Next Generation Electron Beam Dump Experiments to Search for Light Dark Matter

Gordan Krnjaic Perimeter Institute

w/ Eder Izaguirre, Philip Schuster, Natalia Toro

Sigi 1307.6554

UC Irvine Joint Particle Seminar January 22, 2014 Ŷ

Where Are We Now?

The LHC has found the Higgs

Other questions remain: one, two, many? ... natural or not? etc. Top question in particle physics "what triggers EWSB?" is *answered*

Where Are We Now?

The LHC har

Other questions remain: one

Top question in particle physic

nd the Higgs

... natural or not? etc.

ggers EWSB?" is answered

Where Are We Now?

The LHC has nd the Higgs

Other questions remain: one

Top question in particle physic

... natural or not? etc.

ggers EWSB?" is *answered*

85% of matter is totally mysterious

Strong evidence: rotation curves, CMB, lensing, galaxy surveys... Uncovering its identity is, perhaps, the biggest question now

Null LHC searches (e.g. SUSY) undermine theoretical prejudices

DM is a fishing expedition, so what now?

Current Search Strategy 1. Direct Detection: XENON, CDMS, CoGeNT...

Sensitive to dominant, (meta)stable, dark species

Large BG, tiny recoils for $M \le \text{few GeV}$

Astrophysical uncertainties

Current Search Strategy 2. Indirect Detection: FGST, AMS, PAMELA...

Sensitive to dominant, (meta)stable, dark species Large BG for DM < few GeV (Astrophysical uncertainties)^2

Current Search Strategy

3. Colliders: LHC, Tevatron, LEP, BaBar, Belle...

But: weak sensitivity < few -10 GeV

• A "light" dark sector?

• Why electron beams?

• What can be done *today*?

... tomorrow?

Thursday, January 23, 14

• A "light" dark sector?

• Why electron beams?

• What can be done *today*?

... tomorrow?

Thursday, January 23, 14

"Light" MeV-GeV Dark States?

Can arise in many contexts:

Asymmetric DM, direct/indirect detection anomalies, missing satellites, self interacting DM, Sommerfeld enhancement, non-thermal dark matter, hidden valleys, $(g-2)\mu$...

... but remain elusive in existing program

Motivates new strategies

Naive expectation: inefficient annihilation

 $\langle \sigma v \rangle \sim \frac{\alpha_D m_{\chi}^2}{M_{mod}^4} \implies \Omega_{\chi} \gg (\Omega_{DM})_{obs.}$

Naive expectation: inefficient annihilation

$$\langle \sigma v \rangle \sim \frac{\alpha_D m_{\chi}^2}{M_{med}^4} \implies \Omega_{\chi} \gg (\Omega_{DM})_{obs}.$$

But this merely implies additional light mediators

$$m_{\chi} > M_{med} , \langle \sigma v \rangle \sim \frac{\alpha_D^2}{m_{\chi}^2} \implies \frac{\Omega_{\chi}}{\Omega_{DM}} \sim 10^{-3} \left(\frac{\alpha}{\alpha_D}\right)^2 \left(\frac{m_{\chi}}{100 \text{ MeV}}\right)^2$$

Naive expectation: inefficient annihilation

$$\langle \sigma v \rangle \sim \frac{\alpha_D m_{\chi}^2}{M_{med}^4} \implies \Omega_{\chi} \gg (\Omega_{DM})_{obs}.$$

But this merely implies additional light mediators

$$m_{\chi} > M_{med} , \langle \sigma v \rangle \sim \frac{\alpha_D^2}{m_{\chi}^2} \implies \frac{\Omega_{\chi}}{\Omega_{DM}} \sim 10^{-3} \left(\frac{\alpha}{\alpha_D}\right)^2 \left(\frac{m_{\chi}}{100 \text{ MeV}}\right)^2$$

CMB bounds: late annihilations to leptons

$$\Omega_{\chi} = \Omega_{DM} \implies \sigma_{\chi\chi \to \ell\ell} < 10^{-5} \left(\frac{m_{\chi}}{\text{MeV}}\right) \sigma_{thermal}$$
$$\Omega_{\chi} < \Omega_{DM} \implies \left(\frac{\Omega_{\chi}}{\Omega_{DM}}\right) < 10^{-3} \left(\frac{m_{\chi}}{100 \text{ MeV}}\right)$$

Model dependent

Q: Does "Light" Make Sense? A: Yes, many possibilities...

If there are light particles, we should look for them!

