The Orbifold Higgs

Simon Knapen UC Berkeley & LBL

@ UC Irvine 05 / 27 / 15

1411.7393: N. Craig, SK, P. Longhi 1410.6808: N. Craig, SK, P. Longhi

Hierarchy problem

Elementary scalars are quadratically sensitive to new physics at high scales

Finetuning anthropic selection

Requires symmetry/symmetries to protect the Higgs mass (or some finetuning) Experimentally disfavored

- EW precision
- lack of new particles

Top partner 'theorem' *

* only for symmetry-based solutions to hierarchy problem

- Symmetry must act non-trivially on H
- Top quark must be in a rep of this symmetry because y_t H Q U
 - Top quark has a partner particle
- Top partner must be 'light' or the symmetry is badly broken
- The usual suspects: SUSY or global symmetry

Top partner must be colored

Colored top partners

Supersymmetry

Plenty of possible caveats

- RPV
- squeezed spectra
- stealth
- ...

Global symmetry

Can the top partner(s) be neutral under QCD?

Canceling the divergence

Bottom-up

At I loop, only the number of colors enters

<u>Top-down</u>

Charge the top under a symmetry that does not commute with QCD 'Accidental' symmetry

The Twin Higgs

Take H in the fundamental of a global SU(4)

$$V(H) = -m^2 |H|^2 + \lambda |H|^4$$

Spontaneously breaks $SU(4) \rightarrow SU(3)$: 7 goldstones

Now gauge SU(2)_A x SU(2)_B \subset SU(4) (eat 6 goldstones) $H = \begin{pmatrix} h_A \\ h_B \end{pmatrix}$ $V(H) \supset \frac{1}{16\pi^2} \frac{9}{4} \Lambda^2 \left(g_A^2 h_A^2 + g_B^2 h_B^2 \right)$ Spoils the SU(4) symmetry

Extra ingredient: Z₂ symmetry A \leftrightarrow B such that $g = g_A = g_B$

$$V(H) \supset \frac{1}{16\pi^2} \frac{9}{4} g^2 \Lambda^2 \left(h_A^2 + h_B^2 \right) = \frac{1}{16\pi^2} \frac{9}{4} g^2 \Lambda^2 |H|^2$$

Accidental SU(4) symmetry preserved in the I loop effective potential

(quadratic piece only)

The general idea

The Higgs is a pseudo goldstone boson of an accidental global symmetry

The global symmetry is explicitly broken by the gauge interactions, but nevertheless preserved in the 1 loop effective potential due to a Z_2 symmetry

The Twin Standard Model

 $[SU(3)_c \times SU(2)_w \times U(1)_Y]^2 \times Z_2$

 $V(H) \supset -m^2 |H|^2 + \lambda |H|^4 + y_t h_A q_A u_A + y_t h_B q_B u_B$ Twin top

Spontaneously breaks $SU(4) \rightarrow SU(3)$: 7 goldstones

$$H = \begin{pmatrix} h_A \\ h_B \end{pmatrix} = \exp(\frac{i}{f}\Pi) \begin{pmatrix} 0 \\ 0 \\ 0 \\ f \end{pmatrix} \qquad \Pi = \begin{pmatrix} 0 & 0 & 0 & | \tilde{h}_1 \\ 0 & 0 & 0 & | \tilde{h}_2 \\ 0 & 0 & 0 & 0 \\ \hline{\tilde{h}_1^* & \tilde{h}_2^* & 0 & | 0 \end{pmatrix}} + \cdots$$

$$P(CD \text{ singlet!})$$

$$h_A = i\tilde{h} + \cdots$$

$$h_B = f - \frac{1}{2f}\tilde{h}^{\dagger}\tilde{h} + \cdots$$

$$\tilde{h} - \frac{t_A}{y_t} \underbrace{\tilde{h}^{\dagger}}_{y_t} + \underbrace{\tilde{h}^{\dagger}}_{-y_t \frac{1}{2f}} \cdot \tilde{h}^{\dagger}_{t}$$

However....

