)$$

Ongoing research: approaches for carrying out tractable, GI computations

- H. Patel & MRM, JHEP 1107 (2011) 029
- C. Wainwright, S. Profumo, MRM Phys Rev. D84 (2011) 023521
- H. Gonderinger, H. Lim, & MRM, arXiv:1202.1316

Origin of Gauge Dependence

Effective Action

$$\Gamma[\phi_{\rm cl}(x)] = W[j] - \int d^4x \, j(x)\phi_{\rm cl}(x)$$
$$W[j] = -i \ln Z[j]$$

$$Z[j] = \int \mathcal{D}\phi \, \mathcal{D}A \, \mathcal{D}\eta \, \mathcal{D}\eta^{\dagger} e^{i \int d^d x \left[\mathcal{L}(x;j,\xi)\right]}$$

Effective Potential

$$\phi_{\rm cl}(x) \to \phi_{\rm cl} \longrightarrow \Gamma(\phi_{\rm cl}) = -({\rm vol}) V_{\rm eff}(\phi_{\rm cl})$$

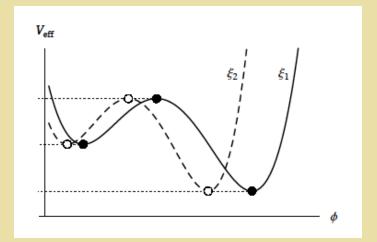
$$\int d^dx \ j(x)\phi(x)$$

Not GI

Nielsen Identities

Identity:

$$\frac{\partial \Gamma}{\partial \xi} = \int d^d x \, d^d y \left[C(\phi, A; \, x, y) \frac{\delta \Gamma}{\delta \phi(x)} + E^a_\mu(\phi, A; \, x, y) \frac{\delta \Gamma}{\delta A^a_\mu(x)} \right]$$


Extremal configurations:

$$\delta\Gamma/\delta\phi(x) = \delta\Gamma/\delta A^a_\mu(x) = 0$$
 $\frac{\partial\Gamma}{\partial\xi} = 0$

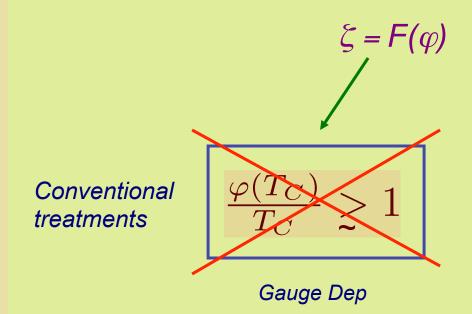
Effective potential:

$$\phi \to \phi_{\min}(\xi)$$
 \longrightarrow

$$\frac{\partial V_{\text{eff}}}{\partial \xi} = -\tilde{C}(\phi, \xi) \frac{\partial V_{\text{eff}}}{\partial \phi} = 0$$

Baryon Number Preservation

"Washout factor"

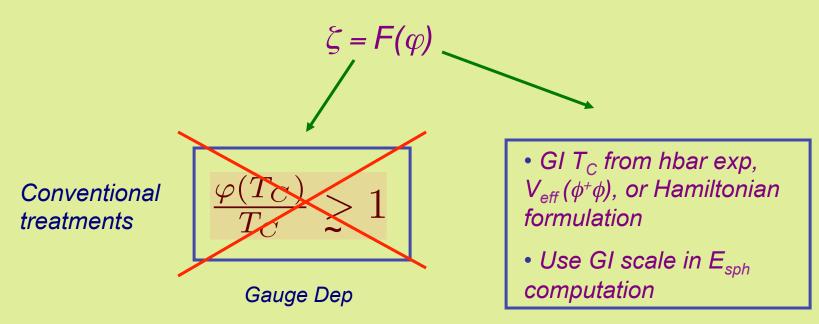

$$S \equiv \rho_B(\Delta t_{\rm EW})/\rho_B(0) > e^{-N}$$

Two qtys of interest:

- T_C from V_{eff}
- ullet $E_{\it sph}$ from $\Gamma_{\it eff}$

Baryon Number Preservation: Pert Theory

$$S \equiv \rho_B(\Delta t_{\rm EW})/\rho_B(0) > e^{-N}$$



"Baryon number preservation criterion" (BNPC)

