

Neutrino masses in RPV models with extra pairs of Higgs doublets

arXiv:1401.1818 work in collaboration with Y. Grossman

Joint Particle Seminar, UC Irvine

Clara Peset

11th April, 2014

Outline

- Motivation for the model
 - why supersymmetry?
 - why RPV?
 - why neutrinos?
 - why extra pairs of Higgs doublets?
- Neutrinos in RPV models: tree level contribution
 - bounds on small RPV
 - contributions to the mass matrix
- Neutrinos in RPV models: loop level
 - small RPV
 - possible new effects
- Conclusions

I.The Model

NEUTRINO MASSES SUSY with R-parity violation and extra pairs of Higgs doublets

I.The Model: SUSY

Why SUSY?

Standard model is NOT the theory of everything

Cannot account for gravity, neutrino masses...

The mass of the Higgs is UV sensitive: m_H^2

$$A_{H} \approx \frac{\Lambda_{NP}^{2}}{16 \, \pi^{2}}$$

SUPERSYMMETRY

no UV sensitivity _____ scalar masses protected mass of the Higgs boson arises naturally

Other benefits: unification of couplings, string theory...

Simplest models should have been/be detected at LHC!

SUSY @ LHC

I.The Model: SUSY

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

ATLAS Preliminary

SUSY @ LHC

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Moriond 2014

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫L dt	[fb ⁻¹]	Mass limit		Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{10}^{0} \\ \overline{g}\tilde{g}, \overline{g} \rightarrow q \overline{q} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{g}, \overline{g} \rightarrow q q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{g}, \overline{g} \rightarrow q q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{g}, \overline{g} \rightarrow q q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_{1}^{-} \rightarrow q \tilde{\chi}_{1}^{0} \\ \overline{g}\tilde{h}, \overline{g} \rightarrow q \tilde{\chi}_$	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 2-4 jets 0-2 jets - 1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20. 20. 20. 20. 20. 20. 20. 4. 20. 20. 4. 20. 20. 4. 3. 10.	\$\vec{q}\$, \$\vec{g}\$	1.1 TeV 740 GeV 1.3 TeV 1.18 TeV 1.12 TeV 1.24 TeV 1.4 TeV 1.28 TeV 619 GeV 900 GeV 690 GeV	$ \begin{array}{l} m \ \ \vec{q}) \!=\! m(\vec{g}) \\ a \ \ y \ \ m(\vec{q}) \\ a \ \ y \ \ y \ \ \ \ \ \ \ \ \ \ \ \ \$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-026 ATLAS-CONF-2013-026 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{-} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> , <i>µ</i> 0-1 <i>e</i> , <i>µ</i>	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20. 20. 20. 20.	