Toward a model-independent comparison of dark matter direct detection data

Eugenio Del Nobile University of California at Los Angeles

Bullet Cluster

Lensing

Large scale structures

Cosmic Microwave Background

WIMPs: Weak-scale interacting DM particles non-relativistic, with mass | GeV - 10 TeV

Actually, only one kind of particle like approximating SU(3)xSU(2)xU(1) as "just hydrogen"

DM direct detection

Basically explained by

DM direct detection

The basic ingredient is the recoil rate

Direct detection rate

$$\frac{\mathrm{d}R_T}{\mathrm{d}E_\mathrm{R}} = \frac{\xi_T}{m_T} \frac{\rho}{m_{\mathrm{DM}}} \int_{v_{\mathrm{min}}(E_\mathrm{R})}^{v_{\mathrm{esc}}} \mathrm{d}^3 v f(\vec{v}, t) v \frac{\mathrm{d}\sigma_T}{\mathrm{d}E_\mathrm{R}} (E_\mathrm{R}, \vec{v})$$

 $\begin{array}{lll} \rho & {\sf DM} \mbox{ local density } & f(\vec{v},t) \mbox{ DM velocity distribution } \\ \xi_T & {\sf target mass fraction } & v_{\rm esc} \mbox{ galactic escape velocity } \end{array}$

$$R_{[E'_1,E'_2]}(t) = \sum_T \int_{E'_1}^{E'_2} dE' \,\epsilon_1(E') \int_0^\infty dE_{\rm R} \,\epsilon_2(E_{\rm R}) G_T(E',qE_{\rm R}) \frac{dR_T}{dE_{\rm R}}$$

E' detected energy $G_T(E', qE_R)$ detector resolution ϵ_1, ϵ_2 efficiencies q quenching factor

Limits and fits

Limits and fits

Assumptions

- Spin-independent interaction: in QFT language,
 - $\mathscr{L} \propto \phi^{\dagger} \phi \, \bar{N} N$ or $\bar{\chi} \chi \, \bar{N} N$ or $\bar{\chi} \gamma^{\mu} \chi \, \bar{N} \gamma_{\mu} N$

(in the NR limit all these interactions look the same)

 Truncated Maxwell-Boltzmann velocity distribution (Standard Halo Model, or SHM):

 $f(\vec{v},t) = f_{\rm G}(\vec{u} = \vec{v} + \vec{v}_{\rm E}(t)) \quad \text{with} \quad f_{\rm G}(\vec{u}) = \frac{\exp(-u^2/v_0^2)}{(v_0\sqrt{\pi})^3 N_{\rm esc}} \,\theta(v_{\rm esc} - u)$

Other interactions

One can imagine countless other interaction types

Effective operators

$$\begin{split} \bar{\chi} i\gamma^5 \chi \ \bar{N}N \\ \bar{\chi} i\gamma^5 \chi \ \bar{N} i\gamma^5 N \\ \bar{\chi}\gamma^\mu \chi \ \bar{N}\gamma_\mu \gamma^5 N \\ \bar{\chi}\sigma^{\mu\nu} \chi \ \bar{N}\sigma_{\mu\nu} N \end{split}$$

 $ar{\chi}\chi\ ar{N}\,i\gamma^5N$ $\bar{\chi}\gamma^{\mu}\gamma^{5}\chi \ \bar{N}\gamma_{\mu}N$ $\bar{\chi}\gamma^{\mu}\gamma^{5}\chi \ \bar{N}\gamma_{\mu}\gamma^{5}N$ $\bar{\chi} i \sigma^{\mu\nu} \gamma^5 \chi \ \bar{N} \sigma_{\mu\nu} N$

 $\phi^* \phi \ \bar{N} i \gamma^5 N$ $i (\phi^* \overleftrightarrow{\partial_{\mu}} \phi) \ \bar{N} \gamma^{\mu} N$ $i (\phi^* \overleftrightarrow{\partial_{\mu}} \phi) \ \bar{N} \gamma^{\mu} \gamma^5 N$

Electromagnetic DM $Q_{\chi}e \ \bar{\chi}\gamma^{\mu}\chi A_{\mu}$ $\frac{\mu_{\chi}}{2} \ \bar{\chi} \ \sigma^{\mu\nu}\chi F_{\mu\nu}$ $\frac{d_{\chi}}{2} \ i \ \bar{\chi} \ \sigma^{\mu\nu}\gamma^{5}\chi F_{\mu\nu}$ $\frac{a_{\chi}}{2} \ \bar{\chi}\gamma^{\mu}\gamma^{5}\chi \ \partial^{\nu}F_{\mu\nu}$

(millicharged DM) (anomalous DM magnetic moment) (DM electric dipole moment) (DM anapole moment) *etc.*

A unified framework

- Fan, Reece, Wang Non-relativistic effective theory of dark matter direct detection [1008.1591]
- Fitzpatrick, Haxton, Katz, Lubbers, Xu The Effective Field Theory of Dark Matter Direct Detection [1203.3542]+ [1211.2818], [1308.6288]

