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Motivations                                                                                                        .

Quantum field theory of order parameter describes many 
physical systems with phase transitions
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Motivations                                                                                                        .

Unbroken phase Broken phase

Spontaneous Symmetry Breaking: G -> H

1 A

S = −
∫

y=y0

dx4√g0Λ0 −
∫

√
g

(

1

2κ2
R + Λ(5)

)

−
∫

y=y1

dx4√g1Λ1

σ → σ + αf

dλ(µ)

d log µ
=

β(λ)

λ
$= 0

a(v0 = 0) ∼ v1

L = (∂φ†)(∂φ) + m2φ†φ − λ(φ†φ)2

φ = eiξ(φ0 + σ)

a′′/a = 2/τ 2

4πf

gf

µ → χ

ΛUV
(4) = 0

Λ ∼ 4πf

1
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1 A

φ = eiξ(〈φ〉 + σ)

V (h) = λh4 + λ̃h4−ε

ε# 1

mρ

mh = 2
√
ελv

v

f

v

f
(1 + γψ)

−
g2

i

16π2

v

f
b
(i)
UV

ψ

±1

Λ2
±

S = −
∫

d4xdy
√

g

(

−
1

2κ2
R +

1

2
∂MΦ∂MΦ − V (Φ)

)

−
∫

d4x
√

g0V0(Φ)−
∫

d4x
√

g1V1(Φ)

V (φ)

φ = 〈φ〉 + σ

1
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Spontaneous Symmetry Breaking: G -> H

No amplitude mode without adjusting paramaters = TUNING
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Fundamental scalars are unnatural
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/264

For generic T ferromagnet is not a critical point:

T→ Tc requires to finetune the temperature:

experimenter

Fundamental scalars are unnatural
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Spontaneous breaking of scale invariance
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•Irrelevant operators are unimportant at low energies.
•No relevant operators can be present.

What is the dilaton?                                                                                           .

1 A

φ = eiξ(〈φ〉 + σ)

V (h) = λh4 + λ̃h4−ε

ε# 1

mρ

mh = 2
√
ελv

v

f

v

f
(1 + γψ)

−
g2

i

16π2

v

f
b
(i)
UV

ψ

±1

Λ2
±

S = −
∫

d4xdy
√

g

(

−
1

2κ2
R +

1

2
∂MΦ∂MΦ − V (Φ)

)

−
∫

d4x
√

g0V0(Φ)−
∫

d4x
√

g1V1(Φ)

V (φ)

φ = 〈φ〉 + σ

V (〈φ〉) & −
m2
σ〈φ〉2

16
# 〈φ〉4

T > TC

σ → σ + αf

1

6Thursday, 10 April 14



Figure 1:

1 A

ΛIR

ΛUV

ΛUV ! ΛIR

x → eαx , Φ(x) → edΦαΦ(eαx)

SCFT =
∑
O

∫
d4xO , dO = 4

ΛIR ∼ 4πf

χ ≡ feσ/f
→ eαχ

O(4, 2) →

1

Figure 1:

1 A

ΛIR

ΛUV

ΛUV ! ΛIR

x → eαx , O → edOαO(eαx)

SCFT =
∑
O

∫
d4xO , dO = 4

1

explicit breaking

spontaneous breaking

1 A

y

ke−ky

µ

e−ky0

1

1 A

S = −
∫

y=y0

dx4√g0Λ0 −
∫

√
g

(

2M3
∗
R + Λ(5)

)

−
∫

y=y0

dx4√g1Λ1

χ

V (χ) =
(

Λ0 + Λ(5)k
)

Λ4
UV /k4 +

(

Λ1 − Λ(5)k
)

χ4

〈O(x)〉 = fdO

ΛUV

f

1

1 A

S = −
∫

y=y0

dx4√g0Λ0 −
∫

√
g

(

2M3
∗
R + Λ(5)

)

−
∫

y=y0

dx4√g1Λ1

χ

V (χ) =
(

Λ0 + Λ(5)k
)

Λ4
UV /k4 +

(

Λ1 − Λ(5)k
)

χ4

〈O(x)〉 = fdO

ΛUV

f

1

Scale (conformal) invariant sector

1 A

S = −
∫

y=y0

dx4√g0Λ0 −
∫

√
g

(

2M3
∗
R + Λ(5)

)

−
∫

y=y0

dx4√g1Λ1

ΛUV # f

1

What is the dilaton?                                                                                           .

Compositeness Supersymmetry

1 A

a(v0 = 0) ∼ v1

T > TC

T < TC

j = J/U

L = (∂φ)2 + m2φ2 − λφ4

m ∼ (T − TC), (j − jC), (Λ − ΛQ)

Λ # m

φ = eiα(φ0 + σ)

O = ψ̄ψ

O = (φ,ψ)

1

1 A

a(v0 = 0) ∼ v1

T > TC

T < TC

j = J/U

L = (∂φ)2 + m2φ2 − λφ4

m ∼ (T − TC), (j − jC), (Λ − ΛQ)

Λ # m

φ = eiα(φ0 + σ)

O = ψ̄ψ

O = (φ,ψ)

1

new states at 

Chiral symmetry is crucial in both cases
new states at 
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Non-zero potential allowed

One additional important property of the effective potential (3.12) is that it is auto-
matically minimized at a solution that satisfies the bulk equations of motion and all BC’s.
The minimum of the potential is at

dVeff

dy1
= −4A′e−4A

[
V1 +

6

κ2
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]

+ e−4A

[
∂V1
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φ′ +
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The first term vanishes by the BC for the metric (3.6), while the second term (using a
combination of the bulk EOM’s A′′ = κ2φ′2/3 can be brought to the form of the scalar
boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution
automatically minimizes the dilaton potential: since the dilaton potential is a part of the
full bulk action evaluated along the equations of motion (without imposing the BC for
the warp factor), a full solution which extremizes the full action should also minimize the
effective potential. The key question is whether a flat solution actually exists without
tuning the parameters or not.

The potential (3.13) also has a very clear holographic interpretation in terms of a 4D
picture. The generic form of the dilaton potential is given by

Veff(χ) = χ4F (λ(χ)) + Λ4
UV , (3.17)

where λ is a coupling of an operator explicitly breaking the scale invariance. If the coupling
is constant, the potential is a pure quartic as discussed before. Based on our expression for
the potential (3.13 we can identify

F = V1 +
6

κ2
A′ (3.18)

In addition, the coupling λ will be identified with the bulk scalar through the relation,

φ ≡ log(λ) (3.19)

The minimization condition of the dilaton potential (3.16) can then be rewritten as

dVeff(χ)

dχ
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= 0 , (3.20)

with
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= 4χ3F + χ4 ∂F
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Non-zero potential allowed

One additional important property of the effective potential (3.12) is that it is auto-
matically minimized at a solution that satisfies the bulk equations of motion and all BC’s.
The minimum of the potential is at
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]

+ e−4A
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∂V1
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(3.16)

The first term vanishes by the BC for the metric (3.6), while the second term (using a
combination of the bulk EOM’s A′′ = κ2φ′2/3 can be brought to the form of the scalar
boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution
automatically minimizes the dilaton potential: since the dilaton potential is a part of the
full bulk action evaluated along the equations of motion (without imposing the BC for
the warp factor), a full solution which extremizes the full action should also minimize the
effective potential. The key question is whether a flat solution actually exists without
tuning the parameters or not.