250 250 250 250 250	1.2 TeV 1.1 TeV 1.34 TeV 1.3 TeV	π [*] λ ⁰ ₁)<600 GeV m [*] λ ⁰ ₁) <350 GeV m [*] λ ⁰ ₁)<400 GeV m [*] λ ⁰ ₁)<300 GeV	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \to b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \to t\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \to b\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \to W\tilde{x}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1} \to t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1} \to t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{neavy}), \tilde{t}_{1} \to t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{neavy}), \tilde{t}_{1} \to t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{neavy}) \\ \tilde{t}_{1}\tilde{\chi}_{1}(\text{neavy}) \\ \tilde{t}_{1}\tilde{\chi}_{1}(\text{neavy}) \\ \tilde{t}_{2}\tilde{\chi}_{2}, \tilde{\chi}_{2} \to \tilde{t}_{1} + Z \end{split} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b nono-jet/c-1 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20. 20. 20. 20. 20. 20. 20. 20. 20. 20.	$ \begin{array}{c} \tilde{b}_1\\ \tilde{b}_1\\ \tilde{\iota}_1\\ \tilde{\iota}_2 \end{array} $	100-620 GeV 275-430 GeV 110 <mark>-167 GeV</mark> 130-210 GeV 215-530 GeV 150-580 GeV 200-610 GeV 90-200 GeV 150-580 GeV 290-600 GeV	$ \begin{array}{l} \vec{k}_{1}^{0} < \!\! 90 \mathrm{GeV} \\ \vec{m} \; \vec{k}_{1}^{0} = \!\! 2 \; m(\vec{k}_{1}^{0}) \\ \vec{m} \; \vec{k}_{1}^{0} = \!\! 55 \mathrm{GeV} \\ \vec{m} \; \vec{k}_{1}^{0} = \!\! m(\vec{k}_{1}) \cdot m(W) \! \! 50 \; \mathrm{GeV}, \; m(\vec{n}_{1}) \! < \!\! < \!\! m(\vec{k}_{1}^{\pm}) \\ \vec{m} \; \vec{k}_{1}^{0} = \!\! 1 \mathrm{GeV} \\ \vec{m} \; \vec{k}_{1}^{0} = \!\! 1 \mathrm{GeV} \\ \vec{m} \; \vec{k}_{1}^{0} = \!\! 0 \mathrm{GeV} \\ \vec{m} \; \vec{k}_{1}^{0} > \!\! 150 \mathrm{GeV} \\ \vec{m} \; \vec{k}_{1}^{0} > \!\! 150 \mathrm{GeV} \\ \vec{m} \; \vec{k}_{1}^{0} > \!\! 150 \mathrm{GeV} \\ \vec{m} \; \vec{k}_{1}^{0} > \!\! 100 \mathrm{GeV} \\ \end{array} $	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 1403.4853 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-068 1403.5222 1403.5222
EW direct	$ \begin{split} \tilde{\ell}_{LR} \tilde{\ell}_{LR}, \tilde{\ell} \to \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \to \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \to \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{0}^{0} \to \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \to \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{0}^{0} \to W \tilde{\chi}_{0}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{0}^{0} \to W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{split} $	2 e, μ 2 e, μ 2 τ 3 e, μ 2-3 e, μ 1 e, μ	0 0 - 0 0 2 b	Yes Yes Yes Yes Yes Yes	20. 20. 20. 20. 20. 20.	