Set the stage for an interaction-independent analysis of DM signals at direct detection experiments

Note: the DM-nucleus scattering is non-relativistic (NR) because $v \sim q/m \sim 10^{-3}$

Recipe

• Expand
$$u^{s}(p) = \begin{pmatrix} \sqrt{p^{\mu}\sigma_{\mu}} \xi^{s} \\ \sqrt{p^{\mu}\bar{\sigma}_{\mu}} \xi^{s} \end{pmatrix}$$
 in powers of \vec{p} (NR limit)

• Express
$$\mathcal{M}_{nucleon} = \sum_{i=1}^{12} (c_i^p + c_i^n) \mathcal{O}_i^{NR}$$

$$\begin{array}{ll} \mathcal{O}_{1}^{\mathrm{NR}} = \mathbf{1} & \mathcal{O}_{2}^{\mathrm{NR}} = (v^{\perp})^{2} \\ \mathcal{O}_{3}^{\mathrm{NR}} = i \, \vec{s}_{N} \cdot (\vec{q} \times \vec{v}) & \mathcal{O}_{4}^{\mathrm{NR}} = \vec{s}_{\chi} \cdot \vec{s}_{N} \\ \mathcal{O}_{5}^{\mathrm{NR}} = i \, \vec{s}_{\chi} \cdot (\vec{q} \times \vec{v}) & \mathcal{O}_{6}^{\mathrm{NR}} = (\vec{s}_{\chi} \cdot \vec{q})(\vec{s}_{N} \cdot \vec{q}) \\ \mathcal{O}_{7}^{\mathrm{NR}} = \vec{s}_{N} \cdot \vec{v}^{\perp} & \mathcal{O}_{8}^{\mathrm{NR}} = \vec{s}_{\chi} \cdot \vec{v}^{\perp} \\ \mathcal{O}_{9}^{\mathrm{NR}} = i \, \vec{s}_{\chi} \cdot (\vec{s}_{N} \times \vec{q}) & \mathcal{O}_{10}^{\mathrm{NR}} = i \, \vec{s}_{N} \cdot \vec{q} \\ \mathcal{O}_{11}^{\mathrm{NR}} = i \, \vec{s}_{\chi} \cdot \vec{q} & \mathcal{O}_{12}^{\mathrm{NR}} = \vec{v}^{\perp} \cdot (\vec{s}_{\chi} \times \vec{s}_{N}) \end{array}$$

$$\overline{\left|\mathcal{M}_{\text{nucleus}}\right|^{2}} = \frac{m_{T}^{2}}{m_{N}^{2}} \sum_{i,j=1}^{12} \sum_{N,N'=p,n} \mathsf{c}_{i}^{N} \mathsf{c}_{j}^{N'} F_{i,j}^{(N,N')}$$

More than form factors

$$\overline{\left|\mathcal{M}_{\text{nucleus}}\right|^{2}} = \frac{m_{T}^{2}}{m_{N}^{2}} \sum_{i,j=1}^{12} \sum_{N,N'=p,n} c_{i}^{N} c_{j}^{N'} F_{i,j}^{(N,N')}$$

The "form factors" $F_{i,j}^{(N,N')}$ are tabulated in [1203.3542], [1308.6288]

They contain the nuclear physics associated to each of the NR operators

They form a basis for writing ~any interaction

They provide a parametrization of the differential cross section in terms of the coefficients c_i^N

Factorizing fun

$$\frac{\mathrm{d}\sigma_T}{\mathrm{d}E_{\mathrm{R}}} = \frac{1}{32\pi} \frac{1}{m_{\chi}^2 m_T} \frac{1}{v^2} \frac{m_T^2}{m_N^2} \sum_{i,j=1}^{12} \sum_{N,N'=p,n} \mathsf{c}_i^N \mathsf{c}_j^{N'} F_{i,j}^{(N,N')}$$

$$\tilde{\mathcal{F}}_{i,j}^{(N,N')} \equiv C \sum_{T} \xi_T \int_{E'_{\min}}^{E'_{\max}} dE' \,\epsilon_1(E') \int_0^\infty dE_{\mathrm{R}} \,\epsilon_2(E_{\mathrm{R}}) G_T(E_{\mathrm{R}},E') \,\int_{v_{\min}(E_{\mathrm{R}})} d^3v \,\frac{1}{v} \,f_{\mathrm{E}}(\vec{v}) \,F_{i,j}^{(N,N')}$$

Let us consider the benchmark model

$$\mathcal{M}_{p,\mathrm{B}} = \lambda_{\mathrm{B}} = \lambda_{\mathrm{B}} \mathcal{O}_{1}^{\mathrm{NR}} \implies \mathsf{c}_{1}^{p} = \lambda_{\mathrm{B}}, \text{ all other } \mathsf{c}_{i}^{N} = 0$$

e.g. from the QFT Lagrangian $\mathscr{L}_{\rm B} = \frac{\lambda_{\rm B}}{4m_{\rm DM}m_p} \bar{\chi}\gamma^{\mu}\chi\bar{p}\gamma_{\mu}p$

