The Dilaton and its many Faces

with B.Bellazzini, C.Csaki, J.Hubisz, J.Terning arXiv:1209.3299 arXiv:1305.3919 arXiv:1312.0259 arXiv:14xx.xxxx

UC Irvine Joint Particle Physics Seminar April 9, 2014

Motivations

Quantum field theory of order parameter describes many physical systems with phase transitions

Superconductivity

 $T < T_C$

Superfluidity

Vacuum State of Nature

Inflation ElectroWeak Symmetry Breaking Quantum Chromodynamics

 $\mathcal{L} = (\partial \phi^{\dagger})(\partial \phi) + m^2 \phi^{\dagger} \phi - \lambda (\phi^{\dagger} \phi)^2$

Broken phase

Spontaneous Symmetry Breaking: G -> H

 $\mathcal{L} = (\partial \phi^{\dagger})(\partial \phi) + m^2 \phi^{\dagger} \phi - \lambda (\phi^{\dagger} \phi)^2$

Spontaneous Symmetry Breaking: G -> H

(approximately) Massless Goldstone modes appear = phases

 $\phi = e^{i\xi} (\langle \phi \rangle + \sigma)$

 $\mathcal{L} = (\partial \phi^{\dagger})(\partial \phi) + m^2 \phi^{\dagger} \phi - \lambda (\phi^{\dagger} \phi)^2$

Spontaneous Symmetry Breaking: G -> H

No <u>amplitude mode</u> without adjusting paramaters = TUNING $\phi = e^{i\xi}(\langle \phi \rangle + \sigma)$

$$m \sim (T - T_C), (j - j_C), (\Lambda - \Lambda_Q)$$

Fundamental scalars are unnatural

 $\mathcal{L} = (\partial \phi^{\dagger})(\partial \phi) + m^2 \phi^{\dagger} \phi - \lambda (\phi^{\dagger} \phi)^2$

Spontaneous Symmetry Breaking: G -> H

No <u>amplitude mode</u> without adjusting paramaters = TUNING $\phi = e^{i\xi}(\langle \phi \rangle + \sigma)$

$$m \sim (T - T_C), (j - j_C), (\Lambda - \Lambda_Q)$$

Fundamental scalars are unnatural

 $\mathcal{L} = (\partial \phi^{\dagger})(\partial \phi) + m^2 \phi^{\dagger} \phi - \lambda (\phi^{\dagger} \phi)^2$

Spontaneous Symmetry Breaking: G -> H

No amplitude mode without adjusting paramaters = TUNING

$$\phi = e^{i\xi} (\langle \phi \rangle + \sigma)$$

 $m \sim (T - T_C), (j - j_C), (\Lambda - \Lambda_Q)$

Fundamental scalars are unnatural

The Dilaton

What is the dilaton?

Irrelevant operators are unimportant at low energies.
No relevant operators can be present.

Spontaneous breaking of scale invariance

 $\langle \mathcal{O}(x) \rangle = f^{d_{\mathcal{O}}}$

1 GB (enough): SO(4,2)/SO(3,1)

$$\chi \equiv f e^{\sigma/f} \to e^{\alpha} \chi$$
$$\sigma \to \sigma + \alpha f$$

What is the dilaton?

Irrelevant operators are unimportant at low energies.
No relevant operators can be present.

Compositeness

Supersymmetry

 $\mathcal{O} = \bar{\psi}\psi \qquad \qquad \mathcal{O} = (\phi, \psi)$

Chiral symmetry is crucial in both cases

new states at $\Lambda_{IR} \sim 4\pi f$

new states at gf

What is the dilaton?