$ \tilde{\ell} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{}$	90-325 GeV 140-465 GeV 180-330 GeV 700 GeV m(Ž [±])=m 420 GeV 285 GeV	$ \begin{array}{l} \vec{k}_{1}^{0}) = 0 \; \text{GeV} \\ \vec{m} \; \vec{k}_{1}^{0}) = 0 \; \text{GeV} \; m(\vec{\ell}, \vec{\nu}) = 0.5(m(\vec{\ell}_{1}^{+}) + m(\vec{k}_{1}^{0})) \\ \vec{m} \; \vec{k}_{1}^{0}) = 0 \; \text{GeV}, \; m(\vec{\ell}, \vec{\nu}) = 0.5(m(\vec{\ell}_{1}^{+}) + m(\vec{k}_{1}^{0})) \\ (\vec{\lambda}), \; m(\vec{\ell}_{1}^{0}) = 0, \; m(\vec{\ell}, \vec{\nu}) = 0.5(m(\vec{k}_{1}^{+}) + m(\vec{k}_{1}^{0})) \\ \vec{m} \; \vec{k}_{1}^{+}) = m(\vec{k}_{2}^{0}), \; m(\vec{k}_{1}^{0}) = 0, \; \text{sleptons decoupled} \\ \vec{m} \; \vec{k}_{1}^{+}) = m(\vec{k}_{2}^{0}), \; m(\vec{k}_{1}^{0}) = 0, \; \text{sleptons decoupled} \end{array} $	1403.5294 1403.5294 ATLAS-CONF-2013-028 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_+ \tau(e,$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	\tilde{g} $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$	832 GeV 475 GeV 230 GeV	$\begin{split} &m(\tilde{\chi}_1^+) - m(\tilde{\chi}_1^0) \!=\! 160 \; MeV, \; \tau(\tilde{\chi}_1^+) \!=\! 0.2 \; ns \\ &m(\tilde{\chi}_1^0) \!=\! 100 \; GeV, \; 10 \; \mu s \!<\! \tau(\tilde{g}) \!<\! 1000 \; s \\ &10 \!<\! tan\beta \!<\! 50 \\ &0.4 \!<\! \tau(\tilde{\chi}_1^0) \!<\! 2 \; ns \\ &1.5 \!<\! c\tau \!<\! 156 \; mm, \; BR(\mu) \!=\! 1, \; m(\tilde{\chi}_1^0) \!=\! 108 \; GeV \end{split}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{\dagger} \rightarrow W \tilde{\chi}_{0}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee \tilde{\nu}_{\mu}, e\mu \tilde{\nu}_{e} \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{\dagger} \rightarrow W \tilde{\chi}_{0}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{\nu}_{e}, e\tau \tilde{\nu}_{\tau} \\ \tilde{g} \rightarrow qq \\ \tilde{g} \rightarrow \tilde{t}_{1}(t, \tilde{t}_{1} \rightarrow bs \end{array} $	$\begin{array}{c} 2 e, \mu \\ 1 e, \mu + \tau \\ 1 e, \mu \\ 4 e, \mu \\ 3 e, \mu + \tau \\ 0 \\ 2 e, \mu (\mathrm{SS}) \end{array}$	- 7 jets - - 6-7 jets 0-3 b	- Yes Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.3		1.1 TeV 1.2 TeV 760 GeV 350 GeV	$\begin{split} \lambda_{311}^{\prime} = & 0.10, \ \lambda_{132} = 0.05 \\ \lambda_{311}^{\prime} = & 0.10, \ \lambda_{1(2)33} = 0.05 \\ m(\vec{q}) = & m(\vec{g}), \ c\tau_{LS} < 1 \ mm \\ m(\vec{k}_{1}^{0}) > & 300 \ GeV, \ \lambda_{121} > 0 \\ m(\vec{k}_{1}^{0}) > & 80 \ GeV, \ \lambda_{133} > 0 \\ BR(t) = & BR(t) = BR(c) = 0\% \end{split}$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-097
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> , µ (SS) 0	4 jets 2 <i>b</i> mono-jet		4.6 14.3 10.5	sgluon	350-800 GeV	incl. limit from 1110.2693 m(χ)<80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
		$\sqrt{s} = 8$ TeV artial data		8 TeV data			10 ⁻¹ 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

