Searching for Dark Matter at the LHC

Tongyan Lin KICP/UChicago

UCIrvine Seminar February 19, 2014

Dark matter, 2014

WIMP Miracle

Weak-scale annihilation cross section gets you in the right ballpark to get the right thermal relic abundance

Dark matter, 2014

The LHC

LHC Run 1, 2011-2012

7 and 8 TeV, combined 25/fb
Higgs discovery!

2015-202?

13-14 TeV, expected 50-100/fb per year

- SUSY? Dark matter? Something else?

Why dark matter at LHC?

- WIMP miracle?
 - WIMP miracle suggestive of M ~ 100 GeV 1 TeV
- Connection with new weak scale physics?
 - e.g. natural candidate from SUSY
- Complementarity
 - Cosmic dark matter needs to be detected more than one way!

Looking for dark matter at the LHC: new directions

- Contact operator, monojets
 - Assume DM is only new particle relevant at LHC
- Simplified models
 - Study DM plus additional mediator particles

CMS Tracker

"Monojet" searches

Contact operator limit: all new physics at high scale (related to M*), not accessible

$$\mathcal{O} = \sum_{q} \frac{m_q}{M_*^3} \bar{q} q \bar{X} X$$

Assume also that DM is a SM gauge singlet

- Simple relation between collider, direct detection, and relic abundance
- Systematic study of contact operators coupled to quarks, gluons, etc.
 e.g. Goodman et a

e.g. Goodman et al., Beltran et al. Fox, Harnik, Kopp, Tsai

Monojets

MET > 350, 500 GeV

ATLAS monojet event

Note: 8 TeV / CMS searches allow more than one hard iet.

Choices

- Fermion/Scalar, Real/Complex
- Lorentz structure
- Quarks, gluons

Name	Operator	Coefficient
D1	$ar{\chi}\chiar{q}q$	m_q/M_*^3
D2	$ar{\chi}\gamma^5\chiar{q}q$	im_q/M_*^3
D3	$ar{\chi}\chiar{q}\gamma^5 q$	im_q/M_*^3
D4	$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	m_q/M_*^3
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D8	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D9	$\bar{\chi}\sigma^{\mu u}\chi\bar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{lphaeta}q$	i/M_*^2
D11	$ar{\chi} \chi G_{\mu u} G^{\mu u}$	$\alpha_s/4M_*^3$
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$
D13	$\bar{\chi}\chi G_{\mu u}\tilde{G}^{\mu u}$	$i \alpha_s / 4 M_*^3$
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$

Name	Operator	Coefficient
C1	$\chi^\dagger \chi ar q q$	m_q/M_*^2
C2	$\chi^\dagger \chi ar q \gamma^5 q$	im_q/M_*^2
C3	$\chi^\dagger \partial_\mu \chi \bar q \gamma^\mu q$	$1/M_{*}^{2}$
C4	$\chi^\dagger \partial_\mu \chi \bar q \gamma^\mu \gamma^5 q$	$1/M_{*}^{2}$
C5	$\chi^{\dagger}\chi G_{\mu u}G^{\mu u}$	$\alpha_s/4M_*^2$
C6	$\chi^{\dagger}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i \alpha_s / 4 M_*^2$
R1	$\chi^2 ar q q$	$m_q/2M_*^2$
R2	$\chi^2 \bar{q} \gamma^5 q$	$im_q/2M_*^2$
R3	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/8M_*^2$
R4	$\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i \alpha_s / 8 M_*^2$

Goodman, Ibe, Rajaraman, Shepherd,

Limits

Constraints for operators are not very sensitive to specific tensor structure

Only some are relevant for direct detection \rightarrow

Spin-independent

Spin-dependent

Name	Operator	Coefficient	
D1	$ar{\chi}\chiar{q}q$	m_q/M_*^3	
D2	$ar{\chi}\gamma^5\chiar{q}q$	im_q/M_*^3	
D3	$ar{\chi}\chiar{q}\gamma^5 q$	im_q/M_*^3	
D4	$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	m_q/M_*^3	
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$	
D8	$ar{\chi}\gamma^{\mu}\gamma^5\chiar{q}\gamma_{\mu}\gamma^5q$	$1/M_{*}^{2}$	
D9	$\bar{\chi}\sigma^{\mu u}\chi\bar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$	
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{lphaeta}q$	i/M_*^2	
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$	
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$	
D13	$\bar{\chi}\chi G_{\mu u}\tilde{G}^{\mu u}$	$i \alpha_s / 4 M_*^3$	
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$	