The potential (3.13) also has a very clear holographic interpretation in terms of a 4D
picture. The generic form of the dilaton potential is given by

Veff(χ) = χ4F (λ(χ)) + Λ4
UV , (3.17)

where λ is a coupling of an operator explicitly breaking the scale invariance. If the coupling
is constant, the potential is a pure quartic as discussed before. Based on our expression for
the potential (3.13 we can identify

F = V1 +
6

κ2
A′ (3.18)

In addition, the coupling λ will be identified with the bulk scalar through the relation,

φ ≡ log(λ) (3.19)

The minimization condition of the dilaton potential (3.16) can then be rewritten as

dVeff(χ)

dχ
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= 0 , (3.20)

with
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Non-zero potential allowed

One additional important property of the effective potential (3.12) is that it is auto-
matically minimized at a solution that satisfies the bulk equations of motion and all BC’s.
The minimum of the potential is at

dVeff
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= −4A′e−4A

[
V1 +

6

κ2
A′
]

+ e−4A

[
∂V1

∂φ
φ′ +

6

κ2
A′′
]

(3.16)

The first term vanishes by the BC for the metric (3.6), while the second term (using a
combination of the bulk EOM’s A′′ = κ2φ′2/3 can be brought to the form of the scalar
boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution
automatically minimizes the dilaton potential: since the dilaton potential is a part of the
full bulk action evaluated along the equations of motion (without imposing the BC for
the warp factor), a full solution which extremizes the full action should also minimize the
effective potential. The key question is whether a flat solution actually exists without
tuning the parameters or not.

The potential (3.13) also has a very clear holographic interpretation in terms of a 4D
picture. The generic form of the dilaton potential is given by

Veff(χ) = χ4F (λ(χ)) + Λ4
UV , (3.17)

where λ is a coupling of an operator explicitly breaking the scale invariance. If the coupling
is constant, the potential is a pure quartic as discussed before. Based on our expression for
the potential (3.13 we can identify

F = V1 +
6

κ2
A′ (3.18)

In addition, the coupling λ will be identified with the bulk scalar through the relation,

φ ≡ log(λ) (3.19)

The minimization condition of the dilaton potential (3.16) can then be rewritten as

dVeff(χ)

dχ

∣∣∣∣
χ=〈χ〉

= 0 , (3.20)

with
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automatically minimizes the dilaton potential: since the dilaton potential is a part of the
full bulk action evaluated along the equations of motion (without imposing the BC for
the warp factor), a full solution which extremizes the full action should also minimize the
effective potential. The key question is whether a flat solution actually exists without
tuning the parameters or not.

The potential (3.13) also has a very clear holographic interpretation in terms of a 4D
picture. The generic form of the dilaton potential is given by

Veff(χ) = χ4F (λ(χ)) + Λ4
UV , (3.17)

where λ is a coupling of an operator explicitly breaking the scale invariance. If the coupling
is constant, the potential is a pure quartic as discussed before. Based on our expression for
the potential (3.13 we can identify

F = V1 +
6

κ2
A′ (3.18)

In addition, the coupling λ will be identified with the bulk scalar through the relation,

φ ≡ log(λ) (3.19)

The minimization condition of the dilaton potential (3.16) can then be rewritten as

dVeff(χ)

dχ

∣∣∣∣
χ=〈χ〉

= 0 , (3.20)

with

dVeff(χ)

dχ
= 4χ3F + χ4 ∂F

∂λ
β , β =

∂λ

∂χ
(3.21)

We can then identify (using ∂χ/∂y1 = −A′χ),

χ
∂F

∂λ
β =

1

A′

(
∂V1

∂φ
φ′ +

6

κ2
A′′
)

(3.22)
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Figure 1:
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One additional important property of the effective potential (3.12) is that it is auto-
matically minimized at a solution that satisfies the bulk equations of motion and all BC’s.
The minimum of the potential is at

dVeff

dy1
= −4A′e−4A

[
V1 +

6

κ2
A′
]

+ e−4A

[
∂V1

∂φ
φ′ +

6

κ2
A′′
]

(3.16)

The first term vanishes by the BC for the metric (3.6), while the second term (using a
combination of the bulk EOM’s A′′ = κ2φ′2/3 can be brought to the form of the scalar
boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution
automatically minimizes the dilaton potential: since the dilaton potential is a part of the
full bulk action evaluated along the equations of motion (without imposing the BC for
the warp factor), a full solution which extremizes the full action should also minimize the
effective potential. The key question is whether a flat solution actually exists without
tuning the parameters or not.

The potential (3.13) also has a very clear holographic interpretation in terms of a 4D
picture. The generic form of the dilaton potential is given by

Veff(χ) = χ4F (λ(χ)) + Λ4
UV , (3.17)

where λ is a coupling of an operator explicitly breaking the scale invariance. If the coupling
is constant, the potential is a pure quartic as discussed before. Based on our expression for
the potential (3.13 we can identify

F = V1 +
6

κ2
A′ (3.18)

In addition, the coupling λ will be identified with the bulk scalar through the relation,

φ ≡ log(λ) (3.19)

The minimization condition of the dilaton potential (3.16) can then be rewritten as

dVeff(χ)

dχ

∣∣∣∣
χ=〈χ〉

= 0 , (3.20)

with

dVeff(χ)

dχ
= 4χ3F + χ4 ∂F

∂λ
β , β =

∂λ

∂χ
(3.21)

We can then identify (using ∂χ/∂y1 = −A′χ),

χ
∂F

∂λ
β =

1

A′

(
∂V1

∂φ
φ′ +

6

κ2
A′′
)

(3.22)
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Quartic gets dependence on running coupling.

The dilaton effectively scans the lanscape of quartics.
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V ′ = f 3[4F (λ(f)) + βF ′(λ(f))] = 0
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Dimensional Transmutation
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a0 still matters for the dilaton mass

Figure 1:

1 A

V ′ = f 3[4F (λ(f)) + βF ′(λ(f))] = 0
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Generically there is NO small explicit breaking at f!

a0 still matters for the dilaton mass

Figure 1:

1 A

V ′ = f 3[4F (λ(f)) + βF ′(λ(f))] = 0

1

QCD-like

Figure 1:

1 A

F (λ) = F0 +
∑

n

anλ
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Figure 1:
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V ′ = f 3[4F (λ(f)) + βF ′(λ(f))] = 0
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1

One additional important property of the effective potential (3.12) is that it is auto-
matically minimized at a solution that satisfies the bulk equations of motion and all BC’s.
The minimum of the potential is at

dVeff

dy1
= −4A′e−4A

[
V1 +

6

κ2
A′
]

+ e−4A

[
∂V1

∂φ
φ′ +

6

κ2
A′′
]

(3.16)

The first term vanishes by the BC for the metric (3.6), while the second term (using a
combination of the bulk EOM’s A′′ = κ2φ′2/3 can be brought to the form of the scalar
boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution
automatically minimizes the dilaton potential: since the dilaton potential is a part of the
full bulk action evaluated along the equations of motion (without imposing the BC for
the warp factor), a full solution which extremizes the full action should also minimize the
effective potential. The key question is whether a flat solution actually exists without
tuning the parameters or not.

The potential (3.13) also has a very clear holographic interpretation in terms of a 4D
picture. The generic form of the dilaton potential is given by

Veff(χ) = χ4F (λ(χ)) + Λ4
UV , (3.17)

where λ is a coupling of an operator explicitly breaking the scale invariance. If the coupling
is constant, the potential is a pure quartic as discussed before. Based on our expression for
the potential (3.13 we can identify

F = V1 +
6

κ2
A′ (3.18)

In addition, the coupling λ will be identified with the bulk scalar through the relation,

φ ≡ log(λ) (3.19)

The minimization condition of the dilaton potential (3.16) can then be rewritten as

dVeff(χ)

dχ

∣∣∣∣
χ=〈χ〉

= 0 , (3.20)

with

dVeff(χ)

dχ
= 4χ3F + χ4 ∂F

∂λ
β , β =

∂λ

∂χ
(3.21)

We can then identify (using ∂χ/∂y1 = −A′χ),

χ
∂F

∂λ
β =

1

A′

(
∂V1

∂φ
φ′ +

6

κ2
A′′
)

(3.22)
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Start with small vacuum energy ~ flat direction.