SUSY @ LHC

MSSM:

ons $m_{\tilde{t}} \approx 400 \, GeV$, $m_{\tilde{g}} \approx 800 \, GeV$, $m_{\tilde{W}} \approx 1 \, TeV$ size of tree level!

No panic! still large amount of data to analyze & second round of LHC & other models to explore

(RPV, non-minimal models...)

I.The Model: RPV

Why RPV?

R-Parity:
$$(-1)^{R}$$
, $R=2S+3B+L$

- Proton decay @ dim 5
- Neutral stabe fermion \Longrightarrow cold DM candidate χ

NOT NECESSARY FOR NATURALNESS!

R-Parity violation:

 χ^0 SM particles NO need for MET @ LHC searches!

RPV searches: distinctive final states with many particle states

high jet or lepton activity

I.The Model: RPV

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

ATLAS Preliminary

RPV SUSY @ LHC

ATLAS SUSY Searches* - 95% CL Lower Limits

 $\sqrt{s} = 8 \text{ TeV}$

√s = 7 Te\

 $\sqrt{s} = 8 \text{ TeV}$

Status: Moriond 2014

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	¹] Mass limit	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{10}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{-} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{-} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell / (\nu / \nu \nu) \tilde{\chi}_{1}^{0} \\ GMSB (\tilde{\ell} NLSP) \\ GMSB (\tilde{\ell} NLSP) \\ GGM (bino NLSP) \\ GGM (bino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino NLSP) \\ GGM (higgsino NLSP) \\ GFavitino LSP \end{array} $	$\begin{matrix} 0 \\ 1 & e, \mu \\ 0 \\ 0 \\ 0 \\ 1 & e, \mu \\ 2 & e, \mu \\ 2 & e, \mu \\ 1 & -2 & \tau \\ 2 & \gamma \\ 1 & e, \mu + \gamma \\ \gamma \\ 2 & e, \mu & (Z) \\ 0 \\ \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets - 1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 ATLAS-CONF-2013-026 ATLAS-CONF-2013-026 ATLAS-CONF-2012-014 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	$\begin{array}{c cccc} \tilde{g} & 1.2 \ {\rm TeV} & {\rm m}(\tilde{k}_1^0) {<} 600 \ {\rm GeV} \\ \\ \tilde{g} & 1.1 \ {\rm TeV} & {\rm m}(\tilde{k}_1^0) {<} 350 \ {\rm GeV} \\ \\ \tilde{g} & 1.34 \ {\rm TeV} & {\rm m}(\tilde{k}_1^0) {<} 400 \ {\rm GeV} \\ \\ \tilde{g} & 1.3 \ {\rm TeV} & {\rm m}(\tilde{k}_1^0) {<} 300 \ {\rm GeV} \\ \end{array}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1} \tilde{b}_{1}, \tilde{b}_{1} \to b \tilde{k}_{1}^{0} \\ \tilde{b}_{1} \tilde{b}_{1}, \tilde{b}_{1} \to t \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1} \tilde{t}_{1} (\text{light}), \tilde{t}_{1} \to b \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1} \tilde{t}_{1} (\text{light}), \tilde{t}_{1} \to b \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1} (\text{medium}), \tilde{t}_{1} \to t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1} (\text{medium}), \tilde{t}_{1} \to t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1} (\text{heavy}), \tilde{t}_{1} \to t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1} (\text{heavy}), \tilde{t}_{1} \to t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1} (\text{neatural BMSB}) \\ \tilde{t}_{2} \tilde{t}_{2}, \tilde{t}_{2} \to \tilde{t}_{1} + Z \end{split} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b nono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-068 1403.5222 1403.5222
EW direct	$ \begin{split} & \tilde{\ell}_{LR} \tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0 \\ & \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ & \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}) \\ & \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_L \nu \tilde{\ell}_L (\ell (\tilde{\nu}), \ell \tilde{\nu} \tilde{\ell}_L \ell (\tilde{\nu} \nu) \\ & \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0 \\ & \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 L \tilde{\chi}_1^0 \end{split} $	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ 1 e,μ	0 0 - 0 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 ATLAS-CONF-2013-028 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{\epsilon}, \tilde{\mu}) + \tau(e,$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu$ (RPV)	Disapp. trk 0 μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow ee\tilde{\nu}_{\mu}, e\mu \tilde{\nu}_e \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau \tilde{\nu}_e, e\tau \tilde{\nu}_{\tau} \\ \tilde{g}^+ qqq \\ \tilde{g} \rightarrow \tilde{q}_1 t, \tilde{\chi}_1 \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (\text{SS}) \end{array}$	- 7 jets - - 6-7 jets 0-3 b	- Yes Yes - Yes	4.6 4.7 20.7 20.7 20.3 20.3	$\tilde{\mathbf{v}}_{\mathbf{r}}$ 1.61 TeV $\lambda_{11}=0.10, \lambda_{132}=0.05$ $\tilde{\mathbf{v}}_{\mathbf{r}}$ 1.1 TeV $\lambda_{11}=0.10, \lambda_{1(2)33}=0.05$ \tilde{q}, \tilde{g} 1.2 TeV η η^{2} \tilde{x}_{1}^{\pm} 760 GeV η \tilde{v}_{1}^{1} $son GeV$ $\tilde{\chi}_{1}^{\pm}$ 350 GeV η \tilde{v}_{1}^{1} $son GeV$ η \tilde{v}_{1}^{1} $\tilde{v}_$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	$ \begin{array}{c} 0\\ 2 e,\mu (SS)\\ 0\\ \end{array} $	4 jets 2 <i>b</i> mono-jet	Yes Yes 8 TeV	4.6 14.3 10.5	sgluon 100-287 GeV incl. limit from 1110.2693 sgluon 350-800 GeV m(χ)<80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147

Mass scale [TeV] full data partial data full data *Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

1

10⁻¹

I.The Model: RPV

B-number violation

Why RPV?

