Phenomenology of Induced Electroweak Symmetry Breaking

Spencer Chang UNIVERSITY OF OREGON

UC Irvine 2/11/15

Work w/ Azatov, Craig, Galloway PRD86 Galloway, Luty, Salvioni, Tsai arXiv:1411.6023

Talk Outline

- Induced Electroweak Symmetry Breaking
- Examples: MSSM + Technicolor (or extra doublets)
- Higgs Mass and Naturalness Implications
- M Higgs, Pseudos, Techni-states Phenomenology

Higgs as we know it

The Higgs discovery and ongoing precision studies are currently pointing to a Standard Model Higgs

Standard EWSB

Standard EWSB

Tilted Hat

Standard EWSB

Tilted Hat

Tilted Bowl

Induced EWSB scenarios

Use an additional source of EWSB to tilt the potential

Could come from another Higgs doublet with a larger quartic coupling (Galloway et.al. PRD 89)

Could come from a technicolor sector (Azatov et.al. PRL 108)

In paper, we considered both, but for this talk, I focus on the latter possibility

SUSY + Technicolor

- Supersymmetry plus technicolor is an interesting combination
- If technicolor initiates
 EWSB at a scale f « v,
 can induce EWSB in
 elementary Higgs sector,
 vu, vd » f

Combination considered in early 80's by Dimopoulos, Raby Dine, Fischler, Srednicki

Tadpole Couplings

$$V \supset 4\pi f^3 Tr \left[\Sigma (\lambda_d H_d \ \lambda_u H_u) \right] + c.c.$$

Standard EWSB via Mexican Hat

Tilted EWSB induced by linear tadpole

Mechanism	Standard	Tadpole
Unstable/Stable Terms	Mass Term/Quartic	Linear Term/ Mass
Higgs Mass	2	\mathbf{M}

Why should we combine SUSY and technicolor?

SUSY (Un) Naturalness

$$\delta m_h^2 \propto y_t^4 \ln \frac{m_{\widetilde{t}}}{m_t}$$

MSSM unnaturalness due to Higgs mass being log related to SUSY mass scale

In MSSM + TC Higgs mass gains *linear* dependence on SUSY scale due to properties of induced EWSB

Higgs Phenomenology

$$\delta m_h^2 = \frac{4\sqrt{2}\pi f^3(\lambda_d \cos\beta + \lambda_u \sin\beta)}{\sqrt{v_u^2 + v_d^2}}$$

Can substantially increase Higgs mass

With $\lambda \sim O(.1)$ and $f \sim 80$ GeV can get $m_h = 125$ GeV without radiative corrections (Gherghetta, Pomarol '11)

Technicolor Issues

- Flavor not a problem, just write Yukawas in elementary Higgs sector (Simmons, Samuel, ...)
- Precision electroweak is still an issue, but can still stay in (S, T) ellipse (Galloway et al.)

Higgs and Technicolor

- As pointed out by Carone '12, bosonic technicolor (Higgs + TC) has smaller quartic, bigger top Yukawa, so instability at high Higgs vev is worsened
- With supersymmetry, potential does not go negative and instability is avoided

Higgs Modifications

w/ Azatov, Craig, Galloway PRD86

Higgs Couplings

New couplings allow modifications beyond MSSM type-II 2HDM

(Non)Decoupling

$$\frac{\sin 2\alpha}{\sin 2\beta} = -\frac{m_H^2 + m_h^2 - \frac{8\pi\sqrt{2}f^3(\lambda_u \cos \beta + \lambda_d \sin \beta)}{\sin 2\beta\sqrt{v_u^2 + v_d^2}}}{m_H^2 - m_h^2}$$

Decoupling limit of MSSM, when $m_H \rightarrow \infty$ sets α - β = $\pi/2$, where h^0 has SM couplings

New term allows decoupling limit for gauge bosons, but decouples slower for fermion couplings which can be enhanced **or** suppressed

Higgs phenomenology Two benchmarks

Lighter Higgs fixed to 125 GeV, m_A allowed to vary

Notice delayed decoupling limit for bottom quark coupling in right benchmark

Collider Phenomenology

w/ Galloway, Luty, Salvioni, Tsai arXiv:1411.6023

Pseudoscalars

Of new particles, pseudoscalar pheno is particularly interesting

Due to multiple EWSB, there are would-be-Goldstones from MSSM Higgs as well as technicolor sector