The point is if there is a light amplitude mode when scale generates

$$\mathcal{L}_{eff} = \frac{1}{2} (\partial \chi)^{2}_{\text{dilator}} a_{0} \chi^{4} + \frac{a_{2,4}}{\chi^{4}} (\partial \chi)^{4} + \cdots$$

$$\sigma(x) \longrightarrow \sigma(e^{\alpha}x) + \alpha f$$

$$\chi(x) = f e^{\sigma/f} \longrightarrow e^{\alpha} \chi(e^{\alpha}x)$$

$$a_{0} > 0$$

$$i_{\alpha_{0}} = 0$$

$$a_{0} = 0$$

$$a_{0} < 0$$

$$i_{\alpha_{0}} < 0$$

The point is if there is a light amplitude mode when scale generates

$$\mathcal{L}_{eff} = \frac{1}{2} (\partial \chi)^{2}_{\text{dilator}a_{0}\chi^{4}} + \frac{a_{2,4}}{\chi^{4}} (\partial \chi)^{4} + \cdots$$

$$\sigma(x) \longrightarrow \sigma(e^{\alpha}x) + \alpha f$$

$$\chi(x) = f e^{\sigma/f} \longrightarrow e^{\alpha}\chi(e^{\alpha}x)$$

$$a_{0} > 0$$

$$\int dx = f e^{\sigma/f} \longrightarrow e^{\alpha}\chi(e^{\alpha}x)$$

$$a_{0} = 0$$

$$\int dx = f e^{\sigma/f} \longrightarrow e^{\alpha}\chi(e^{\alpha}x)$$

$$a_{0} = 0$$

$$\int dx = f e^{\sigma/f} \longrightarrow e^{\alpha}\chi(e^{\alpha}x)$$

$$a_{0} = 0$$

$$\int dx = f e^{\sigma/f} \longrightarrow e^{\alpha}\chi(e^{\alpha}x)$$

$$a_{0} = 0$$

$$\int dx = f e^{\sigma/f} \longrightarrow e^{\alpha}\chi(e^{\alpha}x)$$

$$\int dx = f e^{\sigma/f} \longrightarrow e^{\sigma/f}$$

Thursday, 10 April 14

The point is if there is a light amplitude mode when scale generates

We need to add a perturbation (explicit breaking)

$$\mathcal{L} = \mathcal{L}_{CFT} + \lambda \mathcal{O} \qquad [\mathcal{O}] = 4 - \beta/\lambda \qquad \frac{d\lambda(\mu)}{d\log\mu} = \frac{\beta(\lambda)}{\lambda} \neq 0$$

$$\downarrow \mu \rightarrow \chi$$

$$V(\chi) = \chi^4 F(\lambda(\chi))$$

$$F(\lambda(\chi)) = a_0 + \sum_n a_n \lambda^n(\chi)$$
Quartic gets dependence on running coupling.
"Running" potential
Coleman, Weinberg '73

The dilaton effectively scans the lanscape of quartics.

Thursday, 10 April 14

Minimum and dilaton mass

 $\langle \chi \rangle = f$

$$V' = f^{3}[4F(\lambda(f)) + \beta F'(\lambda(f))] = 0$$
$$m_{d}^{2} \simeq 4f^{2}\beta F'(\lambda(f))$$

Minimum and dilaton mass

 $\langle \chi \rangle = f$

$$V' = f^{3}[4F(\lambda(f)) + \beta F'(\lambda(f))] = 0$$
$$m_{d}^{2} \simeq 4f^{2}\beta F'(\lambda(f))$$

Dimensional Transmutation

$$\begin{split} \lambda(\mu) &= \lambda_0 \left(\frac{\mu_0}{\mu}\right)^{\beta/\lambda} \\ \mu \to \chi \\ \lambda(f) &\sim \sqrt{a_0} \\ f &\sim \mu_0 \left(\frac{\lambda_0}{\sqrt{a_0}}\right)^{\lambda/\beta} \\ has been generated! \end{split}$$

ao still matters for the dilaton mass

$$V' = f^{3}[4F(\lambda(f)) + \beta F'(\lambda(f))] = 0$$
$$\downarrow$$
$$m_{d}^{2} \simeq 4f^{2}\beta F'(\lambda(f)) \stackrel{\checkmark}{=} -16f^{2}F(\lambda(f))$$

$$a_0 \text{ still matters for the dilaton mass}$$
$$V' = f^3[4F(\lambda(f)) + \beta F'(\lambda(f))] = 0$$
$$\downarrow$$
$$m_d^2 \simeq 4f^2\beta F'(\lambda(f)) \stackrel{\checkmark}{=} -16f^2F(\lambda(f))$$

Generically there is NO small explicit breaking at f!