New RPV terms in the superpotential:

 $W = -\mu \hat{L}_I \hat{H}_U + \frac{1}{2} \lambda_{IJm} \hat{L}_I \hat{L}_J \hat{E}_m + \lambda'_{Inm} \hat{L}_I \hat{Q}_n \hat{D}_m + \frac{1}{2} \lambda''_{lmn} \hat{D}_l \hat{D}_l$

L-number violation

Plus soft SUSY breaking

Lots of new parameters! general predictions become difficult

Generally allows for proton decay!

ONLY lepton RPV or ONLY baryon RPV

Other constrains from constrains from:

Leptonic RPV \longrightarrow majorana neutrino masses arise naturally! $\Delta L = 2$

I.The Model: neutrinos

Why neutrinos?

Neutrino masses **not** within SM

Neutrinos oscillate:

Flavor basis $\,
eq\,$ mass basis

Majorana neutrinos:

 $\bar{\nu} \equiv \nu$

- dim 5 op in SM → probe for GUT scales
- leptogenesis...
- detection double β -decays

yet to be achieved

Why neutrinos?

Neutrino experimental data:

 $\Delta m_{32}^2 = (2.32^{+0.12}_{-0.08}) \times 10^{-3} \,\text{eV}^2, \qquad \Delta m_{21}^2 = (7.5 \pm 0.20) \times 10^{-5} \,\text{eV}^2, \\ \sin^2(2\theta_{32}) > 0.95, \quad \sin^2(2\theta_{12}) = 0.857 \pm 0.024, \quad \sin^2(2\theta_{13}) = 0.095 \pm 0.010$

From: solar, detector & atmospheric neutrino experiments

Extra Higgs doublets

Breaking the spectrum:

- more possibilities for s-partners mass spectrum — detection @ LHC

rise Higgs mass without fine tuning — Sister Higgs

D. Alves '12

General Issues:

- FCNC arise

 $\lambda'_{Inm} \hat{L}^{j}_{I} \hat{Q}^{j}_{n}$

- New RPV term

$$\frac{\tilde{\lambda}_m}{2} \epsilon_{ij} \left(\hat{H}_{D_1}^i \hat{H}_{D_2}^j - \hat{H}_{D_2}^i \hat{H}_{D_1}^j \right) \hat{E}_m$$

Neutrinos in RPV SUSY

Higgs down has the same quantum numbers as leptons is Indistinguishable!

MSSM:
$$\hat{L}_{\mu} = (\hat{H}_D, \hat{L}_1, \hat{L}_2, \hat{L}_3)$$

RPV terms:

$$W = \epsilon_{ij} \left[-\mu_{\alpha} \hat{L}^{i}_{\alpha} \hat{H}^{j}_{U} + \frac{1}{2} \lambda_{\alpha\beta m} \hat{L}^{i}_{\alpha} \hat{L}^{j}_{\beta} \hat{E}_{m} + \lambda'_{\alpha nm} \hat{L}^{i}_{\alpha} \hat{Q}^{j}_{n} \hat{D}_{m} \right]$$

$$V_{\text{soft}} = \left(M_{\tilde{L}}^2\right)_{\alpha\beta} \tilde{L}^{i*}_{\alpha} \tilde{L}^i_{\beta} - \left(\epsilon_{ij} B_{\alpha} \tilde{L}^i_{\alpha} H^j_U + \text{h.c.}\right) + \epsilon_{ij} \left[\frac{1}{2} A_{\alpha\beta m} \tilde{L}^i_{\alpha} \tilde{L}^j_{\beta} \tilde{E}_m + A'_{\alpha nm} \tilde{L}^i_{\alpha} \tilde{Q}^j_n \tilde{D}_m + \text{h.c.}\right]$$

EWSB characterized by:

$$v_u, \qquad v_d = \left(\sum v_\alpha^2\right)^{1/2}, \qquad \mu = \left(\sum \mu_\alpha^2\right)^{1/2}$$

$$v \equiv (|v_u|^2 + |v_d|^2)^{1/2} = \frac{2m_W}{g} = 246 \,\mathrm{GeV}$$

Neutrinos in RPV SUSY

Higgs down has the same quantum numbers as leptons indistinguishable!