- What with the light fermions? Twin neutrino's ?
- Where do the Z₂ and the accidental SU(4) come from? (Accidental symmetries are not radiatively stable)
- Is the twin Higgs just a pathological case or is there a more general story?

Outline

- I. Introduction
- 2. Orbifolding to the Twin Higgs
- 3. Orbifolding more general field theories
- 4. A recipe for generalized Orbifold Higgs models

A 'Twin Unified Theory' ?

 $y_t = y'_t$ at 1% level $g_2 = g'_2$ at 10% level $g_3 = g'_3$ at 15% level

at $\Lambda\sim 5~{
m TeV}$

1501.05310: N. Craig, A. Katz, M. Strassler, R. Sundrum

$$SU(6) \times SU(4)$$

$$\downarrow$$

$$\left[SU(3) \times SU(2)\right] \times \left[SU(3) \times SU(2)\right]$$

Use the tools from GUT model building

example:

 $SU(5)/\mathbb{Z}_2 \to SU(3) \times SU(2) \times U(1)$

Orbifolds are a clean way of reducing symmetries

Orbifold Correspondence

Kachru, Silverstein '98 Bershadsky, Johansen '98 Schmaltz '99

. . .

mother theory

daughter theory

In the large N limit, the correlation functions of the daughter are identical* to those of the mother

Intuition:

Exact symmetry in mother **Accidental** symmetry in daughter

(UV complete in higher dimension or by deconstruction)

* up to a rescaling of the couplings

Orbifolds

Orbifolds in field theory

Map between two field theories: "Mother" \rightarrow "Daughter" (Mother does not necessarily flow to the daughter)

Geometric interpretation

Quotient space of manifold modded out by a discrete group ${\cal G}$

$$\mathcal{G}: \phi^i[y] \to R(g)_{ij} \phi^j[g(y)]$$

Need a space time fixed point: $g(y_0) = y_0$ Example: S^1/\mathbb{Z}_2 $(I_1)_{\pi}/\mathbb{Z}_2 \to 0$ π

Field Theory Orbifold

Recipe:

- I. Identify discrete symmetry in the mother theory
- 2. Eliminate DOF that are not invariant to obtain the daughter theory

<u>example</u>

$$SU(4)/Z_{2} \rightarrow SU(2) \times SU(2) \times U(1)$$

$$Z_{2} \text{ action: } \gamma = \begin{pmatrix} \mathbb{1}_{2} \\ -\mathbb{1}_{2} \end{pmatrix} \qquad \begin{pmatrix} A_{\mu}^{a} & 0 \\ 0 & 0 \end{pmatrix} \longrightarrow SU(2)$$

$$Invariant \text{ if } A_{\mu}^{a} = \gamma A_{\mu}^{a} \gamma \qquad \begin{pmatrix} 0 & 0 \\ 0 & A_{\mu}^{a} \end{pmatrix} \longrightarrow SU(2)$$

$$\begin{pmatrix} A_{\mu} \times \mathbb{1}_{2} & 0 \\ 0 & -A_{\mu} \times \mathbb{1}_{2} \end{pmatrix} \longrightarrow U(1)$$

Twin Higgs IS an orbifold

U

 $[SU(6) \times SU(4)]/Z_2 \rightarrow [SU(3) \times SU(2)]^2 \times U(1) \times U(1) \times \mathbb{Z}_2$

 H_1

Twin Higgs IS an orbifold

Geometrical interpretation in 5D

UV completion for twin Higgs

(Deconstruction is also possible)

General Strategy

Mother theory with exact symmetry

Realistic daughter theory with accidental symmetry examples:

- Twin Higgs
- Folded Supersymmetry
- ...

Integrate out KK-towers

Geometric UV completion

Outline

- I. Introduction
- 2. Orbifolding the Twin Higgs
- 3. Orbifolding more general field theories
- 4. A cookbook for generalized orbifold Higgs models

Can we generalize the orbifold twin Higgs?

$$SU(3\Gamma) \times SU(2\Gamma)/\mathcal{G}$$
 $\Gamma = |\mathcal{G}|$

A bit of group theory

Consider
$$\mathcal{G} = \{g_1, g_2, \cdots, g_{\Gamma}\}$$

The regular representation is given by $g_a \circ g_i = \gamma^a_{ij} g_j$

The regular representation is reducible

In more compact notation:
$$\gamma^a = \bigoplus_l r_l^a \otimes \mathbb{1}_{d_l}$$

How to orbifold a field theory?