Pseudoscalars

Normal decoupling limit, decouples MSSM pseudoscalar

Techni-pseudo mixes O(1) and does not decouple

Decoupling benchmarks

- Even in this limit, the phenomenology remains interesting

Coupling

MSSM decoupling limit is reducing its 2HDM to a 1HDM

True goldstone is spread between elementary Higgs and technipions

$$G = \frac{v_h A_h + f A_{TC}}{\sqrt{v_h^2 + f^2}}$$

$$A = \frac{fA_h - vA_{TC}}{\sqrt{v_h^2 + f^2}}$$

So this state has f/v suppressed couplings to the SM

Mass

Without interactions with the MSSM, technipions would be true goldstones with no mass

Only cross interaction is the tadpole term

$$m_A = \frac{v}{f}\delta m_h < \frac{v}{f}126 \text{ GeV}$$

Thus, mass of pseudoscalars are tied to increase in Higgs mass and has an upper bound

Branching Ratios in Decoupling Limit

Neutral pseudoscalar BRs

Charged pseudoscalar BRs

Only weakly sensitive to elementary quartic coupling Has a tan β = 1 fermion structure

mA < 160 GeV: ATLAS: $t \rightarrow H^+ b$

mA < 220 GeV:

CMS: $A \rightarrow \tau \tau$

250 GeV <mA < 350 GeV CMS: $A \rightarrow Zh$, Z leptons, h to b jets

mA < 160 GeV: ATLAS: $t \rightarrow H^+ b$

mA < 220 GeV: CMS: $A \rightarrow \tau \tau$

250 GeV <mA < 350 GeV CMS: A \rightarrow Zh, Z leptons, h to b jets

mA < 160 GeV: ATLAS: $t \rightarrow H^+ b$

mA < 220 GeV:

CMS: $A \rightarrow \tau \tau$

250 GeV <mA < 350 GeV CMS: A \rightarrow Zh, Z leptons, h to b jets

mA < 160 GeV:

ATLAS: $t \rightarrow H^+ b$

mA < 220 GeV:

CMS: $A \rightarrow \tau \tau$

250 GeV <mA < 350 GeV

CMS: $A \rightarrow Zh$, Z leptons,

h to b jets

Higgs coupling constraint

$$\kappa_V = 1/\kappa_f = \sqrt{1 - f^2/v^2}$$

Current limits are strong because they are on the wrong "side"

With Snowmass projection around SM value, limit only improves slightly

Induced EWSB w/ extra Higgs

A much larger tt BR for Higgs case (TC: tt was ~50%)

Due to a cancellation in Zh coupling btw. both Higgs doublets

Induced EWSB from doublet

Run 2 top resonance search crucial at low m_A to cover this parameter space

Some Model Dependent Pheno

Techni-pheno (also Carone, Erlich, Tan)

Techni-states are an efficient way to produce techni-pseudos (albeit more UV model dependent)

We model techni-rho production ala Falkowski, et.al.

Interestingly, techni-rho couplings to SM are through mixing with W, Z, which does not explicitly depend on f

Technirhos

Many possible decay channels due to low mass states

$$pp \to \rho^+ \to W^+ Z, H^+ A^0, H^+ Z, W^+ A^0$$

Once kinematically open, technirhos decay into pseudos

Naturally leads to longer cascades, not directly being searched for

Benchmarks

Traditional WZ search is strong until rho can decay into pseudos

For low mass A:
$$\rho^+ \to H^+ A^0 \to (t\bar{b}, W^+ h)(Zh, b\bar{b})$$

Benchmarks

Traditional WZ search is strong until rho can decay into pseudos

For low mass A: $\rho^+ \to H^+ A^0 \to (t\bar{b}, W^+ h)(Zh, b\bar{b})$

Benchmarks

Traditional WZ search is strong until rho

For low mass A: $\rho^+ \to H^+ A^0 \to (t\bar{b}, W^+ h)(Zh, b\bar{b})$

Conclusion

- Modifications of Higgs properties are still allowed
- Higgs potential can be changed w/ induced EWSB
- SUSY+Technicolor hybrid model can help to address SUSY naturalness and TC flavor problem

Conclusion (cont.)

- In MSSM decoupling, pseudo scalars and other techni-hadrons are still accessible
- Phenomenology has a rich structure which can be searched in Run2

Looking forward to Run 2!

Looking forward to Run 2!

Thanks!!!!

Additional Slides

Tilted Mexican Hat vs Bowl