F is the vacuum energy (CC) in units of $f\colon \ F(f)\sim a_0\sim \frac{\Lambda_{IR}^4}{16\pi^2 f^4}\sim 16\pi^2$

QCD-like

 $m_d^2 \sim 16\pi^2 f^2 \sim \Lambda_{IR}^2$ NO remnant of scaling symmetry NO dilaton in QCD-like theories

Holdom, Terning '88

 $a_0 \sim$

But there is an unorthodox way out

<u>CPR construction</u>

Strong CFT perturbation but small breaking

 $m_d^2 \simeq 4f^2 \beta F'(\lambda(f)) = -16f^2 F(\lambda(f)) = -16V(f)/f^2$

Let the dilaton scan the lanscape of quartics but keep the slow running always.

Contino, Pomarol, Rattazzi, '10

Bellazzini, Csaki, Hubisz, Terning, JS, '13

<u>CPR construction</u>

Strong CFT perturbation but small breaking

 $m_d^2 \simeq 4f^2 \beta F'(\lambda(f)) = -16f^2 F(\lambda(f)) = -16V(f)/f^2$

Let the dilaton scan the lanscape of quartics but keep the slow running always.

Contino, Pomarol, Rattazzi, '10

Bellazzini, Csaki, Hubisz, Terning, JS, '13

An Extra-D Computable Example

An amazing conjecture

type IIB string theory on $AdS_5 \times S^5$ \longrightarrow $\mathcal{N} = 4$ SU(N) 4D gauge theory

Maldacena '97

$$\frac{R_{AdS}^4}{l_s^4} = 4\pi g_{YM}^2 N$$

An amazing conjecture

type IIB string theory on $AdS_5 \times S^5$ \longrightarrow $\mathcal{N} = 4$ SU(N) 4D gauge theory Maldacena '97

 $\frac{R_{AdS}^4}{l_s^4} = 4\pi g_{YM}^2 N$

Serves as a <u>computational tool</u> to describe systems that are strongly coupled. $g_{YM}^2N\gg 1$

 $N \gg 1$

5D field - 4D operator connection

 $\phi(x^{\mu}, y) \longleftrightarrow \mathcal{O}$ $\phi_0 = \phi(x^{\mu}, y)|_{\text{AdS boundary}} \longleftrightarrow \lambda_0$

Generating functional $Z[\phi_0] = \int \mathcal{D}\phi_{CFT} \ e^{-S_{CFT}[\phi_{CFT}] - \int d^4x \ \phi_0 \mathcal{O}} = \int_{\phi_0} \mathcal{D}\phi \ e^{-S_{bulk}[\phi]} \equiv e^{iS_{eff}[\phi_0]}$ $\langle \mathcal{O} \dots \mathcal{O} \rangle = \frac{\delta^n S_{eff}}{\delta \phi_0 \dots \delta \phi_0}$

5D field - 4D operator connection

 $\phi(x^{\mu}, y) \longleftrightarrow \mathcal{O}$ $\phi_0 = \phi(x^{\mu}, y)|_{\text{AdS boundary}} \longleftrightarrow \lambda_0$

Generating functional $Z[\phi_0] = \int \mathcal{D}\phi_{CFT} \ e^{-S_{CFT}[\phi_{CFT}] - \int d^4x \ \phi_0 \mathcal{O}} = \int_{\phi_0} \mathcal{D}\phi \ e^{-S_{bulk}[\phi]} \equiv e^{iS_{eff}[\phi_0]}$ $\langle \mathcal{O} \dots \mathcal{O} \rangle = \frac{\delta^n S_{eff}}{\delta \phi_0 \dots \delta \phi_0}$

This correspondence has found many applications:

- Quantum gravity
- + Electroweak hierarchy problem
- + Quark-gluon plasma
- + Superconductors, superfluids

and still offers many avenues for investigation.