SUSY with extra pair of Higgses: $\hat{L}_I = (I$

$$\hat{L}_I = (\hat{H}_{D_1}, \hat{H}_{D_2}, \hat{L}_1, \hat{L}_2, \hat{L}_3)$$

RPV terms:

$$W = \epsilon_{ij} \left[-\mu_{1I} \hat{L}_{I}^{i} \hat{H}_{U_{1}}^{j} - \mu_{2I} \hat{L}_{I}^{i} \hat{H}_{U_{2}}^{j} + \frac{1}{2} \lambda_{IJm} \hat{L}_{I}^{i} \hat{L}_{J}^{j} \hat{E}_{m} + \lambda'_{Inm} \hat{L}_{I}^{i} \hat{Q}_{n}^{j} \hat{D}_{m} \right]$$

$$V_{\text{soft}} = \left(M_{\tilde{L}}^{2} \right)_{IJ} \tilde{L}_{I}^{i*} \tilde{L}_{J}^{i} - \left(\epsilon_{ij} B_{1I} \tilde{L}_{I}^{i} H_{U_{1}}^{j} + \text{h.c.} \right) - \left(\epsilon_{ij} B_{2I} \tilde{L}_{I}^{i} H_{U_{2}}^{j} + \text{h.c.} \right)$$

$$+ \epsilon_{ij} \left[\frac{1}{2} A_{IJm} \tilde{L}_{I}^{i} \tilde{L}_{J}^{j} \tilde{E}_{m} + A'_{Inm} \tilde{L}_{I}^{i} \tilde{Q}_{n}^{j} \tilde{D}_{m} + \text{h.c.} \right]$$

EWSB characterized by:

$$v_u = \left(v_{u_1}^2 + v_{u_2}^2\right)^{1/2}, \qquad v_d = \left(\sum v_I^2\right)^{1/2}, \qquad \mu_1 = \left(\sum \mu_{1I}^2\right)^{1/2}, \qquad \mu_2 = \left(\sum \mu_{2I}^2\right)^{1/2}$$

$$v \equiv (|v_u|^2 + |v_d|^2)^{1/2} = \frac{2m_W}{g} = 246 \,\text{GeV}$$

TL Neutrino mixing matrix

Neutrino – neutralino mixing

II.Neutrinos in RPV SUSY: tree level mass

TL Neutrino masses

Diagoalize M to obtain the neutrino mass matrix:

Seesaw mechanism

heavy neutralinos

MSSM:

$$(m_{\nu})_{ij} = X\mu_i\mu_j \qquad \qquad X \equiv \frac{m_{\tilde{\gamma}}m_Z^2\cos^2\beta}{\mu(m_Z^2m_{\tilde{\gamma}}\sin 2\beta - M_1M_2\mu)} \sim \frac{\cos^2\beta}{\tilde{m}}$$

rank 1 matrix

$$m_3 = X\vec{\mu}^2, \qquad m_1 = m_2 = 0$$

TL Neutrinos mixing matrix

II.Neutrinos in RPV SUSY: tree level mass

TL Neutrino masses

Diagoalize M to obtain the neutrino mass matrix:

Seesaw mechanism

SUSY with extra pair of Higgses:

heavy neutralinos

$$(m_{\nu})_{ij} = \frac{X}{\Delta \mu^2} \begin{bmatrix} \mu_{1i} \tilde{\mu}_2 - \mu_{2i} \tilde{\mu}_1 \end{bmatrix} \begin{bmatrix} \mu_{1j} \tilde{\mu}_2 - \mu_{2j} \tilde{\mu}_1 \end{bmatrix}$$

$$X \equiv \frac{m_{\tilde{\gamma}} m_Z^2 \cos^2 \beta}{M_1 M_2 \Delta \mu^2 + m_{\tilde{\gamma}} m_Z^2 \sin(2\beta) (\tilde{\mu}_1 \sin \beta_2 - \tilde{\mu}_2 \cos \beta_2)} \sim \frac{\cos^2 \beta}{\tilde{m}}$$
rank 1 matrix
$$m_3 = \frac{X}{\Delta \mu^2} \mu_1^2 \mu_2^2 \sin^2 \chi \sin^2 \xi, \qquad m_1 = m_2 = 0$$