One additional important property of the effective potential (3.12) is that it is auto-
matically minimized at a solution that satisfies the bulk equations of motion and all BC’s.
The minimum of the potential is at

dVeff

dy1
= −4A′e−4A

[
V1 +

6

κ2
A′
]

+ e−4A

[
∂V1

∂φ
φ′ +

6

κ2
A′′
]

(3.16)

The first term vanishes by the BC for the metric (3.6), while the second term (using a
combination of the bulk EOM’s A′′ = κ2φ′2/3 can be brought to the form of the scalar
boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution
automatically minimizes the dilaton potential: since the dilaton potential is a part of the
full bulk action evaluated along the equations of motion (without imposing the BC for
the warp factor), a full solution which extremizes the full action should also minimize the
effective potential. The key question is whether a flat solution actually exists without
tuning the parameters or not.

The potential (3.13) also has a very clear holographic interpretation in terms of a 4D
picture. The generic form of the dilaton potential is given by

Veff(χ) = χ4F (λ(χ)) + Λ4
UV , (3.17)

where λ is a coupling of an operator explicitly breaking the scale invariance. If the coupling
is constant, the potential is a pure quartic as discussed before. Based on our expression for
the potential (3.13 we can identify
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One additional important property of the effective potential (3.12) is that it is auto-
matically minimized at a solution that satisfies the bulk equations of motion and all BC’s.
The minimum of the potential is at
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The first term vanishes by the BC for the metric (3.6), while the second term (using a
combination of the bulk EOM’s A′′ = κ2φ′2/3 can be brought to the form of the scalar
boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution
automatically minimizes the dilaton potential: since the dilaton potential is a part of the
full bulk action evaluated along the equations of motion (without imposing the BC for
the warp factor), a full solution which extremizes the full action should also minimize the
effective potential. The key question is whether a flat solution actually exists without
tuning the parameters or not.
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3.4 SUMMARY

To solve the gauge hierarchy problem only the Higgs boson needs to be confined on the IR
brane. This allows fermions and gauge bosons to propagate in the bulk. From Table 1 the
gauge field zero mode is flat whereas fermion zero modes can be localized anywhere in the bulk
so that wavefunction overlap with the Higgs naturally leads to Yukawa coupling hierarchies.
The picture that emerges is a Standard Model in the warped bulk as depicted in Figure 5. The
fermions are localized to varying degrees in the bulk with the electron, being the lightest charged
fermion, furthest away from the IR-confined Higgs while the top quark, being the heaviest, is
closest to the Higgs. Dirac neutrino masses are also naturally incorporated. Thus the warped
dimension not only solves the gauge hierarchy problem but also addresses the Yukawa coupling
hierarchies.

4 AdS/CFT and Holography

Remarkably 5D models in a slice of AdS can be given a purely 4D description. This relation
between a 5D theory and a field theory in one less dimension is holographic and originates from
the AdS/CFT correspondence in string theory. In 1997 Maldacena conjectured that [1]

type IIB string theory
on AdS

5

⇥ S5

DUAL() N = 4 SU(N) 4D gauge theory

where N is the number of supersymmetry generators and S5 is the five-dimensional sphere.
The parameters of the correspondence were found to be related by

R4

AdS

l4s
= 4⇡g2YMN, (87)

where the AdS
5

curvature length RAdS ⌘ 1/k, ls is the string length and gYM is the SU(N)
Yang-Mills gauge coupling. Furthermore symmetries on both sides of the correspondence are
also related. The isometry of S5 is the rotation group SO(6) ⇠= SU(4), which is the same as the
R-symmetry group of the supersymmetric gauge theory. Similarly, the N = 4 gauge theory is
a conformal field theory (CFT) because the isometry group of AdS

5

is precisely the conformal
group in four dimensions. In particular this means that gauge couplings do not receive quantum
corrections and therefore do not run with energy. Thus we see that a very special 4D gauge
theory is conjectured to be equivalent to strings propagating on a particular ten-dimensional
curved background AdS

5

⇥ S5.
What are the consequences of the AdS/CFT correspondence for simple 5D gravitational

models? We have only considered gravity in the warped bulk which represents the e↵ective
low-energy description of the full string theory. In order to neglect the string corrections, so
that the bulk gravity description is valid, we require that RAdS � ls. Using (87) this leads to
the condition that g2YMN � 1, which means that the 4D dual CFT is strongly coupled!1 Thus

1
In addition one also requires that the string coupling, gs ! 0 so that nonperturbative string states with

masses ⇠ 1/gs remain heavy. Since gs ⇠ 1/N this separately requires that N ! 1.
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group in four dimensions. In particular this means that gauge couplings do not receive quantum
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for our purposes the correspondence takes the form of a duality in which the weakly coupled
5D gravity description is dual to a strongly coupled 4D CFT. This remarkable duality means
that any geometric configuration of fields in the bulk can be given a purely 4D description in
terms of a strongly coupled gauge theory. Therefore warped models provide a new way to study
strongly-coupled gauge theories.

While there is no rigorous mathematical proof of the AdS/CFT conjecture, it has passed
many nontrivial tests and an AdS/CFT dictionary to relate the two dual descriptions can be
established [41]. Let us begin with the basic objects of the two theories. The 5D bulk description
is characterized by set of bulk fields, while a CFT is characterized by a set of operators, O.
Therefore for every 5D bulk field � there is an associated operator O of the CFT

�(xµ, y) () CFT operator, O (88)

where the boundary value of the bulk field

�(xµ, y)

����
AdS boundary

⌘ �
0

(xµ) (89)

acts as a source field for the CFT operator O. For the AdS
5

metric (1) the boundary of AdS
space is located at y = �1. The AdS/CFT correspondence can then be quantified in the
following way by defining the generating functional to be [19, 42]

Z[�
0

] =

Z
D�CFT e�SCFT [�CFT ]�R

d4x�0O =

Z

�0

D� e�Sbulk[�] ⌘ eiSeff [�0] , (90)

where SCFT is the CFT action with �CFT generically denoting the CFT fields and Sbulk is the
bulk 5D action. Note that a source term �

0

O has been added to the CFT action. The on-shell
gravity action, Seff is obtained by integrating out the bulk degrees of freedom for suitably
chosen IR boundary conditions. In general n-point functions can be calculated via

hO . . .Oi = �nSeff

��
0

. . . ��
0

. (91)

In this way we see that the on-shell bulk action is the generating functional for connected
Greens functions in the CFT. In other words n-point functions for the strongly-coupled CFT
can now be computed from knowing the 5D on-shell bulk action!

So far the correspondence has been formulated purely in AdS
5

without the presence of the
UV and IR branes. In particular notice from (90) that the source field �

0

is a nondynamical
field with no kinetic term. However since we are interested in the 4D dual of a slice of AdS

5

(and
not the complete AdS space) we will need the corresponding dual description in the presence
of two branes.

4.1 A Slice of AdS/CFT

There are no mass scales in a CFT because it is invariant under conformal transformations. In
the complete AdS space where �1 < y < 1 this corresponds to having no branes present.
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 This correspondence has found many applications:
✦ Quantum gravity
✦ Electroweak hierarchy problem 
✦ Quark-gluon plasma
✦ Superconductors, superfluids

 and still offers many avenues for investigation.
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Randall & Sundrum solved a hierarchy problem with a slice of AdS
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 5D gravitational action

 Effective potential

3 The dilaton e↵ective potential in holographic

models

A general holographic model can be obtained by considering the action

S =

Z
d5x
p

g

✓
� 1

22
R+

1

2
gMN@

M

�@
N

�� V (�)

◆
�

Z
d4x
p

g0V0(�)�
Z

d4x
p

g1V1(�).

(3.1)
of a bulk scalar field � coupled to gravity. Here 2 is the 5D Newton constant, which is
related to 5D Planck scale via 2 = 1

2M

3
⇤
. We will be considering 4D Lorentz invariant

solutions to the Einstein equations, thus our metric ansatz will be

ds2 = e�2A(y)dx2 � dy2. (3.2)

where e�A(y) is the general warp factor. The AdS/CFT prescription gives an identification
between the extra dimensional coordinate and an energy scale in a dual 4D CFT:

µ = ke�A(y) , (3.3)

where k =
q

�⇤(5)
2

6 is the curvature of the AdS space, determined by the 5D cosmological
constant ⇤(5).