Benchmark Model

A'w/ kinetic mixing:

$$\mathcal{L} \supset \frac{\epsilon}{2} F_{\mu\nu} F'_{\mu\nu} + \frac{m_{A'}}{2} A'^{\mu} A'_{\mu} + \bar{\chi} (i \not\!\!D + m_{\chi}) \chi$$

"Simplified model" proxy for light-mediator scenarios w/ neutral-current interactions

Parameters: $m_{\chi}, m_{A'} \sim \text{MeV} - \text{GeV}$ $\alpha_D \sim 10^{-2} - 1$ $\epsilon \sim 10^{-5} - 10^{-2}$

Ideally suited for fixed target searches

If A' Decays to the SM

Many experiments out there (arXiv:1209.2558)

Much harder for *invisible* decays

If A' Decays Invisibly

NB: Only the g-2 curves are model independent

A' Decays Invisibly: Neutrino Factories

Proposed searches at MiniBooNE, LSND, T2K* DM from decays, scatters downstream (de Niverville, Pospelov, Ritz, Batell)

A' Decays Invisibly: Neutrino Factories

Proposed searches at MiniBooNE, LSND, T2K* DM from decays, scatters downstream (de Niverville, Pospelov, Ritz, Batell)

But:

Setup for neutrino oscillations = large NC backgrounds Large ~ O(100) m baseline degrades acceptance

Proper search expensive, requires dedicated beam time

• A "light" dark sector?

• Why electron beams?

• What can be done *today*?

... tomorrow?

Thursday, January 23, 14

Basic Ingredients:

Electron beam (few-100) GeV, continuous or pulsed

Beam dump & dirt ~ few 10s m, range out beam BG

Detector sensitive to neutral currents: oil, plastic, LAr ...

How to Search 1. Production

 $m_{A'} < 2m_{\chi} \implies$ off-shell radiative

Coherent Nuclear

Low recoil energies, light mediator Z^2 enhancement, form factor

Coherent Nuclear

Low recoil energies, light mediator Z^2 enhancement, form factor

Inelastic hadro-production

High recoil energies

 $\pi, \Delta, K \cdots$

Coherent Nuclear

Low recoil energies, light mediator Z^2 enhancement, form factor

Inelastic hadro-production

High recoil energies

Electron Scattering

Low recoil energies, light mediator

 $\pi, \Delta, K \cdots$

Coherent Nuclear

Low recoil energies, light mediator Z^2 enhancement, form factor

Inelastic hadro-production

High recoil energies

Electron Scattering

Low recoil energies, light mediator

Quasi-elastic Nucleon Higher recoil energies > 10s MeV,

Coherent Nuclear

Low recoil energies, light mediator Z^2 enhancement, form factor

Inelastic hadro-production

High recoil energies

Electron Scattering

Low recoil energies, light mediator

Quasi-elastic Nucleon Higher recoil energies > 10s MeV,

Production rate comparable to proton beams

Production rate comparable to proton beams

Beam related backgrounds: *negligible*

Production rate comparable to proton beams

Beam related backgrounds: *negligible*

Parasitic running: *existing* beams are powerful

Production rate comparable to proton beams

Beam related backgrounds: *negligible*

Parasitic running: *existing* beams are powerful

Small scale & inexpensive

Production rate comparable to proton beams

Beam related backgrounds: *negligible*

Parasitic running: *existing* beams are powerful

Small scale & inexpensive

High acceptance: nearby detector & forward kinematics

Production rate comparable to proton beams

Beam related backgrounds: *negligible*

Parasitic running: *existing* beams are powerful

Small scale & inexpensive

High acceptance: nearby detector & forward kinematics

Cosmic backgrounds: *beatable & reducible*

Thursday, January 23, 14

"Benchmark"Setup2.Beam Related BackgroundsNeutrinos from beam π/μ Nuclear recoil cut $E_{recoil} > 10$ MeV

(0.1 - 1) BG event per $10^{22} e^{-1}$

Consistent with SLAC mQ rates

"Benchmark" Setup2.Beam Related Backgrounds
Neutrinos from beam π/μ

Nuclear recoil cut $E_{recoil} > 10 \text{ MeV}$ (0.1 - 1) BG event per $10^{22} e^{-1}$

Consistent with SLAC mQ rates

Ejected "Fast" Neutrons

 $E_n < 10 \,\mathrm{MeV}$, below cuts

Beam backgrounds very small →

"Benchmark" Setup 3. Beam Unrelated Backgrounds Cosmic muons

Decays in flight ~ 0.005 Hz (veto) Stopped decays ~ 100 µs cut (veto)

"Benchmark" Setup 3. Beam Unrelated Backgrounds Cosmic muons

Decays in flight ~ 0.005 Hz (veto) Stopped decays ~ 100 µs cut (veto)

Cosmic neutrons

 $\Phi(E > 10 \text{ MeV}) \approx 2 \times 10^{-2} \text{m}^{-2} \text{s}^{-1}$ Consistent with CDMS-SUF (~ 10 m.w.e)

"Benchmark" Setup 3. Beam Unrelated Backgrounds Cosmic muons

Decays in flight ~ 0.005 Hz (veto) Stopped decays ~ 100 µs cut (veto)

Cosmic neutrons

 $\Phi(E > 10 \text{ MeV}) \approx 2 \times 10^{-2} \text{m}^{-2} \text{s}^{-1}$ Consistent with CDMS-SUF (~ 10 m.w.e)

Pulsed beam ~ livetime 10^3 s, O(10) cosmic BG events \implies Small, Measurable Sensitivity ~ 10 event signal yield

"Benchmark" Setup

E = 12 GeV, 10^{22} EOT , Dist. = 20 m, Det = 1 m³

"Benchmark" Setup

E = 12 GeV, 10^{22} EOT , Dist. = 20 m, Det = 1 m³

• A "light" dark sector?