I. First, find embedding of \mathcal{G} in SU(N Γ)

2. Drop fields that not invariant

How to orbifold an adjoint?

Use Shur's lemma $(r_l^a \otimes \mathbb{1}_{Nd_l})A(r_l^a \otimes \mathbb{1}_{Nd_l})^{\dagger} = A \quad \Rightarrow \quad \mathbb{1}_{d_l} \otimes A_l$

$$A = \begin{pmatrix} \mathbb{1}_{d_1} \otimes A_1 & & \\ & \mathbb{1}_{d_2} \otimes A_2 & & \\ & & \ddots & \\ & & & \mathbb{1}_{d_n} \otimes A_n \end{pmatrix}$$
 fixed from group theory
$$SU(N\Gamma) \to SU(d_1N) \times SU(d_2N) \times \cdots \times SU(d_nN) \times U(1)^{n-1}$$

Non-trivial breaking pattern!

$$\frac{1}{g^2} TrF_{\mu\nu}F^{\mu\nu} \to \sum_l \frac{d_l}{g^2} Tr(F_l)_{\mu\nu}(F_l)^{\mu\nu} \longrightarrow g_l = \frac{g}{\sqrt{d_l}} \qquad \begin{array}{l} \text{gauge couplings} \\ \text{are rescaled} \end{array}$$

How to orbifold a fundamental?

d. M thmas

$$Q \to \gamma_N Q \qquad \qquad \gamma_N^a = \begin{pmatrix} \begin{pmatrix} q_1^n & & & \\ & \ddots & \\ & & & & \\ & & & & \\$$

Moreover $P_{r_l} = \begin{cases} 1 & \text{if } r_l & \text{is trivial rep} \\ 0 & \text{otherwise} \end{cases}$

Full projector is thus

By

$$PQ = \bigoplus_{l} P_{r_{l}}Q = \begin{pmatrix} \mathbb{1}_{N} & 0 & \cdots & 0\\ 0 & 0 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & 0 \end{pmatrix} Q = \begin{pmatrix} Q_{1} \\ 0\\ \vdots\\ 0\\ 0 \end{pmatrix}$$

only a survivor in the first sector

How to orbifold a bifundamental?

d. M times

$$Q o \gamma_N \otimes \gamma^{\dagger}_{N'} Q$$

$$\gamma_{N}^{a} = \begin{pmatrix} \begin{pmatrix} (r_{1}^{a}) & & & \\ & \ddots & \\ & & (r_{1}^{a}) \end{pmatrix} & & \\ & & & (r_{2}^{a}) \end{pmatrix} & & \\ & & & \ddots \end{pmatrix} \cdot \\ P_{r_{l} \otimes r_{m}^{\dagger}} = \frac{1}{\Gamma} \sum_{a=1}^{\Gamma} r_{l}^{a} \otimes (r_{m}^{\dagger})^{a} = \frac{1}{d_{l}} \delta_{lm} \mathbb{1}_{d_{l}}$$

d- N times

Construct a projector operator

Outline

- I. Introduction
- 2. Orbifolding the Higgs
- 3. Orbifolding more general field theories
- 4. A cookbook for generalized orbifold Higgs models

Example I: The Z_{Γ} orbifold Higgs

For abelian groups, all irreps are $d_l = 1 \quad \forall l$ dimension one

$$[SU(3\Gamma) \times SU(2\Gamma)]/Z_{\Gamma} \to [SU(3) \times SU(2)]^{\Gamma} \times U(1)^{\Gamma-1} \times S_{\Gamma}$$

 $g^{(1)} = g^{(2)} = \cdots g^{(\Gamma)}$

'Twin' Higgs mechanism goes through as before

Example 2: The S₃ orbifold Higgs

- S₃ is a 6-dimensional, non-abelian group
- S₃ is has 2 dim one irreps and one dim 2 irrep