We can then calculate the e↵ective potential for the dilaton for an arbitrary back-
ground. We will assume that the general background is cut o↵ at the position y = y1 with
orbifold boundary conditions, which corresponds to the presumed spontaneous breaking of
conformality. The dilaton is identified as the scale of the spontaneous breaking, which in
this case corresponds to the IR brane position y1, implying

� = e
�
f = e�A(y1) . (3.4)

Both µ and � are identified up to an unphysical arbitrary constant, A(y)! A(y)+a being
a symmetry of the system. We will fix it by requiring A(0)=0. Besides, reparametrizations
of the dilaton field should not change physical quantities, and when convenient we will
simply take � = e�ky1 (see also Appendix E).

The background has to solve the bulk equations of motion
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2 TUNINGS! Vanishing cosmological constant and dilaton flat direction.

Csaki, Graesser, Kolda, Terning ’99

 5D gravitational action
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3 The dilaton e↵ective potential in holographic

models

A general holographic model can be obtained by considering the action

S =

Z
d5x
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(3.1)
of a bulk scalar field � coupled to gravity. Here 2 is the 5D Newton constant, which is
related to 5D Planck scale via 2 = 1

2M

3
⇤
. We will be considering 4D Lorentz invariant

solutions to the Einstein equations, thus our metric ansatz will be

ds2 = e�2A(y)dx2 � dy2. (3.2)

where e�A(y) is the general warp factor. The AdS/CFT prescription gives an identification
between the extra dimensional coordinate and an energy scale in a dual 4D CFT:

µ = ke�A(y) , (3.3)

where k =
q

�⇤(5)
2

6 is the curvature of the AdS space, determined by the 5D cosmological
constant ⇤(5).

We can then calculate the e↵ective potential for the dilaton for an arbitrary back-
ground. We will assume that the general background is cut o↵ at the position y = y1 with
orbifold boundary conditions, which corresponds to the presumed spontaneous breaking of
conformality. The dilaton is identified as the scale of the spontaneous breaking, which in
this case corresponds to the IR brane position y1, implying

� = e
�
f = e�A(y1) . (3.4)

Both µ and � are identified up to an unphysical arbitrary constant, A(y)! A(y)+a being
a symmetry of the system. We will fix it by requiring A(0)=0. Besides, reparametrizations
of the dilaton field should not change physical quantities, and when convenient we will
simply take � = e�ky1 (see also Appendix E).

The background has to solve the bulk equations of motion
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3
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Raman-Sundrum and followers tuned brane tension.
Brane distance is free.

This solution is not stable under perturbations.

Randall-Sundrum                                                                                              .
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Explicit breaking perturbation in AdS/CFT
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3 The dilaton e↵ective potential in holographic

models

A general holographic model can be obtained by considering the action

S =

Z
d5x
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(3.1)
of a bulk scalar field � coupled to gravity. Here 2 is the 5D Newton constant, which is
related to 5D Planck scale via 2 = 1

2M

3
⇤
. We will be considering 4D Lorentz invariant

solutions to the Einstein equations, thus our metric ansatz will be

ds2 = e�2A(y)dx2 � dy2. (3.2)

where e�A(y) is the general warp factor. The AdS/CFT prescription gives an identification
between the extra dimensional coordinate and an energy scale in a dual 4D CFT:

µ = ke�A(y) , (3.3)

where k =
q

�⇤(5)
2

6 is the curvature of the AdS space, determined by the 5D cosmological
constant ⇤(5).

We can then calculate the e↵ective potential for the dilaton for an arbitrary back-
ground. We will assume that the general background is cut o↵ at the position y = y1 with
orbifold boundary conditions, which corresponds to the presumed spontaneous breaking of
conformality. The dilaton is identified as the scale of the spontaneous breaking, which in
this case corresponds to the IR brane position y1, implying

� = e
�
f = e�A(y1) . (3.4)

Both µ and � are identified up to an unphysical arbitrary constant, A(y)! A(y)+a being
a symmetry of the system. We will fix it by requiring A(0)=0. Besides, reparametrizations
of the dilaton field should not change physical quantities, and when convenient we will
simply take � = e�ky1 (see also Appendix E).

The background has to solve the bulk equations of motion
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A simple example, scalar with bulk mass
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 Scaling dimension of operator:

 Scalar solution of E.O.M. in RS:
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The general stabilized RS is this:

3 The dilaton e↵ective potential in holographic

models

A general holographic model can be obtained by considering the action

S =

Z
d5x
p
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(3.1)
of a bulk scalar field � coupled to gravity. Here 2 is the 5D Newton constant, which is
related to 5D Planck scale via 2 = 1

2M

3
⇤
. We will be considering 4D Lorentz invariant

solutions to the Einstein equations, thus our metric ansatz will be

ds2 = e�2A(y)dx2 � dy2. (3.2)

where e�A(y) is the general warp factor. The AdS/CFT prescription gives an identification
between the extra dimensional coordinate and an energy scale in a dual 4D CFT:

µ = ke�A(y) , (3.3)

where k =
q

�⇤(5)
2

6 is the curvature of the AdS space, determined by the 5D cosmological
constant ⇤(5).

We can then calculate the e↵ective potential for the dilaton for an arbitrary back-
ground. We will assume that the general background is cut o↵ at the position y = y1 with
orbifold boundary conditions, which corresponds to the presumed spontaneous breaking of
conformality. The dilaton is identified as the scale of the spontaneous breaking, which in
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The BC’s (assumed to be Z2-symmetric) are then:

2A0|
y=y0,y1 = ±2

3
V0,1(�)|

y=y0,y1 (3.6)

2�0|
y=y0,y1 = ±@V0,1

@�
|
y=y0,y1 , (3.7)

where the + sign is for the UV brane and the � sign for the IR brane.

Let us now calculate the e↵ective potential for the dilaton in these general backgrounds.
The e↵ective potential is obtained by integrating the bulk action over the solutions of the
bulk equations of motion, with the scalar BC’s (3.6) imposed both at the UV and the IR.
We do not impose the Israel junction conditions (3.6) corresponding to the BC for the
warp factor. Eventually the UV brane junction condition can be imposed thereby fixing
the location y0 of the UV brane, and possibly at the price of tuning the UV brane tension.
The e↵ective potential in terms of the general warp factor A(y) and the general scalar
background �(y) is then given by

V
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dy
p
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Here we have integrated over the full circle rather than just over the orbifold. Special
attention has to be paid to the singular pieces in A00 at the two boundaries, which will give
an additional contribution to the e↵ective potential of

V
(sing)
eff

=
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g
8A0
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0

(3.9)

while using the bulk equations of motion in (3.5) the smooth part of the bulk is given by
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As expected, the entire e↵ective potential is a boundary term, given in terms of the location
of the IR brane y1 by

V
eff

= V
UV

+ V
IR

(3.11)

with

V
UV/IR

= e�4A(y0,1)


V0,1 (�(y0,1))⌥ 6
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A0(y0,1)

�
. (3.12)

An alternative derivation of this e↵ective potential using the Gibbons-Hawking boundary
action is given in Appendix A. As expected, this potential vanishes for a solution that
actually satisfies the boundary conditions (3.6) which we have not yet imposed. Once
those are satisfied one has a flat solution to the bulk equations of motion and the resulting
e↵ective 4D cosmological constant necessarily vanishes. This does not mean that the entire
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We obtain just what we expected, again.

Useful identification:

Generalized Randall-Sundrum                                                                           .
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As announced in the 4D effective Lagrangian analisys,
this potential yields a large hierarchy, a light dilaton, and 

a small cosmological constant

NATURAL & CORRELATED
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Λ0 +
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UV vacuum energy

Modulated, slowly running, dilaton quartic, with no TUNING!