Name	Operator	Coefficient	
C1	$\chi^\dagger \chi ar q q$	m_q/M_*^2	
C2	$\chi^\dagger \chi ar q \gamma^5 q$	im_q/M_*^2	
C3	$\chi^{\dagger}\partial_{\mu}\chi \bar{q}\gamma^{\mu}q$	$1/M_{*}^{2}$	
C4	$\chi^\dagger \partial_\mu \chi \bar q \gamma^\mu \gamma^5 q$	$1/M_{*}^{2}$	
C5	$\chi^{\dagger}\chi G_{\mu u}G^{\mu u}$	$\alpha_s/4M_*^2$	
C6	$\chi^{\dagger}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^2$	
R1	$\chi^2 ar q q$	$m_q/2M_*^2$	
R2	$\chi^2 ar q \gamma^5 q$	$im_q/2M_*^2$	
R3	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/8M_*^2$	
R4	$\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i\alpha_s/8M_*^2$	

The LHC vs. direct detection

Effective for low Effective vs. spinmass Cost: ~\$10 billion vs. ~\$10 pendent

BUT, there will be important modifications to this story...

The mono-something field

- Mono-photon
- Mono-W/Z
- Mono-quark vs. mono-gluon
- Mono-b, mono-top
- Mono-higgs
- Razor analysis
- NLO corrections

Mono-b

Scalar operator with MFV form of coupling to quarks

$$\mathcal{O} = \sum_{q} \frac{m_q}{M_*^3} \bar{q} q \bar{X} X$$

TL, Kolb, Wang,

1303.6638

Production mechanisms for b-quarks plus MET:

LHC "mono-b" search

b-enriched final state: improve on monojet analysis by requiring a *b*-tag (~60-70% efficiency). Also cuts backgrounds significantly.

This is a new signal region!

ATLAS analysis of 8 TeV data in progress.

Projected limits for 8 TeV run

Spin-independent scattering:

$$\sigma_n = \frac{(0.38m_n)^2 \mu_X^2}{\pi M_*^6} \approx 2 \times 10^{-38} \text{cm}^2 \left(\frac{30 \text{ GeV}}{M_*}\right)^6$$

tops + MET search

- Factor of ~10 larger than b production
- Unlike monojets, *tt+XX* signal not from ISR
- Projection recast limits from SUSY stop search

14 TeV projections

For MFV couplings of DM to quarks, DM+heavy quark searches have sensitivity for CDMS/CoGeNT preferred region

Cotta, Rajaraman, Tait, Wijangco

mono-Higgs (Higgs + MET)

Found SM-like Higgs!

Potential for a new signal channel for probing dark matter couplings?

See also: Higgs invisible decay

Graphic from William Shepherd

Petrov and Shepherd 2013 Carpenter, DiFranzo, Mulhearn, Shimmin, Tulin, Whiteson 2013 Berlin, TL, Wang, *to appear*

mono-Higgs channels

$$\operatorname{Br}(h \to b\bar{b}) \approx 0.58$$

Limit setting with 8 TeV data:

$Br(h \to \gamma \gamma) \approx 3 \times 10^{-3}$

A new, clean signal channel for 14 TeV?

mono-Higgs in EFT

Q

Operators where dominant production is through mono-Higgs?

Dimension 6, fermion DM

Dimension 7, fermion DM

Dimension 8, scalar or fermion DM

$$\frac{1}{\sqrt{q}} \overline{X} = \frac{1}{\sqrt{q}} \overline{X} + \frac{1}{\sqrt{q}}$$

 Z/γ

. - - h

See also: Chen, Kolb, Wang; Fedderke, Kolb, TL, Wa

mono-Higgs in EFT

Distribution of momentum transfer Qtr skewed towards very large values

Imposing "unitarity" conditions on Qtr

Validity of EFT

In general, many events violate unitarity

EFT limits conservative, in some sense

Busoni, de Simone, Morgante, Riotto + Gramling et al.