Randall & Sundrum solved a hierarchy problem with a slice of AdS

The brane separation (hierarchy of scales) is fixed by χ .

5D gravitational action

$$S = -\int_{y=y_0} dx^4 \sqrt{g_0} \Lambda_0 - \int \sqrt{g} \left(\frac{1}{2\kappa^2}\mathcal{R} + \Lambda_{(5)}\right) - \int_{y=y_1} dx^4 \sqrt{g_1}\Lambda_1$$

Effective potential

$$k = \sqrt{\frac{-\Lambda_{(5)}\kappa^2}{6}}$$

 $V(\chi) = \left(\Lambda_0 + \Lambda_{(5)}/k\right) \mu_0^4/k^4 + \left(\Lambda_1 - \Lambda_{(5)}/k\right) \chi^4$

5D gravitational action

$$S = -\int_{y=y_0} dx^4 \sqrt{g_0} \Lambda_0 - \int \sqrt{g} \left(\frac{1}{2\kappa^2} \mathcal{R} + \Lambda_{(5)}\right) - \int_{y=y_1} dx^4 \sqrt{g_1} \Lambda_1$$

2 TUNINGS! Vanishing cosmological constant and dilaton flat direction.

Raman-Sundrum and followers tuned brane tension. Brane distance is free. This solution is not stable under perturbations.

Csaki, Graesser, Kolda, Terning '99

Explicit breaking perturbation in AdS/CFT

$$S = \int d^{5}x \sqrt{g} \left(-\frac{1}{2\kappa^{2}} \mathcal{R} + \frac{1}{2} g^{MN} \partial_{M} \phi \partial_{N} \phi - V(\phi) \right) - \int d^{4}x \sqrt{g_{0}} V_{0}(\phi) - \int d^{4}x \sqrt{g_{1}} V_{1}(\phi)$$

$$\mathbf{AdS}_{5} \longleftrightarrow \mathbf{CFT}_{4}$$

$$\mathbf{radion} \longleftrightarrow \mathbf{dilaton}$$

$$V(\phi) = \Lambda_{(5)} \phi \longleftrightarrow \mathcal{O} \quad \mathbf{exactly marginal}$$

$$V'(\phi) = dV/d\phi \longleftrightarrow \beta(\lambda) = d\lambda/d\log \mu \quad \mathbf{running}$$

$$(\partial \phi)|_{y=y_{0}} = 0 \quad \phi|_{y=y_{0}} \longleftrightarrow \lambda_{0}$$

$$\mathcal{L} = \mathcal{L}_{CFT} + \lambda \mathcal{O}$$

A simple example, scalar with bulk mass

$$V(\phi) = \Lambda_{(5)} + m^2 \phi^2$$

Scaling dimension of operator:

$$d_{\mathcal{O}} = 2 + \sqrt{4 + m^2/k^2}$$

Scalar solution of E.O.M. in RS:

$$The general stabilized RS is this:$$

$$S = \int d^5x \sqrt{g} \left(-\frac{1}{2\kappa^2} \mathcal{R} + \frac{1}{2} g^{MN} \partial_M \phi \partial_N \phi - V(\phi) \right) - \int d^4x \sqrt{g_0} V_0(\phi) - \int d^4x \sqrt{g_1} V_1(\phi)$$
Bellazzini, Csaki, Hubisz, Terning, JS, '13
$$UV \text{ brane} \qquad ds^2 = e^{-2A(y)} dx^2 - dy^2 \qquad \text{IR brane}$$

$$\longrightarrow y$$
flat metric ansatz
good approximation

bulk E.O.M.

boundary conditions

$$2A'|_{y=y_0,y_1} = \pm \frac{\kappa^2}{3} V_{0,1}(\phi)|_{y=y_0,y_1}$$
$$2\phi'|_{y=y_0,y_1} = \pm \frac{\partial V_{0,1}}{\partial \phi}|_{y=y_0,y_1},$$

$$4A'^2 - A'' = -\frac{2\kappa^2}{3}V(\phi)$$
$$A'^2 = \frac{\kappa^2 \phi'^2}{12} - \frac{\kappa^2}{6}V(\phi)$$
$$\phi'' = 4A'\phi' + \frac{\partial V}{\partial \phi}.$$