Generalized Randall-Sundrum                                                                           .
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The large hierarchy
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Thanks to slow running for long time.
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Figure 3: The plot of the e↵ective dilaton potential Eq. (5.19) for the parameters ✏ = 0.1,
v0 = 0.1, v1 = 4.5, ⇤1 = �50, µ0 = 1, and  = 0.5, all of them in units k = 1. The plot in
the right is a zoom of the region where the minimum of the potential is.

To leading order in ✏, the condition for the minimum of the potential is

@V
IR

@�
= �3 (4F [(µ0/�)✏] + F 0[(µ0/�)✏]✏(µ0/�)✏) = 0 (5.20)

leading to a dilaton VEV

h�i
µ0

=

 
v0

v1 � sign(✏)
p

3
2

arcsech(�6k/2⇤1)

!1/✏

+ O(✏) (5.21)

while the potential will be obviously of order F [(µ0/�)✏] = O(✏). Notice that for this to be a
good minimum we need ⇤1 < 0 and |⇤1| > 6k/2. One can clearly see from Eq. (5.19) that
if these conditions are not satisfied then the e↵ective quartic is always positive F [�/µ0] > 0
for all �, and the minima can only be found at h�i = 0 or h�i = µ0. Furthermore, in order
for the e↵ective quartic to be positive at � = µ0 (thus avoiding this as a minimum), one
must have |⇤1| < 6k



2 cosh( 2p
3
(v1 � v0)). This condition is easily satisfied, either if v1 � v0,

a condition consistent with ✏ > 0, or v0 � v1, consistent with ✏ < 0. However, notice that
a large hierarchy, which in this scenario it is given by the point where 6A0/2 compensates
⇤1, is easier to produce for the case ✏ > 0, since in this case v1 �v0(µ0/�)✏ runs slower than
for ✏ < 0. This is the scenario we have advocated for naturally canceling a large quartic
at the scale µ0. We show a plot of the potential (5.19) in Fig. 3, where we can see that a
shallow stable minimum with a small mass is indeed generated.

The dual CFT interpretation of the potential Eq. (5.19) for the interesting ✏ > 0 is
simple. The quartic in the absence of perturbation (that is v0 = 0) is given by F0 =
⇤1 + 6k



2 cosh( 2p
3
v1). This is generically large and positive, hence there is no SBSI at high

scales. Once the perturbation is turned on, it grows larger in the IR, v0(µ0/�)✏. This in turn
decreases the e↵ective quartic, until the minimum F [�/µ0] = O(✏) is found. E↵ectively,
the dilaton quartic coupling relaxes to zero at �/µ0 ⌧ 1. At this point SBSI will occur.
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Thanks to slow running at the minimum.
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while the potential will be obviously of order F [(µ0/�)✏] = O(✏). Notice that for this to be a
good minimum we need ⇤1 < 0 and |⇤1| > 6k/2. One can clearly see from Eq. (5.19) that
if these conditions are not satisfied then the e↵ective quartic is always positive F [�/µ0] > 0
for all �, and the minima can only be found at h�i = 0 or h�i = µ0. Furthermore, in order
for the e↵ective quartic to be positive at � = µ0 (thus avoiding this as a minimum), one
must have |⇤1| < 6k
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(v1 � v0)). This condition is easily satisfied, either if v1 � v0,

a condition consistent with ✏ > 0, or v0 � v1, consistent with ✏ < 0. However, notice that
a large hierarchy, which in this scenario it is given by the point where 6A0/2 compensates
⇤1, is easier to produce for the case ✏ > 0, since in this case v1�v0(µ0/�)✏ runs slower than
for ✏ < 0. This is the scenario we have advocated for naturally canceling a large quartic
at the scale µ0. We show a plot of the potential (5.19) in Fig. 3, where we can see that a
shallow stable minimum with a small mass is indeed generated.

One might be concerned that phase transitions in the early universe may substantially
a↵ect the Planck-weak hierarchy, e↵ectively changing G

N

. However, the sensitivity to
changes in ⇤1 from condensates is only power-law
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Figure 3: The plot of the e↵ective dilaton potential Eq. (5.19) for the parameters ✏ = 0.1,
v0 = 0.1, v1 = 4.5, ⇤1 = �50, µ0 = 1, and  = 0.5, all of them in units k = 1. The plot in
the right is a zoom of the region where the minimum of the potential is.
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1) Small CC and light dilaton signal the approximate scale invariance at the 
condensation scale:

Chacko, Mishra, Stolarski ’13
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Change the bulk potential, change the running.
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The requirement is that a very light state must be in the spectrum!
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The requirement is that a very light state must be in the spectrum!

4) UV contribution to the CC?
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Phenomenological Aplications
1) A Higgs-like Dilaton 
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The Electroweak Hierarchy Problem                                                                  .

Why are particles (nearly) massless relative to 
Planckian scales? v << MP

What protects the Higgs from getting a huge 
mass from quantum effects?

The answer pursued in this talk is

COMPOSITENESS

H Htop
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LHC Higgs Discovery                                                                                         .

We observed the 3 phase modes long ago = 
longitudinal polarizations of W and Z gauge bosons

But now we have observed the amplitude mode!

We have never encountered something like this in 
particle physics

and nothing else!
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But now we have observed the amplitude mode!
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Dilaton?

1 A
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φ = eiα(φ0 + σ)

O = ψ̄ψ

O = (φ,ψ)

[O] = 4 − β/λ

m2 = −2εk2

mχ # Λ ∼ 4πf

1
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a(v0 = 0) ∼ v1

φ = eiα(φ0 + σ)

O = ψ̄ψ

O = (φ,ψ)

[O] = 4 − β/λ

m2 = −2εk2

mχ # Λ ∼ 4πf

〈χ〉 ≡ f ∼ v

1
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40"
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42"
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Production Modes 

13/05/2013 9 Andrew Mehta, ATLAS SM Higgs LHCP2013 

•μVBF+VH/μggF+ttH = 1.2-+0.7
-0.5 

•3.1 σ significance of non-vanishing 
VBF 

• gluon-gluon fusion (ggF) dominant 
• Several measurements of vector-boson fusion (VBF)  
• Data not yet very sensitive to VH and  ttH 
 
• Combine VBF and VH (both scale with V-H coupling) 
• Combine ggF and ttH (both scale with t-H coupling) 
 

Fermion and Vector Couplings 

13/05/2013 10 Andrew Mehta, ATLAS SM Higgs LHCP2013 

Combined –no assumption on Higgs Width 

• Vector coupling (κV) measured indirectly and directly in many channels 
• Fermion coupling (κF) measured: 
    - directly in H→bb and  H→ττ – not well measured yet 
    - indirectly via loop gg→H 

• Fermion and vector couplings non-zero and consistent with SM.  
• Still have a sign ambiguity 

Measure ratio of fermion to 
vector couplings: 
λFV=0.85+0.23

-0.13 

Couplings Summary 

14/05/2013 25 Andrew Mehta, ATLAS SM Higgs LHCP2013 

LHC Higgs Data: Couplings                                                                                .
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language, we shall refer to it as Higgs boson.

In this paper we assume that:

• Near 126 GeV there is a unique particle - a color-singlet neutral scalar with positive

parity.

• This scalar has naturally no flavor violating interactions with the SM fermions.

• Its interactions obey custodial symmetry under which h is a singlet.