H. Patel & MRM, JHEP 1107 (2011) 029

Baryon Number Preservation: Pert Theory

$$S \equiv \rho_B(\Delta t_{\rm EW})/\rho_B(0) > e^{-N}$$

"Baryon number preservation criterion" (BNPC)

H. Patel & MRM, JHEP 1107 (2011) 029

Nielsen Identities: Application to T_c

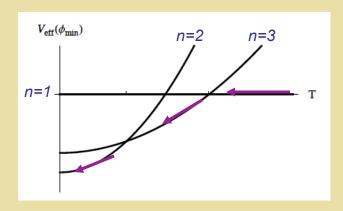
Critical Temperature

$$V_{\text{eff}}(\varphi_{\text{min}}, T_{\text{C}}) = V_{\text{eff}}(0, T_{\text{C}})$$

Fukuda & Kugo '74: T=0 V_{EFF}

Laine '95 : 3D high-T Eff Theory
Patel & R-M '11: Full high T Theory

Apply consistently order-by-order in $\,\hbar\,$

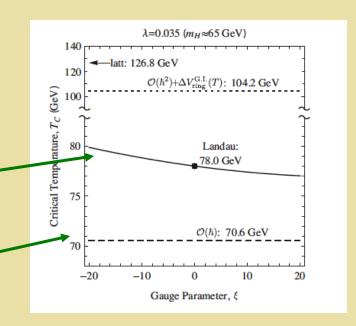

$$V_{\text{eff}}(\phi, T) = V_0(\phi) + \hbar V_1(\phi, T) + \hbar^2 V_2(\phi, T) + \dots$$
$$\phi_{\min} = \phi_0 + \hbar \phi_1(T, \xi) + \hbar^2 \phi_2(T, \xi) + \dots$$

Implement minimization order-by-order (defines ϕ_n)

$$V_{\text{eff}}[\phi_{\min}(T), T] = V_0(\phi_0) + \hbar V_1(\phi_0, T) + \hbar^2 \left[V_2(\phi_0, T, \xi) - \frac{1}{2}\phi_1(T, \xi) \frac{\partial^2 V_0}{\partial \phi^2} |_{\phi_0} \right] + \mathcal{O}(\hbar^3)$$

Obtaining a GI T_C

Track evolution of minima with T using \hbar expansion


Track evolution of different minima with T using

$$V_{\text{eff}} \left[\phi_{\min}^{(n)}(T), T \right] = V_0 \left[\phi_0^{(n)} \right] + \hbar V_1 \left[\phi_0(n), T \right]$$

Illustrative results in SM:

$$V_{\mathrm{eff}}(\phi_{\mathrm{min}}(T),\,T) = V_0(\phi) + \hbar V_1(\phi,T)$$

$$V_{\text{eff}}[\phi_{\min}(T), T] = V_0(\phi_0) + \hbar V_1(\phi_0, T)$$

Theoretical Issues

Systematic Transport Theory

Formalism: Kadanoff-Baym to Boltzmann

CTP or Schwinger-Keldysh Green's functions

$$\tilde{G}(x,y) = \left\langle P\varphi_a(x)\varphi_b^*(y) \right\rangle \tau_{ab} = \begin{bmatrix} G^t(x,y) & -G^*(x,y) \\ G^*(x,y) & -G^{\bar{t}}(x,y) \end{bmatrix}$$

- Appropriate for evolution of "in-in" matrix elements
- Contain full info on number densities: $n_{\alpha\beta}$
- Matrices in flavor space: (e, μ, τ) , $(\widetilde{t_{L_1}}, \widetilde{t_{R_2}})$, ...