Putting cuts on Qtr doesn't fully address the question.

Simplified Models: s-channel

Away from the contact operator limit, there may be a new "mediator" particle accessible at colliders.

- s-channel mediator, SM singlet
- Basic data:

g_q	coupling to quarks
g_X	coupling to dark matter
$M_{Z'}$	mediator mass
$M_{\rm DM}$	dark matter mass

An, Ji, Wang; Cotta et al, Goodman and Shepherd, etc

For EFT limit, coupling needs to be large.

Lessons from Z' studies

 $M_{\chi}=130 \text{ Gev} \text{Alves, Profumo,}$ **Dijet resonance** $g_{Z' qq}=0.9$ Queiroz 2000 searches HC8 jj $M_{Z'}$ [GeV 1000 LHC7 500 **Relative strength of** 0.2 0.6 0.8 1.0 1.2 0.00.4 1.4 dijet vs. monojet g_{χ} depends on Z' 1500 LHC8 ji branching to visible LHC8 or invisible final $jet+E_T^{miss}$ massignation 1000 **Monojet limits** states $M_{\chi} = 130 \text{ GeV}$ 500 $g_{Z' qq} = 0.5$ ĪN 0.0 Coupling^{1.5} 2.5

0.5

1.0

2.0

3.0

Simplified Models: t-channel (flavored dark matter)

- t-channel mediator, charged under SM gauge group
- Basic data:

λ	coupling
m_{ϕ}	mediator mass
$m_{ m DM}$	dark matter mass

top-flavored dark matter

 $\lambda_t \bar{\chi}_t t_R \phi + \text{h.c.}$

Stability from flavor, UV completion in MFV SUSY Batell, TL, Wang, 1309.4462 An et al., Chang et al., Bai and Berger, DiFranzo et al.,

Х

 ϕ

There are many more examples

LHC constraints more important for Majorana DM

Pair production, associated production of mediator.

Kinematics not exactly the same as squarks.

Slide from Spencer Chang

See also: Papucci, Vichi, Zurek

mono-Higgs – a simplified model?

mono-Higgs – a simplified model?

Model with resonant production of *Z*':

Pseudoscalar of Type II two-Higgs doublet mode

	Φ_d	Φ_u	Q_L	d_R	u_R
$U(1)_{Z'}$	0	1/2	0	0	1/2

Avoid dilepton resonance constraints

Z – Z' mass mixing

Constraints on model

• Z-Z' mass mixing

Higgs + MET

Two sources:

- $Z' \rightarrow hA, A \rightarrow XX$ (with 100% BR)
- $Z' \rightarrow hZ, Z \rightarrow vv$

Assumptions

- mA, mH > 300 GeV
- Alignment limit (h has SM couplings to fermions)

 $\Gamma(Z' \to hA^0) \propto \sin^2(2\beta)$

 $aneta = rac{v_u}{v_d}$

 $\Gamma(Z' \to hA^0) \propto \sin^2(2\beta)$

Coupling to dark matter

• Singlet-doublet model

See also: Cohen et al. Cheung and Sanford.

 $\frac{1}{2}M_S^2S^2 + M_D D_1 D_2 + y_1 S H_d D_1 + y_2 S H_d^{\dagger} D_2 + \text{h.c.}$

has fermion DM coupling to pseudoscalar A

- A → XX dominates
- Can satisfy LUX

Study in progress. Model may also be interesting beyond mono-Higgs.

Bino-Higgsino in the MSSM, but parameter space more narrowly defined.

The road from monojets

- EFT framework
- Many operators!
 Mono-something
- Simplified models with mediators
 - Z', t-channel
 - Need to develop dedicated analyses
- More to do...

theorists & experimentalists wanted!

Conclusions and Outlook

- New signal regions
 - Mono-b
 - Mono-h (diphoton) plus MET
 - Different kinematic regions
- New models
 - Not just SUSY-like, though SUSY models/searches are a good place to start
- Many opportunities with next LHC run
- We need to keep looking!