With these assumptions, the lowest-order interaction Lagrangian takes the form:

L(0) =
h

v

"
cV

�
2m2

WW †
µW

µ +m2
ZZµZ

µ
�� ct

X

f=u,c,t

mf f̄f � cb
X

f=d,s,b

mf f̄f � c⌧
X

f=e,µ,⌧

mf f̄f

#
.

(2.2)

As a consequence of custodial symmetry, only one parameter cV controls the LO couplings to

both W and Z bosons; relaxing this would lead to quadratically divergent corrections to the

T parameter, and thus any departure from custodial symmetry is severely constrained at the

level of 1%, barring large fine-tuned cancellations. Furthermore, while we allow the couplings

to up-type quarks, down-type quarks, and leptons to be independent, we assume that within

each of these classes the coupling ratios are equal to the fermion mass ratio. Relaxing this

would generically lead to flavor-changing Higgs interactions in the mass eigenstate basis,

which are very constrained unless some underlying flavor principle is at work to suppress

these dangerous e↵ects.

At the NLO in the derivative expansion we include

L(2) = � h

4v

⇥
2cWWW †

µ⌫W
µ⌫ + cZZZµ⌫Z

µ⌫ + 2cZ�Aµ⌫Z
µ⌫ + c��Aµ⌫A

µ⌫ � cggG
a
µ⌫G

a
µ⌫

⇤
, (2.3)

where custodial symmetry imposes two further restrictions on the couplings (see Appendix A):

cWW = c�� +
gL
gY

cZ� , cZZ = c�� +
g2L � g2Y
gLgY

cZ� . (2.4)

where gL, gY are the SU(2)L ⇥ U(1)Y gauge couplings in the SM. Unlike in Eq. (2.2), the

terms in Eq. (2.3) are not the most general interactions terms at the 2-derivative level. In

particular, terms of the form hZµ@⌫Vµ⌫ or h@⌫Zµ@µZ⌫ are omitted because they lead, even

after imposing custodial symmetry, to quadratic divergences in the S parameter. A more

3
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The genuine effect of compositeness is the growth of 
scattering amplitudes with energy

24 Chapter 2. The Composite-pNGB Higgs
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Figure 2.1: Amplitude for the �+�� � �+�� process in the s-channel obtained from a generic composite-Higgs
model as a function of the center of mass energy

⇤
s of the collision (solid curve). Also shown is the unitarity

bound |a0| � 1 (dashed line).

on the Higgs, h(x) ⇤ h(x) + f �(x), can protect it from acquiring potential terms (i.e. with no
derivatives), in particular rendering the scalar massless at the leading order in its interactions.
This is accomplished by extending the global symmetry group of the strong sector, G, such that
the breaking to the unbroken subgroup, H, gives rise to at least an extra scalar degree of freedom,
besides those eaten by the W ’s, with the same quantum numbers as the SM Higgs boson [25, 44–
46]. The scale f is analogous to the pion decay constant f� in QCD, which sets where the
spontaneous symmetry breaking G ⇤ H takes place, and parametrizes the interactions among
NGBs. Besides, of great importance in this scenario are the sources of explicit breaking of the
NGB-symmetry associated to the Higgs. These will determine the ratio between the EWSB scale
v, and the decay constant scale f , by inducing a potential for the as of now pseudo-NGB (pNGB)
Higgs. Notice that a priori there is no preferred direction in G-space for the vacuum to point to.
Its orientation has to be measured against some external direction, for instance the embedding
of a gauged subgroup of G, in the case at hand the EW SU(2)L � U(1)Y , or any other explicit
symmetry breaking interaction, like (techni)quark masses. These symmetry-breaking interactions
then eventually fix the alignment of the vacuum [47]. We can define the “angle”,

⇥ ⇥ v2

f2
, (2.1)

which precisely measures the degree of alignment of the SU(2)L�U(1)Y gauge interactions with
respect to the broken global symmetries of the strong sector. Since it is customary to start with
SU(2)L �U(1)Y embedded in the unbroken subgroup H, ⇥ is no more than the VEV the pNGB-
Higgs must acquire. The parameter ⇥ is one of the crucial ingredients in our framework, since it
allows us to interpolate between a fundamental Higgs model, corresponding to the limit ⇥ ⇤ 0,
and a TC model when ⇥ ⇤ 1. This is precisely the desired property of decoupling new physics,
which was key in the unnatural SM Higgs Lagrangian, but absent in the natural TC models. In
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Implications: Double W Production                                                                    .

WW scattering
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DilatonStandard Model
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2 Scaling and Dilaton basics

In this section we summarize the basic properties of scale transformations and dilaton cou-
plings. Scale transformations [28] are given by (for x ! x0 = e�↵x)

O(x) ! O0(x) = e↵�O(e↵x) , (2.1)

where � is the matrix of dimensions (including classical and quantum e↵ects) for the oper-
ators O. The action changes under scale transformations as

S =
X

i

Z

d4x giOi(x) �! S 0 =
X

i

Z

d4xe↵(�i�4)giOi(x) , (2.2)

which implies the well-known result that all operators must have dimension �i = 4 for all
Oi in order for the action to be scale invariant. The linearized transformation of the action
is then

S �! S +
X

i

Z

d4x↵gi(�i � 4)Oi(x) . (2.3)

Let us assume that scale invariance is broken spontaneously by the VEV of a dimension-
ful operator hOi = fn where n is the classical dimension of O. The spontaneous breaking of
scale invariance will imply the existence of a Goldstone boson for scale transformations, the
dilaton, which transforms inhomogeneously under scale transformations:

�(x) ! �(e↵x) + ↵f . (2.4)

The low-energy e↵ective theory can be obtained by replacing the VEV with the non-linear
realization

f ! f � ⌘ f e�/f , (2.5)

and requiring that it is invariant under scale transformations:

Leff =
X

n,m>0

an,m
(4⇡)2(n�1) f 2(n�2)

@2n�m

�2n+m�4
(2.6)

= �a0,0 (4⇡)
2f 4�4 +

f 2

2
(@µ�)

2 +
a2,4
(4⇡)2

(@�)4

�4
+ . . . (2.7)

where an,m ⇠ O(1), and a1,1 = 1/2 corresponds to canonical normalization, and a2,4 is
determined by the proof of the a-theorem [29]. The complete set of dilaton couplings within
the scale-invariant sector can be obtained by the replacement in (2.5). However, a more
systematic way is to take advantage of the (approximate) scale invariance of the Lagrangian
at high energies, in order to build an e↵ective Lagrangian for energies below ⇤ ⇠ 4⇡f where
scale invariance is preserved by means of insertions of the dilaton field as defined in Eq. (2.5).

The general assumption we will be making is that there is a conformal sector which is
spontaneously broken, which we will refer to as the “composite sector”, and that there is

3

in the dilaton
“chiral” Lagrangian

Differential feature w.r.t. composite Higgs: 
dilaton is NOT part of SU(2) doublet
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Implications: Double Dilaton Production                                                            .

There is NO O(s) growth, but O(s2)!

The genuine effect of compositeness is the growth of 
scattering amplitudes with energy, in particular WL and h

WW to hh scattering
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Implications: Double Dilaton Production                                                            .

There is one differential feature w.r.t the SM Higgs
even if v/f ~ 1 and no anomalous dimensions!

h

h

h

~ 5/3 x SM

10-1

100

101

102

-4 -3 -2 -1  0  1  2  3  4

σ
(N

)L
O

[fb
]

λ/λSM

pp→HH (EFT loop-improved)
pp→HHjj (VBF)

pp→ttHH

pp→WHH

pp→ZHH pp→tjHH

HH production at 14 TeV LHC at (N)LO in QCD
MH=125 GeV, MSTW2008 (N)LO pdf (68%cl)

Ma
dG
ra
ph
5_
aM
C@
NL
O

Figure 3: Total cross sections at the LO and NLO in QCD for HH production channels, at the
√

s =14 TeV LHC as a function of the
self-interaction coupling λ. The dashed (solid) lines and light- (dark-)colour bands correspond to the LO (NLO) results and to the scale and
PDF uncertainties added linearly. The SM values of the cross sections are obtained at λ/λSM = 1.
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Phenomenological Aplications
2) Cosmological Phase 

Transitions
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There is one very important consequence of a 
true spontaneous breaking of scale invariance

Could this ocurr in any of the known phase transitions?