Formalism: Kadanoff-Baym to Boltzmann

CTP or Schwinger-Keldysh Green's functions

$$\tilde{G}(x,y) = \left\langle P\varphi_a(x)\varphi_b^*(y) \right\rangle \tau_{ab} = \begin{bmatrix} G^t(x,y) & -G^*(x,y) \\ G^*(x,y) & -G^{\bar{t}}(x,y) \end{bmatrix}$$

- Appropriate for evolution of "in-in" matrix elements
- Contain full info on number densities: $n_{\alpha\beta}$
- Matrices in flavor space: (e, μ, τ) , $(\widetilde{t_{L}}, \widetilde{t_{R}})$, ...

$$\frac{\tilde{G}}{\tilde{G}} = \frac{\tilde{G}^0}{\tilde{G}^0} + \frac{\tilde{G}^0}{\tilde{G}^0} + \cdots$$

Scale Hierarchies

EW Baryogenesis

Gradient expansion

$$\varepsilon_{w} = v_{w} (k_{w} / \omega) << 1$$

Quasiparticle description

$$\varepsilon_p = \Gamma_p / \omega << 1$$

Thermal, but not too dissipative

$$\varepsilon_{coll} = \Gamma_{coll} / \omega << 1$$

Plural, but not too flavored

$$\varepsilon_{\rm osc} = \Delta\omega/T << 1$$

→ power counting

Leptogenesis

Gradient expansion

$$\varepsilon_{LNV} = \Gamma_{LNV} / \Gamma_{H} < 1$$

Quasiparticle description

$$\varepsilon_p = \Gamma_p / \omega << 1$$

Thermal, but not too dissipative

$$\varepsilon_{\rm coll} = \Gamma_{\rm coll} / \omega << 1$$

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space: Lowest non-trivial order in grad's

$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X), G^{<}(k,X) \right] - 2 \left[k \cdot \Sigma, G^{<}(k,X) \right] + \Lambda \left[G(k,X) \right]$$

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X)G^{<}(k,X)\right] - 2\left[k \cdot \Sigma, G^{<}(k,X)\right] + \Lambda \left[G(k,X)\right]$$

Diagonal after rotation to local mass basis:

$$M^{2}(X) = U^{+} m^{2}(X) U$$

$$\Sigma_{\mu}(X) = U^{+} \partial_{\mu} U \qquad (\tilde{t}_{L}, \tilde{t}_{R}) \to (\tilde{t}_{1}, \tilde{t}_{2})$$

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i\left[M^2(X),G^{<}(k,X)\right] - 2\left[k \cdot \Sigma,G^{<}(k,X)\right] + \Lambda\left[G(k,X)\right]$$

Flavor oscillations: flavor off-diag densities

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X), G^{<}(k,X) \right] - 2 \left[k \cdot \Sigma, G^{<}(k,X) \right] + \Lambda \left[G(k,X) \right]$$

CPV in m²(X): for EWB, arises from spacetime varying complex phase(s) generated by interaction of background field(s) (Higgs vevs) with quantum fields

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \Big[M^2(X), G^{<}(k,X) \Big] - 2 \Big[k \cdot \Sigma, G^{<}(k,X) \Big] + \Lambda \Big[G(k,X) \Big]$$

CPV in m²(X): for EWB, arises from spacetime varying complex phase(s) generated by interaction of background field(s) (Higgs vevs) with quantum fields

How large is CPV source? Riotto; Carena et al; Prokopec et al; Cline et al; Konstandin et al; Cirigliano et al; Kainulainen....

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X), G^{<}(k,X) \right] - 2 \left[k \cdot \Sigma, G^{<}(k,X) \right] + \Lambda \left[G(k,X) \right]$$

CPV in m²(X): for EWB, arises from spacetime varying complex phase(s) generated by interaction of background field(s) (Higgs vevs) with quantum fields

✓ = recent progress

Resonant enhancement of CPV sources for small ε_{osc}

Cirigliano et al

CPV Sources: how large a $sin\phi_{CPV}$ necessary?

Kinetic eq (approx) in Wigner space:

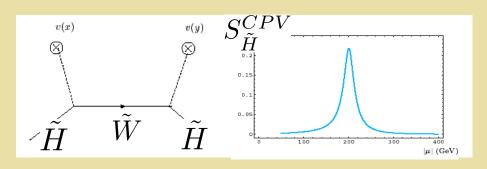
$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X), G^{<}(k,X) \right] - 2 \left[k \cdot \Sigma, G^{<}(k,X) \right] + \Lambda \left[G(k,X) \right]$$

VEV insert approx

- Riotto
- · Carena et al
- · Cirigliano et al

Large resonant enhancement but not realistic in small ε_{osc} regime

Resummed vevs


Konstandin,
 Prokpec, Schmidt

Small resonant effect but neglected diffusion and off-diag Σ_{ii} G_{ii} terms

Resummed vevs

Cirigliano et al

CPV Sources: how large a $sin\phi_{CPV}$ necessary?