We derived the effective potential integrating over the extra-d

$$\int_{y_0}^{y_1} dy \, \mathcal{L}_{bulk} + \mathcal{L}_{boundary}(y_{0,1})$$

$$\bigvee \quad V_{eff} = V_{UV} + V_{IR}$$

$$V_{UV/IR} = e^{-4A(y_{0,1})} \left[V_{0,1} \left(\phi(y_{0,1}) \right) \mp \frac{6}{\kappa^2} A'(y_{0,1}) \right]$$

Useful identification:

$$e^{-A(y_0)} \longleftrightarrow \mu_0$$
$$e^{-A(y_1)} \longleftrightarrow \chi$$

We obtain just what we expected, again.

 $V_{UV} = \mu_0^4 F(\lambda(\mu_0)) \qquad V_{IR} = \chi^4 F(\lambda(\chi))$

UV vacuum energy

$$V_{UV} = \mu_0^4 \left[\Lambda_0 + \frac{\Lambda_{(5)}}{k} \right]$$

Modulated, slowly running, dilaton quartic, with no TUNING!

$$V_{IR} = \chi^4 \left[\Lambda_1 - \frac{\Lambda_{(5)}}{k} \cosh\left(\frac{2\kappa}{\sqrt{3}} (v_1 - v_0(\mu_0/\chi)^{\epsilon})\right) \right]$$

$$m^2 = -2\epsilon k^2$$
 $\epsilon \ll 1$ $d_{\mathcal{O}} \approx 4 - \epsilon$

As announced in the 4D effective Lagrangian analisys, this potential yields a large hierarchy, a light dilaton, and a small cosmological constant

NATURAL & CORRELATED

$$m_{\chi}^2 \sim \epsilon \frac{32\sqrt{3}kv_0}{\kappa} \tanh\left(\frac{\kappa}{\sqrt{3}}(v_1 - v_0(\mu_0/f)^{\epsilon})\right) f^2(\mu_0/f)^{\epsilon}$$

Thanks to slow running at the minimum.

$$V_{IR}^{min} = -\epsilon \frac{2\sqrt{3}kv_0}{\kappa} \tanh\left(\frac{\kappa}{\sqrt{3}}(v_1 - v_0(\mu_0/f)^{\epsilon})\right) f^4(\mu_0/f)^{\epsilon}$$

Thanks to slow running at the minimum.

1) Small CC and light dilaton signal the **approximate scale invariance** at the condensation scale:

$$V'(\phi) = dV/d\phi \iff \beta(\lambda) = d\lambda/d\log\mu$$

Change the bulk potential, change the running. Chacko, Mishra, Stolarski '13

1) Small CC and light dilaton signal the **approximate scale invariance** at the condensation scale:

$$V'(\phi) = dV/d\phi \iff \beta(\lambda) = d\lambda/d\log\mu$$

Change the bulk potential, change the running. Chacko, Mishra, Stolarski '13

2) The suppression is parametrically better than in SUSY:

$$\underbrace{\mathbf{SUSY}}{\Lambda_{(4)} = c(m_b^4 - m_f^4) \simeq c(m_b^2 + m_f^2)g_s^2 F_s^2} \qquad \qquad \underbrace{\mathbf{CFT}}{\Lambda_{(4)} = \tilde{c}\,\boldsymbol{\epsilon}(4\pi)^2 f^4 \simeq \tilde{c}\,\boldsymbol{\epsilon}\Lambda^2 f^2}$$

1) Small CC and light dilaton signal the **approximate scale invariance** at the condensation scale:

$$V'(\phi) = dV/d\phi \iff \beta(\lambda) = d\lambda/d\log\mu$$

Change the bulk potential, change the running. Chacko, Mishra, Stolarski '13

2) The suppression is parametrically better than in SUSY:

$$\underbrace{\text{SUSY}}{\Lambda_{(4)} = c(m_b^4 - m_f^4) \simeq c(m_b^2 + m_f^2)g_s^2 F_s^2} \qquad \qquad \underbrace{\text{CFT}}{\Lambda_{(4)} = \tilde{c} \epsilon (4\pi)^2 f^4} \simeq \tilde{c} \epsilon \Lambda^2 f^2$$

3) Our result is consistent with Weinberg's no-go theorem:

 $\epsilon = 0$ can remove the CC, but $\epsilon \neq 0$ is required for a unique vacuum. The requirement is that a very light state must be in the spectrum!