 $d_1 = d_2 = 1 \quad d_3 = 2 \qquad \qquad \Gamma = 6$

 $[SU(18) \times SU(12)]/S_3 \rightarrow [SU(3) \times SU(2)]^2 \times SU(6) \times SU(4) \times U(1)^2 \times \mathbb{Z}_2$

 $g^{(1)} = g^{(2)} = \frac{g^{(3)}}{\sqrt{2}}$ 'Twin' Higgs mechanism goes through as before, but non-trivially

Example 3: The A₄ orbifold Higgs

- A₄ is a 12-dimensional, non-abelian group
- A₄ is has 3 dim one irreps and one dim 3 irrep

$$d_1 = d_2 = d_3 = 1$$
 $d_4 = 3$ $\Gamma = 12$

 $[SU(36) \times SU(24)]/A_4 \rightarrow [SU(3) \times SU(2)]^3 \times SU(9) \times SU(6) \times U(1)^3 \times S_3$

 $g^{(1)} = g^{(2)} = g^{(3)} = \frac{g^{(4)}}{\sqrt{3}}$

'Twin' Higgs mechanism goes through as before, but non-trivially

The accidental symmetry

Yukawa and gauge couplings get rescaled

$$\begin{split} \delta m_{h_l}^2 &= -\frac{N d_l}{8\pi^2} \frac{y_t^2}{d_l} \Lambda^2 \\ &= -\frac{N}{8\pi^2} y_t^2 \Lambda^2 \end{split}$$

$$\delta m_{h_l}^2 = \frac{3}{16\pi^2} \frac{g^2}{d_l} \frac{(d_l N)^2 - 1}{2d_l N} \Lambda^2$$
$$= \frac{3}{32\pi^2} g^2 \left(N - \frac{1}{d_l^2 N} \right) \Lambda^2$$

Independent on sector

Independent on sector up to large N effects

Orbifold Higgs

Ingredients

- I Discrete group G
- I SU(3 Γ) x SU(2 Γ) gauge theory with $\Gamma = |G|$
- I SU(Γ) Flavor symmetry
- 3 Bifundamentals (H, Q, U)

Preparation

- * Find all irreps of G
- * Write a SU(3d_l) x SU(2d_l) sector for each irrep
- * Decorate with other SM particles and interactions (boundary or bulk)

29

© 2010 Vertex42.com

Where are the bodies buried?

- What about all these extra U(I)'s?
- What about hypercharge?
- What about anomaly cancellation?
- What do higher dimensional UV completions look like?

Hypercharge

- A shared hypercharge is trivial, but difficult experimentally
- A private hypercharge for the Standard Model is possible by extending the model
 - U(3Γ) x U(2Γ) x SU(Γ) / G
 - $SU(4\Gamma) \times SU(2\Gamma) \times SU(2\Gamma) / G$ (Pati-Salam unification)
 - $SU(3\Gamma) \times SU(3\Gamma) \times SU(3\Gamma) / G$ (Trinification)
- A private hypercharge is also possible by going beyond regular representation

Where needed, anomalies can be cancelled by adding spectator boundary fields

Geometric UV completions

Exact implementation depends on how you handle the hypercharge

Both I Higgs doublet and 2 Higgs doublet models are possible

(detailed study necessary)

Qualitative Phenomenology

33

Should we be depressed?

1501.05310: N. Craig, A. Katz, M. Strassler, R. Sundrum

Summary

"Twin Unified Theories"

Systematic exploration of Neutral Naturalness

Orbifolds are a powerful tool

- The Twin Higgs is the simplest example of an Orbifold Higgs
- The hidden symmetries are uniquely fixed by the dimensions of the irreps of the orbifold group
- The number of top partners does not have to be 3

Some open questions

- Adding in SUSY: can we classify folded SUSY models?
- How far can we further generalize this: Beyond regular representation? Orientifolds?
- How is the phenomenology of NN affected by its UV completion?
- A full-fledged model