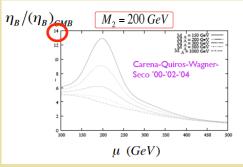
$$\Sigma,G^{<}(k,X)$$
 + $\Lambda[G(k,X)]$

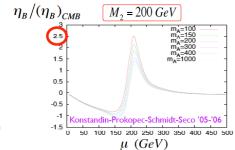
VEV insert approx

- Riotto
- · Carena et al
- Cirigliano et al

Large resonant enhancement but not realistic in small ε_{osc} regime

Resummed vevs


• Konstandin, Prokpec, Schmidt


Small resonant effect but neglected diffusion and off-diag Σ_{ii} G_{ii} terms

Resummed vevs

Cirigliano et al

CPV Sources: how large a $sin\phi_{CPV}$ necessary?

$$\cdot \Sigma, G^{<}(k,X)$$
 + $\Lambda [G(k,X)]$

VEV insert approx

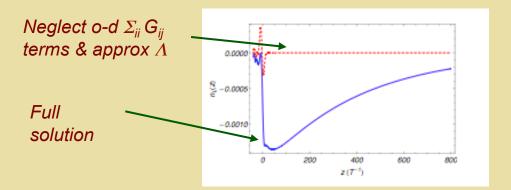
- Riotto
- · Carena et al
- · Cirigliano et al

Large resonant enhancement but not realistic in small ε_{osc} regime

Resummed vevs

• Konstandin, Prokpec, Schmidt

Small resonant effect but neglected diffusion and off-diag Σ_{ii} G_{ij} terms


Resummed vevs

Cirigliano et al

CPV Sources: how large a $sin\phi_{CPV}$ necessary?

Kinetic eq (approx) in Wign

$$2k \cdot \partial_X G^{<}(k,X) = -i \int M^2(1)^2 dk$$

VEV insert approx

- Riotto
- · Carena et al
- Cirigliano et al

Large resonant enhancement but not realistic in small ε_{osc} regime

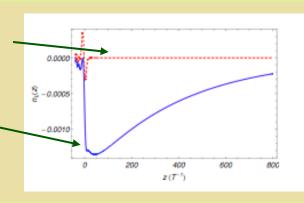
Resummed vevs

• Konstandin, Prokpec, Schmidt

Small resonant effect but neglected diffusion and off-diag Σ_{ii} G_{ii} terms

Resummed vevs

Cirigliano et al


CPV Sources: how large a $sin\phi_{CPV}$ necessary?

Kinetic eq (approx) in Wign

Neglect o-d
$$\Sigma_{ii}$$
 G_{ij} terms & approx Λ

 $2k \cdot \partial_X G^{<}(k,X) = -i \int M^2(x)^2 dx$

Full solution

Next steps:

- 1. Apply to realistic model (MSSM)
- 2. Fermions
- KIOTTO
- · Carena et al
- · Cirigliano et al

Large resonant enhancement but not realistic in small ε_{osc} regime

 Konstandin, Prokpec, Schmidt

ed vevs

Small resonant effect but neglected diffusion and off-diag Σ_{ii} G_{ii} terms

Resummed vevs

Cirigliano et al

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X), G^{<}(k,X) \right] - 2 \left[k \cdot \Sigma, G^{<}(k,X) \right] + \Lambda \left[G(k,X) \right]$$