1) Small CC and light dilaton signal the **approximate scale invariance** at the condensation scale:

$$V'(\phi) = dV/d\phi \iff \beta(\lambda) = d\lambda/d\log\mu$$

Change the bulk potential, change the running. Chacko, Mishra, Stolarski '13

2) The suppression is parametrically better than in SUSY:

$$\underbrace{\text{SUSY}}{\Lambda_{(4)} = c(m_b^4 - m_f^4) \simeq c(m_b^2 + m_f^2)g_s^2 F_s^2} \qquad \qquad \underbrace{\text{CFT}}{\Lambda_{(4)} = \tilde{c} \epsilon (4\pi)^2 f^4} \simeq \tilde{c} \epsilon \Lambda^2 f^2$$

3) Our result is consistent with Weinberg's no-go theorem:

 $\epsilon=0$ can remove the CC, but $\epsilon
eq 0$ is required for a unique vacuum

The requirement is that a very light state must be in the spectrum!

4) UV contribution to the CC?

Thursday, 10 April 14

Phenomenological Aplications 1) A Higgs-like Dilaton

Why are particles (nearly) massless relative to Planckian scales? v << Mp

What protects the Higgs from getting a huge mass from quantum effects?

The answer pursued in this talk is

COMPOSITENESS

LHC Higgs Discovery

We observed the 3 phase modes long ago = longitudinal polarizations of W and Z gauge bosons

But now we have observed the amplitude mode!

We have never encountered something like this in particle physics

LHC Higgs Discovery

We observed the 3 phase modes long ago = longitudinal polarizations of W and Z gauge bosons

But now we have observed the amplitude mode!

We have never encountered something like this in particle physics

LHC Higgs Data: Couplings

LHC Higgs Data: Couplings

Customary parametrization of Higgs couplings

0-derivatives:

$$\mathcal{L}_{(0)} = \frac{h}{v} \left[c_V \left(2m_W^2 W_\mu^\dagger W^\mu + m_Z^2 Z_\mu Z^\mu \right) - c_t \sum_{\psi=u,c,t} m_\psi \bar{\psi} \psi - c_b \sum_{\psi=d,s,b} m_\psi \bar{\psi} \psi - c_\tau \sum_{\psi=e,\mu,\tau} m_\psi \bar{\psi} \psi \right] \\ \mathcal{W}_{,Z} \mathcal{V}_{,Z} \mathcal{V}_$$

2-derivatives:

Dilaton

Couplings to SM fields dictated by scale invariance and its breaking

<u>Dilaton</u>

Couplings to SM fields dictated by scale invariance and its breaking

Scale invariance

$$\sum_{i} \langle \mathcal{O}_i \rangle \equiv f \to \chi$$

Electroweak symmetry breaking

$$\langle \mathcal{O}_H \rangle = v$$

 $v \to \frac{v}{f}\chi$

<u>Dilaton</u>

Couplings to SM fields dictated by scale invariance and its breaking

Scale invariance

$$\sum_{i} \langle \mathcal{O}_i \rangle \equiv f \to \chi$$

Electroweak symmetry breaking

$$\langle \mathcal{O}_H \rangle = v$$

 $v \to \frac{v}{f}\chi$

Scale explicit breaking

Gauge couplings $A^i_\mu \mathcal{J}^{\mu i}$

$$d(A_i) = 1 - \frac{b_{UV}^i}{8\pi^2} + \frac{b_{IR}^i}{8\pi^2}$$

<u>Dilaton</u>

Couplings to SM fields dictated by scale invariance and its breaking

Scale invariance

$$\sum_{i} \langle \mathcal{O}_i \rangle \equiv f \to \chi$$

Electroweak symmetry breaking

$$\langle \mathcal{O}_H \rangle = v$$

Scale explicit breaking

Gauge couplings $A^i_\mu \mathcal{J}^{\mu i}$

$$d(A_i) = 1 - \frac{b_{UV}^i}{8\pi^2} + \frac{b_{IR}^i}{8\pi^2}$$

Yukawa couplings
$$\psi \mathcal{O}_\psi$$

$$d(\mathcal{O}_{\psi}) = 3/2 - \gamma_{\psi}$$

Dilaton

$$c_V = \frac{v}{f}$$

$$c_f = \frac{v}{f}(1+\gamma_f)$$

$$c_{\gamma\gamma,gg} = \frac{(g'^2, g_S^2)}{16\pi^2} \frac{v}{f} \left(b_{IR}^{(EM,3)} - b_{UV}^{(EM,3)} \right)$$

$$c_{Z\gamma} \sim \frac{g^2}{16\pi^2} \frac{v}{f} \left(b_{IR}^{(2)} - b_{UV}^{(2)} \right)$$

Dilaton

$$c_{V} = \frac{v}{f}$$

$$c_{I} > 1 \text{ (model dependent)}$$

$$c_{f} = \frac{v}{f} (1 + \gamma_{f})$$

$$c_{\gamma\gamma,gg} = \frac{(g'^{2}, g_{S}^{2})}{16\pi^{2}} \frac{v}{f} \left(b_{IR}^{(EM,3)} - b_{UV}^{(EM,3)} \right)$$

$$c_{Z\gamma} \sim \frac{g^{2}}{16\pi^{2}} \frac{v}{f} \left(b_{IR}^{(2)} - b_{UV}^{(2)} \right)$$

Contrasting with Higgs Data

Contrasting with Higgs Data

Implications: Double W Production

The genuine effect of compositeness is the growth of scattering amplitudes with energy

WW scattering

Partial unitarization only. There is a O(s) growth

Customary parametrization of double (triple) Higgs couplings

$$\mathcal{L}_{(0)}^{h^2} = \frac{h^2}{v^2} \left[\frac{d_V}{2} \left(2m_W^2 W_\mu^\dagger W^\mu + m_Z^2 Z_\mu Z^\mu \right) - d_\psi m_\psi \bar{\psi} \psi \right]$$

$$\mathcal{L}_{(2)}^{h^2} = \frac{h^2}{v^2} \left[\frac{d_{gg}}{2} G^a_{\mu\nu} G^{\mu\nu a} + \cdots \right] \qquad \qquad \mathcal{L}_{(0)}^{h^3} = -c_3 \frac{1}{6} \left(\frac{3m_h^2}{v} \right) h^3$$

Standard Model

<u>Dilaton</u>

$$d_V = c_3 = 1$$
$$d_\psi = d_{gg} = 0$$

$$d_{V} = \frac{v^{2}}{f^{2}}$$

$$d_{\psi} = \frac{1}{2} \frac{v^{2}}{f^{2}} \gamma_{\psi}$$

$$d_{gg} = -\frac{g_{s}^{2}}{32\pi^{2}} \frac{v^{2}}{f^{2}} \left(b_{IR}^{(3)} - b_{UV}^{(3)} \right)$$

$$c_{3} = \frac{1}{3} \frac{v}{f} \left(5 + \alpha \frac{m_{\chi}^{2}}{(4\pi f)^{2}} \right)$$

Implications: Double Dilaton Production

The genuine effect of compositeness is the growth of scattering amplitudes with energy, in particular W_L and h

WW to hh scattering

There is NO O(s) growth, but O(s2)!

There is one differential feature w.r.t the SM Higgs even if v/f ~ 1 and no anomalous dimensions!