How can we learn anything about the 
CC?

Spontaneous Breaking of Scale Invariance                                                         .
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This is a very speculative idea, but the next question 
per se is very interesting:
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Phase Transitions in the Early Universe                                                             .

As the Universe expands, it cools off, and phase transitions take 
place (QCD, ElectroWeak,...)

Second order PT

The energy densities change during PT’s, and the 
Universe is sensitive to it.

Restoration of symmetry at high Temperature.
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Early Universe Evolution                                                                                    .

Homogeneous & isotropic (flat) Universe
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Einstein equations
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Energy, Momentum and Pressure

To define the energy-momentum tensor of the universe, Tµ⌫ , we introduce a family of observers with
worldlines tangent to the timelike velocity 4-vector

uµ ⌘ dxµ

d⌧
, (17)

where ⌧ is the observers’ proper time, so that gµ⌫u
µu⌫ = �1. The vector uµ determines the time

direction, while the tensor �µ⌫ ⌘ gµ⌫ +uµu⌫ projects orthogonal to the 4-velocity into the observers’
instantaneous rest space at each event. In the absence of vorticity, the 4-velocity is hypersurfae-
orthogonal and �µ⌫ is the metric of the 3-dimensional spatial sections orthogonal to uµ.

With respect to these fundamental observers, the energy-momentum tensor of a general (imper-
fect) fluid decomposes into its irreducible parts as

Tµ⌫ = ⇢uµu⌫ + p�µ⌫ + 2q(µu⌫) + ⌃µ⌫ , (18)
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µu⌫ is the matter energy density, p = 1
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µ⌫ is the isotropic pressure, qµ =
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µ T↵�u� is the energy-flux vector, and ⌃µ⌫ = � ↵

hµ � �
⌫i T↵� is the symmetric and trace-free anisotropic

stress tensor.4 For a perfect fluid there exists a unique hydrodynamical 4-velocity relative to which
qµ = ⌃µ⌫ = 0, i.e. for the case of a perfect fluid the stress-energy tensor is

Tµ
⌫ = gµ↵T↵⌫ = (⇢ + p)uµu⌫ � p �µ

⌫ , (19)

where ⇢ and p are the proper energy density and pressure in the fluid rest frame and uµ is the
4-velocity of the fluid. In a frame that is comoving with the fluid we may choose uµ = (1, 0, 0, 0),
i.e.
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. (20)

The Einstein Equations then take the form of two coupled, non-linear ordinary di↵erential equations,
also called the the Friedmann Equations (see Problem 3)
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and

Ḣ + H2 =
ä
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6
(⇢ + 3p) , (22)

where overdots denote derivatives with respect to physical time t. Notice, that in an expanding
universe (i.e. ȧ > 0) filled with ordinary matter (i.e. matter satisfying the strong energy condition:
⇢ + 3p � 0) Eqn. (22) implies ä < 0. This indicates the existence of a singularity in the finite
past: a(t ⌘ 0) = 0. Of course, this conclusion relies on the assumption that General Relativity
and the Friedmann Equations are applicable up to arbitrary high energies and that no exotic forms

4Here we use the notation thµ⌫i = � ↵
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Assuming a perfect fluid:
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ä

a
= −

1

6
(ρ + 3p)

ρ(a) ∼ a−3

a(t) ∼ t2/3

ρ(a) ∼ a−4

a(t) ∼ t1/2

ρ(a) ∼ a0

a(t) ∼ eHt

1

44Thursday, 10 April 14
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By measuring energy densities today,
we obtain a beautiful picture for the hot early Universe
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Figure 5: Evidence for dark energy. Shown are a combination of observations of the cosmic mi-
crowave background (CMB), supernovae (SNe) and baryon acoustic oscillations (BAO)
[12].

Figure 6: The properties of dark energy are close to a cosmological constant, w⇤ ⇡ �1 [11].

4 Big Bang Puzzles

It is somewhat of a philosophical questions whether initial conditions form part of a physical theory or
should be considered separately. The purpose of physics is to predict the future evolution of a system
given a set of initial conditions; e.g. Newton’s laws of gravity will predict the path of a projectile if
we define its initial position and velocity. It is therefore far from clear whether cosmology should
predict or even just explain the initial conditions of the universe. On the other hand, it would be
very disappointing if only very special and finely-tuned initial conditions would lead to the universe
as we see it, making the observed universe an ‘improbable accident’.

22
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4 Big Bang Puzzles

It is somewhat of a philosophical questions whether initial conditions form part of a physical theory or
should be considered separately. The purpose of physics is to predict the future evolution of a system
given a set of initial conditions; e.g. Newton’s laws of gravity will predict the path of a projectile if
we define its initial position and velocity. It is therefore far from clear whether cosmology should
predict or even just explain the initial conditions of the universe. On the other hand, it would be
very disappointing if only very special and finely-tuned initial conditions would lead to the universe
as we see it, making the observed universe an ‘improbable accident’.

22

But we are interested in what happens outside here!
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Actually, what happens in the very early Universe is similar to this:
Early Universe Evolution                                                                                    .

scale factor

en
er

gy
 d

en
si

ty

radiation

CC

QCDEW

The CC jumps at each 
phase transition!

To end up at the very small 
value we observe today

46Thursday, 10 April 14



Actually, what happens in the very early Universe is similar to this:
Early Universe Evolution                                                                                    .

scale factor

en
er

gy
 d

en
si

ty

radiation

CC

QCDEW

The CC jumps at each 
phase transition!

To end up at the very small 
value we observe today1 A

a(v0 = 0) ∼ v1

V (φ) = V0 − m2φ2 + λφ4

TPT ∼ −〈φ〉 ∼
m
√

g

V (〈φ〉) ∼ 0

V0 ∼
m4

g

ρcc ∼ V0 ! ρradiation ∼ T 4

PT ∼
m4

g2

1

1 A

a(v0 = 0) ∼ v1

V (φ) = V0 − m2φ2 + λφ4

TPT ∼ −〈φ〉 ∼
m
√

g

V (〈φ〉) ∼ 0

V0 ∼
m4

g

ρcc ∼ V0 ! ρradiation ∼ T 4

PT ∼
m4

g2

1

and

1 A

a(v0 = 0) ∼ v1

V (φ) = V0 − m2φ2 + λφ4

TPT ∼ −〈φ〉 ∼
m
√

g

V (〈φ〉) ∼ 0 ⇒ V0 ∼
m4

g

ρcc ∼ V0 ! ρradiation ∼ T 4

PT ∼
m4

g2

1

At the PT, radiation and CC are closest

1 A

a(v0 = 0) ∼ v1

V (φ) = V0 − m2φ2 + λφ4

TPT ∼ −〈φ〉 ∼
m
√

g

V (〈φ〉) ∼ 0 ⇒ V0 ∼
m4

g

ρcc ∼ V0 ! ρradiation ∼ T 4

PT ∼
m4

g2

1

46Thursday, 10 April 14



Actually, what happens in the very early Universe is similar to this:
Early Universe Evolution                                                                                    .
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radiation

CC

QCDEW

The CC jumps at each 
phase transition!

How could we tell if there has been a jump or NOT?
Certainly gravitational waves will be affected and will reach us later

PT
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Modelling a 2nd Order PT: QCD                                                                         .

The Free energy is continuous (decreasing) &
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Primordial Gravitational Waves                                                                          .

We wish to compute the power spectrum
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Gravitational Wave Detection                                                                             .

4

signal will dominate: however, this seems somewhat un-
natural given the extremely high Reynolds number of the
primordial fluid, and we discard this possibility in this
work) [58].
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FIG. 2: The GW signal from bubble collisions and MHD tur-
bulence for ΩS∗ = 0.1 and v = 0.7. We choose β = 10H∗.
The signal is dominated by the contribution from MHD tur-
bulence. The bubble collision peak causes the hump on the
left of the true peak of the spectrum.