• Why electron beams?

• What can be done *today*?

... tomorrow?

Depth = 15 m.w.e.

What Can Be Done Today?

1. SLAC FACET-Beam

E = 30 GeV, 10^{20} EOT , Dist. = 100 Ft., Det = 1 m^3

What Can Be Done Today? 1. SLAC FACET-Beam

E = 30 GeV, 10^{20} EOT , Dist. = 100 Ft., Det = 1 m^3

Quasi-elastic nucleon, pulsed beam

What Can Be Done Today? 1. SLAC FACET-Beam

E = 30 GeV, 10^{20} EOT , Dist. = 100 Ft., Det = 1 m^3

Sensitivity $\sim 20,000$ signal events

What Can Be Done *Today*? 2. JLab CEBAF

E = 12 GeV, 10^{22} EOT , Dist. = 20 m., Det = 1 m^3

Quasi-elastic nucleon, continuous wave beam

What Can Be Done *Today*? 2. JLab CEBAF

E = 12 GeV, 10^{22} EOT , Dist. = 20 m., Det = 1 m^3

What Can Be Done *Today*? 2. JLab CEBAF

 $E = 12 \text{ GeV} (\text{JLab}), 10^{22} \text{ EOT}, \text{Dist.} = 20 \text{ m.}, \text{Det} = 1 \text{ } m^3$

• A "light" dark sector?

• Why electron beams?

• What can be done *today*?

... tomorrow?

Around the Corner 1 Some BG reduction (JLab)

E = 12 GeV, 10^{22} EOT , Dist. = 20 m., Det = 1 m^3

Quasi-elastic nucleon, continuous wave beam

Around the Corner 1 Some BG reduction (JLab)

E = 12 GeV, 10^{22} EOT , Dist. = 20 m., Det = 1 m^3

Around the Corner 1 Some BG reduction (JLab)

 $E = 12 \text{ GeV} (\text{JLab}), 10^{22} \text{ EOT}, \text{Dist.} = 20 \text{ m.}, \text{Det} = 1 \text{ } m^3$

Neutron moderator

Directional information

Oil-based, cubic-meter fiducial Depth ~15 m.w.e

E = 12 GeV, 10^{22} EOT , Dist. = 20 m., Det = 1 m^3

E = 12 GeV, 10^{22} EOT , Dist. = 20 m., Det = 1 m^3

 $E = 12 \text{ GeV} (\text{JLab}), 10^{22} \text{ EOT}, \text{Dist.} = 20 \text{ m.}, \text{Det} = 1 \text{ } m^3$

Detector size, geometry, material, may all vary in a smarter setup

Detector size, geometry, material, may all vary in a smarter setup

Exploit high acceptance?

Setup cosmics limited. Smaller, closer detector, w/ more shielding?

Detector size, geometry, material, may all vary in a smarter setup

Exploit high acceptance?

Setup cosmics limited. Smaller, closer detector, w/ more shielding?

Different dump?

Beam related BG may not be negligible! May need deflectors

Detector size, geometry, material, may all vary in a smarter setup

Exploit high acceptance?

Setup cosmics limited. Smaller, closer detector, w/ more shielding?

Different dump?

Beam related BG may not be negligible! May need deflectors

Different beam?

CW: JLab, Mainz, DESY... Pulsed: SLAC, SuperKEKB, ILC (?)...

Detector size, geometry, material, may all vary in a smarter setup

Exploit high acceptance?

Setup cosmics limited. Smaller, closer detector, w/ more shielding?

Different dump?

Beam related BG may not be negligible! May need deflectors

Different beam? CW: JLab, Mainz, DESY... Pulsed: SLAC, SuperKEKB, ILC (?)...

Different cuts/signals (electron, inelastic...)?

• A "light" dark sector?

• Why electron beams?

• What can be done *today*?

... tomorroze... 10-20 years?

Down the Street : ILC

E = 125 GeV (ILC), 10^{22} EOT , Dist. = 20 m., Det = 1 m^3

Electron fixed-target searches are powerful High acceptance, negligible beam BG, reducible cosmic BG

Probe almost entire, viable MeV – GeV range

Dedicated experiment can extend sensitivity by orders of magnitude Simple setup: definitively cover $(g-2)\mu$, complement visible searches,

Can run *parasitically* **at existing facilities** JLab, SLAC, Mainz, DESY, Super KEK-B....

Small & cheap

Parasitic running, meter-scale (or smaller) detector,

This is just the beginning

We don't yet know the optimal setup...

Thanks!