light neutrinos

Loop contributions: λλ loops

MSSM:

$$[m_{\nu}]_{ij}^{(\lambda'\lambda')} \approx \sum_{l,k} \frac{3}{8\pi^2} \lambda'_{ilk} \lambda'_{jkl} \frac{m_{d_l} \Delta m_{\tilde{d}_k}^2}{m_{\tilde{d}_k}^2} \sim \sum_{l,k} \frac{3}{8\pi^2} \lambda'_{ilk} \lambda'_{jkl} \underbrace{\frac{m_{d_l} m_{d_k}}{\tilde{m}}}_{\text{Grossman, Rakshit '04}}$$

neglecting quark/lepton mixings

Supression factors:

2RPV COUPLINGS+LOOP FACTOR+2 QUARK MASSES

Irrelevant in most cases

Loop contributions: λλ loops

$$\delta m_{\nu ij}^{\lambda \lambda} \approx \frac{1}{8\pi^2} \sum_{n,k} \lambda_{ink} \lambda_{jkn} \frac{m_{l_n} \Delta m_{\tilde{l}_k}^2}{m_{\tilde{l}_k}^2}$$

neglecting quark/lepton mixings

Supression factors:

2RPV COUPLINGS+LOOP FACTOR+2 LEPTON MASSES

Irrelevant in most cases

Loop contributions: BB loops

MSSM:

$$[m_{\nu}]_{ij}^{(BB)} = \sum_{\alpha,i,j} \frac{g^2 B_i B_j}{4 \cos^2 \beta} (Z_{\alpha 2} - Z_{\alpha 1} g'/g)^2 m_{\chi_{\alpha}} \left\{ I_4(m_h, m_{\tilde{\nu}_i}, m_{\tilde{\nu}_j}, m_{\chi_{\alpha}}) \cos^2(\alpha - \beta) + I_4(m_H, m_{\tilde{\nu}_i}, m_{\tilde{\nu}_j}, m_{\chi_{\alpha}}) \sin^2(\alpha - \beta) - I_4(m_A, m_{\tilde{\nu}_i}, m_{\tilde{\nu}_j}, m_{\chi_{\alpha}}) \right\},$$

Supression factors:

Grossman, Rakshit '04

$$\cos^{2}(\alpha - \beta) = \frac{m_{h}^{2}(m_{Z}^{2} - m_{h}^{2})}{m_{A}^{2}(m_{H}^{2} - m_{h}^{2})}$$
$$m_{Z}^{2} - m_{h}^{2} = m_{H}^{2} - m_{A}^{2}$$

Loop contributions: BB loops

$$+ (M_{\tilde{L}}^2)_{0(1+i)} \{ Z_R^{20}, Z_R^{2j}, i Z_H^{2j} \} + (M_{\tilde{L}}^2)_{1(1+i)} \{ Z_R^{30}, Z_R^{3j}, i Z_H^{3j} \}$$

of diagrams!

Supression factors:

2RPV COUPLINGS+LOOP FACTOR+CANCELLATIONS

Loop contributions: µB loops

MSSM:

$$[m_{\nu}]_{ij}^{(\mu B)} \sim \frac{g^2}{64\pi^2 \cos\beta} \frac{\mu_i B_j + \mu_j B_i}{\tilde{m}^2} \qquad \text{(approximate expression)}$$

m

- subleading in μ with respect to the tree level (if tree level is dominant)

$$[m_{\nu}]_{ij}^{(\mu\mu)} = C\mu_{i}\mu_{j} \checkmark \begin{bmatrix} m_{\nu} \end{bmatrix}_{ij}^{(V\mu)} = C\varepsilon_{L}(\mu_{i}V_{j} + \mu_{j}V_{i}) \longrightarrow \frac{m_{1}}{m_{2}} \sim O\left(\varepsilon_{L}^{2}\right)$$
$$[m_{\nu}]_{ij}^{(VU)} = C_{ij}^{VU}\varepsilon_{L}(V_{i}U_{j} + V_{j}U_{i}) \longrightarrow \frac{m_{1}}{m_{2}} \sim O(\varepsilon_{L})$$

Supression factors:

2RPV COUPLINGS+LOOP FACTOR+CANCELLATIONS

Loop contributions: µB loops

SUSY with extra pair of Higgses:

$$\delta m_{\nu ij}^{\ \mu B} \sim \sum_{\alpha,\beta} \frac{g^2}{16\pi^2} \left(\tilde{\mu}_{i\alpha} \tilde{B}_{jh} + \sum_k \tilde{\mu}_{i\alpha} \tilde{B}_{jH_k} + \sum_k \tilde{\mu}_{i\alpha} \tilde{B}_{jA_k} \right. \\ \left. + \tilde{\mu}_{j\alpha} \tilde{B}_{ih} + \sum_k \tilde{\mu}_{j\alpha} \tilde{B}_{iH_k} + \sum_k \tilde{\mu}_{j\alpha} \tilde{B}_{iA_k} \right)$$

- subleading in μ with respect to the tree level (if tree level is dominant)

Supression factors:

2RPV COUPLINGS+LOOP FACTOR+CANCELLATIONS

IV. Neutrinos in RPV SUSY: new term contributions

Contributions from new term

$$\frac{\tilde{\lambda}_m}{2} \epsilon_{ij} \left(\hat{H}_{D_1}^i \hat{H}_{D_2}^j - \hat{H}_{D_2}^i \hat{H}_{D_1}^j \right) \hat{E}_m$$

less constrained than usual RPV couplings

NO ONE LOOP EFFECTS

No neutrinos involved in the vertex RPV in charged sector

 χ

Topological argument:

IV. Neutrinos in RPV SUSY: new term contributions

Contributions from new term

SEPARABLE TWO LOOP DIAGRAMS

Contributions from new term

NON- SEPARABLE TWO LOOP DIAGRAMS

Complicated loop functions involving fermionic — **b** solved numerically propagators

$$[m_{\nu}]_{ij}^{\mathrm{NS},\tilde{\lambda}\tilde{\lambda}} \approx \frac{60.48}{256\pi^4} g^2 \tilde{\lambda}_i^* \tilde{\lambda}_j^* \frac{m_{l_i} m_{l_j}}{\tilde{m}}$$
$$[m_{\nu}]_{ij}^{\mathrm{NS},\tilde{\lambda}\tilde{B}} \approx -\sum_k \frac{15.12}{256\pi^4} g^3 \tilde{\lambda}_i^* \tilde{B}_{jk} \frac{m_{l_i}}{\tilde{m}^2}$$
$$[m_{\nu}]_{ij}^{\mathrm{NS},\tilde{B}\tilde{B}} \approx \sum_{k,l} \frac{3.80}{256\pi^4} g^2 \frac{\tilde{B}_{il} \tilde{B}_{jk}}{\tilde{m}^3}$$

Supression factors:

2 lepton Yukawas 2RPV COUPLINGS+2LOOP FACTOR+ 1 lepton Yukawa 0 lepton Yukawa

Conclusions: neutrino masses in RPV MSSM

- RPV SUSY models provide an alternative to usual seesaw mechanism

- Naturally generate mild hierarchichal masses with large mixing angles

- Need small RPV couplings

- One neutrino has a tree level mass, while the other two just from loop effects

- Several suppression factors relative importance is model dependent

Conclusions: neutrino masses in RPV extra HD

- Adding pairs of Higgs doublets makes a new term HHE, which is forbidden in the MSSM arise in the superpotential

- The extra pairs of Higgs doublets do not change the fact that only one neutrino gets mass at tree level

- The new term containing two Higgses starts contributing at two loops

- We find that there is a new parameter that controls the suppression, the lepton Yukawa coupling

If the couplings are of the same order, it governs the suppression If λ is the only significant coupling, it always comes with a Yukawa

Furture perspectives

- SUSY needs to be further tested before it can be "ruled out" need to analyze more data, more processes, more models...

- Neutrino masses are still one of the most interesting enigmas in particle physics their small masses can constrain the parameters of different models

 The results here exposed can be extended to similar models, and are not only valid when the doublet is just a copy of the MSSM one for example, they could be relevant in the case of dRPV

THANK YOU!

IV. Future prospectives