In Fig. 2 we show the total signal for the more opti-
mistic case, ΩS∗ = 0.1 and v = 0.7. The peak frequency
of the total GW spectrum corresponds to the MHD tur-
bulence peak: k/β ! π2/v, and depends on the choice
β = 10H∗. From f = k/(2π) one obtains [42, 44]

fp ! 1.7 · 10−9 π2

v

β

H∗

( g∗
10

)
1

6 T∗

100MeV
Hz (5)

where g∗ is the number of effective relativistic degrees of
freedom at the temperature T∗. With v = 0.7, β = 10H∗,
g∗ = 10 and T∗ = 100MeV the peak frequency becomes
fp ! 2.5 · 10−7 Hz.

III. THE PULSAR TIMING ARRAY

Neutron stars can emit powerful beams of electromag-
netic waves from their magnetic poles. As the stars ro-
tate the beams sweep through space like the beacon of a
lighthouse. If the Earth lies within the sweep of a neu-
tron star’s beams, the star is observed as a point source
in space emitting short, rapid pulses of electromagnetic
waves, and is referred to as a pulsar.
The electromagnetic pulses we observe arrive at a very

steady rate due to the enormous moment of inertia of
neutron stars. The idea to use these stable clocks to
detect GWs was first put forward in the late 1970s [47–
49]. Fluctuations in the time of arrival of pulses, after all
known effects are subtracted, could be due to the pres-
ence of GWs. Recently pulsar timing precision has im-
proved dramatically. Jenet and collaborators [50] have
shown that the presence of nano-Hertz GWs could be
detected using a pulsar timing array (PTA) consisting

of 20 pulsars with timing precisions of 100 nanoseconds
over a period of 5 to 10 years (see also [4, 5] for more re-
cent PTA sensitivity estimates). Pulsar timing arrays are
most sensitive in the band 10−9 Hz < f < 10−7 Hz. The
lower limit in frequency is given by the duration of the ex-
periment (∼ 10 yr.) and the upper limit by the sampling
theorem, i.e. the time between observations (∼ 1 month).
The spike in the sensitivity at f = 0.3× 10−7Hz seen in
Fig. 3 is the frequency of the earth’s rotation around the
sun which cannot be disentangled from a GW with the
same frequency.
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Current NANOGrav sensitivity

PTA 2020

LISA

FIG. 3: Comparison of the GW spectrum h2Ω(f) with cur-
rent NANOGrav pulsar timing array sensitivity and expected
sensitivity of pulsar timing experiments in 2020 [5]. We have
used h = 0.73, Ωr0 = 8.5 × 10−5, ΩS∗ = 0.1 and v = 0.7. We
plot the GW spectra for the values H∗/β = 1, 0.5, 0.2, 0.1
(dashed lines from top to bottom). For H∗/β ∼ 1, the back-
ground of GWs can just be detected in present pulsar timing
experiments, while for 0.1 ! H∗/β it can be detected by the
planned array IPTA2020 (very high values of H∗/β ∼ 1 are
difficult to accommodate in the case of a thermally nucle-
ated phase transition, c.f. discussion in the text). We also
show the LISA sensitivity [52, 53]. Unfortunately, LISA will
not be able to detect a signal from a first order QCD phase
transition (the EW phase transition is more promising in this
respect [25–41, 44, 46]).

The North American Nanohertz Observatory for Grav-
itational Waves (NANOGrav) [51], a collaboration of as-
tronomers, has created a pulsar timing array–a galactic
scale GW observatory using about 20 pulsars. It is a
section of the IPTA, an international collaboration in-
volving similar organizations of European and Australian
astronomers. The current NANOGrav pulsar timing ar-
ray sensitivity is shown in Fig. 3, together with the GW
spectra we expect from the QCD phase transition as a
function of frequency

h2ΩGW(f) = h2 dΩGW

d log k
, (6)

for H∗/β = 1 (top dashed line), H∗/β = 0.5 (upper-

Unfortunately, for the QCD phase transition,
experiments are not very sensitive

But who knows in the future?! Or other PT’s?!

Caprini et al ’10
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Approximate spontaneous breaking of scale invariance
offers a NATURAL way to obtain a light scalar

Summary                                                                                                           .

and to suppress the Cosmological Constant

Is this possibility realized in Nature?

A Higgs-like Dilaton
Dilaton in Phase Transitions

QCD?
...

We just have to wait and see
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Thank you for your attention

NP: Themes
1. Necessity for new particles at TeV mass

2. Candidate TeV particles
weakly coupled: SUSY, Dark Matter, Long-lived

strongly coupled/composite: Randall-Sundrum, KK 
and Z’ resonances, long-lived particles

evolution of robust search strategies

3. Connection to dark matter problem
4. Connection to flavor issues

the questions of fine tuning 
and dark matter are still open
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New particle searches at the current LHC.

current LHC searches

CMS Exotics Searches 

5!

q* (qg), dijet
q* (qW)
q* (qZ) 

q* , dijet pair
q* , boosted Z

e*, Λ = 2 TeV
μ*, Λ = 2 TeV

0 1 2 3 4 5 6
Z’SSM (ee, µµ)

Z’SSM (ττ)
Z’ (tt hadronic) width=1.2%

Z’ (dijet)
Z’ (tt lep+jet) width=1.2%

Z’SSM (ll) fbb=0.2
G (dijet)

G (ttbar hadronic)
G (jet+MET) k/M = 0.2

G (γγ) k/M = 0.1
G (Z(ll)Z(qq)) k/M = 0.1

W’ (lν)
W’ (dijet)

W’ (td)
W’→ WZ(leptonic)

WR’ (tb)
WR, MNR=MWR/2

WKK μ = 10 TeV
ρTC, πTC > 700 GeV

String Resonances (qg)
s8 Resonance (gg)

E6 diquarks (qq)
Axigluon/Coloron (qqbar)

gluino, 3jet, RPV
0 1 2 3 4 5 6

gluino, Stopped Gluino
stop, HSCP

stop, Stopped Gluino
stau, HSCP, GMSB

hyper-K, hyper-ρ=1.2 TeV
neutralino, cτ<50cm

0 1 2 3 4 5 6

Ms, γγ, HLZ, nED = 3
Ms, γγ, HLZ, nED = 6
Ms, ll, HLZ, nED = 3
Ms, ll, HLZ, nED = 6

MD, monojet, nED = 3
MD, monojet, nED = 6
MD, mono-γ, nED = 3
MD, mono-γ, nED = 6

MBH, rotating, MD=3TeV, nED = 2
MBH, non-rot, MD=3TeV, nED = 2

MBH, boil. remn., MD=3TeV, nED = 2
MBH, stable remn., MD=3TeV, nED = 2

MBH, Quantum BH, MD=3TeV, nED = 2
0 1 2 3 4 5 6Sh. Rahatlou 1

LQ1, β=0.5
LQ1, β=1.0
LQ2, β=0.5
LQ2, β=1.0

LQ3 (bν), Q=±1/3, β=0.0
LQ3 (bτ), Q=±2/3 or ±4/3, β=1.0

stop (bτ)
0 1 2 3 4 5 6

b’ → tW, (3l, 2l) + b-jet
q’, b’/t’ degenerate, Vtb=1

b’ → tW, l+jets
B’ → bZ (100%)
T’ → tZ (100%)

t’ → bW (100%), l+jets
t’ → bW (100%), l+l

0 1 2 3 4 5 6
C.I. Λ , Χ analysis, Λ+ LL/RR
C.I. Λ , Χ analysis, Λ- LL/RR

C.I., µµ, destructve LLIM
C.I., µµ, constructive LLIM

C.I., single e (HnCM)
C.I., single µ (HnCM)

C.I., incl. jet, destructive
C.I., incl. jet, constructive

0 5 10 15

95% CL EXCLUSION LIMITS (TEV)CMS EXOTICA

*similar results obtained by ATLAS!

ATLAS Supersymmetry Searches 

4!*similar results obtained by CMS!
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