Phenomenological Aplications 2) Cosmological Phase Transitions

There is one very important consequence of a <u>true</u> spontaneous breaking of scale invariance $\Lambda_{eff} = V(\langle \chi \rangle) \sim \epsilon \langle \chi \rangle^4$ $m_{\chi}^2 \sim \epsilon \langle \chi \rangle^2$

Could this ocurr in any of the known phase transitions? This is a very speculative idea, but the next question per se is very interesting:

How can we learn anything about the CC?

As the Universe expands, it cools off, and phase transitions take place (QCD, Electroweak,...)

Restoration of symmetry at high Temperature.

The energy densities change during PTs, and the Universe is sensitive to it.

Homogeneous & isotropic (flat) Universe

$$ds^2 = -dt^2 + a^2(t)dx_i^2$$

Einstein equations $G_{\mu\nu} = T_{\mu\nu}$

Assuming a perfect fluid: $T^{\mu}_{\nu} = \begin{pmatrix} \rho & 0 & 0 & 0 \\ 0 & -p & 0 & 0 \\ 0 & 0 & -p & 0 \\ 0 & 0 & 0 & -p \end{pmatrix}$ $\left(\frac{\dot{a}}{a}\right)^{2} = \frac{1}{3}\rho$ $\frac{\ddot{a}}{a} = -\frac{1}{6}(\rho + 3p)$

Radiation domination

 $\rho(a) \sim a^{-4}$ $a(t) \sim t^{1/2}$

Matter domination

$$\rho(a) \sim a^{-3}$$
$$a(t) \sim t^{2/3}$$

CC domination

$$\rho(a) \sim a^0$$
 $a(t) \sim e^{Ht}$

Thursday, 10 April 14

Homogeneous & isotropic (flat) Universe

$$ds^2 = -dt^2 + a^2(t)dx_i^2$$

Einstein equations $G_{\mu\nu} = T_{\mu\nu}$

By measuring energy densities today, we obtain a beautiful picture for the hot early Universe

Homogeneous & isotropic (flat) Universe

$$ds^2 = -dt^2 + a^2(t)dx_i^2$$

Einstein equations $G_{\mu\nu} = T_{\mu\nu}$

By measuring energy densities today, we obtain a beautiful picture for the hot early Universe

But we are interested in what happens outside here!

Actually, what happens in the very early Universe is similar to this:

The CC jumps at each phase transition!

To end up at the very small value we observe today

Actually, what happens in the very early Universe is similar to this:

The CC jumps at each phase transition! To end up at the very small

value we observe today

$$V(\phi) = V_0 - m^2 \phi^2 + \lambda \phi^4$$
$$T_{PT} \sim -\langle \phi \rangle \sim \frac{m}{\sqrt{g}} \quad \text{and} \quad V(\langle \phi \rangle) \sim 0 \Rightarrow V_0 \sim \frac{m^4}{g}$$

At the PT, radiation and CC are closest
$$\rho_{cc} \sim V_0 \lesssim \rho_{radiation} \sim T_{PT}^4 \sim \frac{m^4}{g^2}$$

Actually, what happens in the very early Universe is similar to this:

How could we tell if there has been a jump or NÓT?

Certainly gravitational waves will be affected and will reach us later

Modelling a 2nd Order PT: QCD

The Free energy is continuous (decreasing) & F = p

Modelling a 2nd Order PT: QCD

The Free energy is continuous (decreasing) & F = p

We wish to compute the power spectrum
$$\Delta_t^2(\tau,k) = \frac{2k^3}{2\pi^2} \langle |h_k(\tau)|^2 \rangle$$

Wave equation

$$(ah_k)'' + \left(k^2 - \frac{a''}{a}\right)(ah_k) = 0$$

de Sitter space $a''/a = 2/\tau^2$

Unfortunately, for the QCD phase transition, experiments are not very sensitive

But who knows in the future ?! Or other PT's ?!

Approximate spontaneous breaking of scale invariance offers a NATURAL way to obtain a light scalar

and to suppress the Cosmological Constant

Is this possibility realized in Nature?

A Higgs-like Dilaton Dilaton in Phase Transitions QCD?

We just have to wait and see

Thank you for your attention

current LHC searches

Thursday, 10 April 14

52