EW Baryogenesis

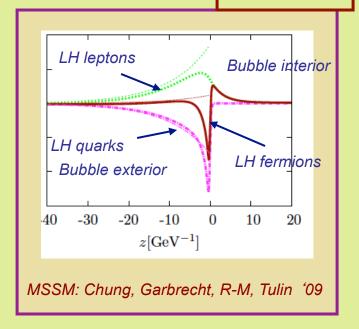
$$\Gamma_Y(\tilde{Q} \to t\tilde{H})$$

$$A^{CP}_{BSM} o A^{CP}_{SM}$$

$$\Gamma_V(ilde{Q} o Q ilde{V})$$

$$\Gamma_D(\tilde{Q}+q\to\tilde{Q}+q)$$

Diffusion

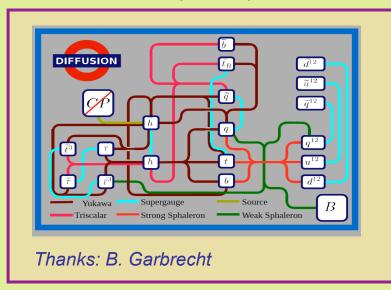

Collision Terms: Transfer Reactions

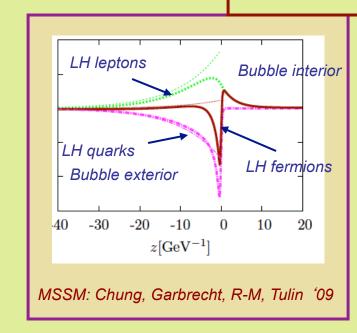
Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X), G^{<}(k,X) \right] - 2 \left[k \cdot \Sigma, G^{<}(k,X) \right] + \Lambda \left[G(k,X) \right]$$

$$\begin{split} \partial_{\mu} \widetilde{t}^{\mu} &= -\Gamma_{Y}^{(\overline{t},\overline{q},H_{1})} \left(\frac{\widetilde{t}}{k_{\overline{t}}} - \frac{\widetilde{q}}{k_{\overline{q}}} - \frac{H_{1}}{k_{H_{1}}} \right) - \Gamma_{Y}^{(\overline{t},\overline{q},H_{2})} \left(\frac{\widetilde{t}}{k_{\overline{t}}} - \frac{\widetilde{q}}{k_{\overline{q}}} - \frac{H_{2}}{k_{H_{2}}} \right) + S_{\overline{t}}^{\mathcal{P}} \\ &- \Gamma_{Y}^{(\overline{t},q,\overline{H})} \left(\frac{\widetilde{t}}{k_{\overline{t}}} - \frac{q}{k_{q}} - \frac{\widetilde{H}}{k_{\overline{H}}} \right) - \Gamma_{\overline{V}}^{(t,\overline{t})} \left(\frac{\widetilde{t}}{k_{\overline{t}}} - \frac{t}{k_{t}} \right) - \Gamma_{M}^{(\overline{t},\overline{q})} \left(\frac{\widetilde{t}}{k_{\overline{t}}} - \frac{\widetilde{q}}{k_{\overline{q}}} \right) \end{split}$$

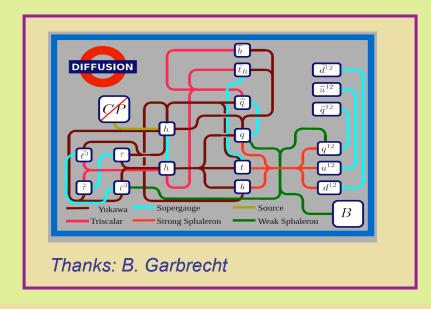


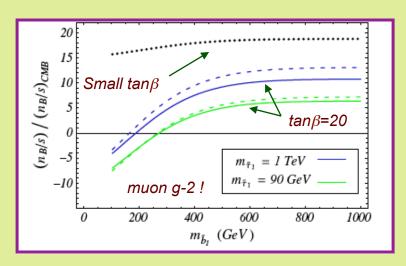

Collision Terms: Transfer Reactions

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X), G^{<}(k,X) \right] - 2 \left[k \cdot \Sigma, G^{<}(k,X) \right] + \Lambda \left[G(k,X) \right]$$




Solving the Transport Equations: MSSM

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \Big[M^2(X), G^{<}(k,X) \Big] - 2 \Big[k \cdot \Sigma, G^{<}(k,X) \Big] + \Lambda \Big[G(k,X) \Big]$$

Chung, Garbrecht, R-M, Tulin