So $R_{\text{tot,B}} = \lambda_{\text{B}}^2 \, \tilde{\mathcal{F}}_{1,1}^{(p,p)}(m_{\text{DM}})$. Now define $\lambda_{\text{B}}^{\text{lim}}(m_{\text{DM}})^2 \equiv \frac{R_{\text{lim}}}{\tilde{\mathcal{F}}_{1,1}^{(p,p)}(m_{\text{DM}})}$

A bound on another model is given by

 $\sum_{i,j=1}^{12} \sum_{N,N'=p,n} \mathsf{c}_i^N(\lambda, m_{\mathrm{DM}}) \, \mathsf{c}_j^{N'}(\lambda, m_{\mathrm{DM}}) \, \tilde{\mathcal{F}}_{i,j}^{(N,N')}(m_{\mathrm{DM}}) \leqslant R_{\mathrm{lim}}$

Let us consider the benchmark model

$$\mathcal{M}_{p,\mathrm{B}} = \lambda_{\mathrm{B}} = \lambda_{\mathrm{B}} \mathcal{O}_{1}^{\mathrm{NR}} \implies \mathsf{c}_{1}^{p} = \lambda_{\mathrm{B}}, \text{ all other } \mathsf{c}_{i}^{N} = 0$$

e.g. from the QFT Lagrangian $\mathscr{L}_{\rm B} = \frac{\lambda_{\rm B}}{4m_{\rm DM}m_p} \bar{\chi}\gamma^{\mu}\chi \bar{p}\gamma_{\mu}p$

So $R_{\text{tot,B}} = \lambda_{\text{B}}^2 \, \tilde{\mathcal{F}}_{1,1}^{(p,p)}(m_{\text{DM}})$. Now define $\lambda_{\text{B}}^{\text{lim}}(m_{\text{DM}})^2 \equiv \frac{R_{\text{lim}}}{\tilde{\mathcal{F}}_{1,1}^{(p,p)}(m_{\text{DM}})}$

A bound on another model is given by

$$\sum_{i,j=1}^{12} \sum_{N,N'=p,n} \mathsf{c}_{i}^{N}(\lambda, m_{\rm DM}) \, \mathsf{c}_{j}^{N'}(\lambda, m_{\rm DM}) \, \frac{\tilde{\mathcal{F}}_{i,j}^{(N,N')}(m_{\rm DM})}{\tilde{\mathcal{F}}_{1,1}^{(p,p)}(m_{\rm DM})} \leqslant \frac{R_{\rm lim}}{\tilde{\mathcal{F}}_{1,1}^{(p,p)}(m_{\rm DM})}$$

Let us consider the benchmark model

$$\mathcal{M}_{p,\mathrm{B}} = \lambda_{\mathrm{B}} = \lambda_{\mathrm{B}} \mathcal{O}_{1}^{\mathrm{NR}} \implies \mathsf{c}_{1}^{p} = \lambda_{\mathrm{B}}, \text{ all other } \mathsf{c}_{i}^{N} = 0$$

e.g. from the QFT Lagrangian $\mathscr{L}_{\rm B} = \frac{\lambda_{\rm B}}{4m_{\rm DM}m_p} \bar{\chi}\gamma^{\mu}\chi \bar{p}\gamma_{\mu}p$

So $R_{\text{tot,B}} = \lambda_{\text{B}}^2 \, \tilde{\mathcal{F}}_{1,1}^{(p,p)}(m_{\text{DM}})$. Now define $\lambda_{\text{B}}^{\text{lim}}(m_{\text{DM}})^2 \equiv \frac{R_{\text{lim}}}{\tilde{\mathcal{F}}_{1,1}^{(p,p)}(m_{\text{DM}})}$

A bound on another model is given by

 $\sum_{i,j=1}^{12} \sum_{N,N'=p,n} \mathsf{c}_i^N(\lambda, m_{\mathrm{DM}}) \, \mathsf{c}_j^{N'}(\lambda, m_{\mathrm{DM}}) \, \mathcal{Y}_{i,j}^{(N,N')}(m_{\mathrm{DM}}) \leqslant \lambda_{\mathrm{B}}^{\mathrm{lim}}(m_{\mathrm{DM}})^2$

where
$$\mathcal{Y}_{i,j}^{(N,N')}(m_{\mathrm{DM}}) \equiv \frac{\tilde{\mathcal{F}}_{i,j}^{(N,N')}(m_{\mathrm{DM}})}{\tilde{\mathcal{F}}_{1,1}^{(p,p)}(m_{\mathrm{DM}})}$$

Let us consider the benchmark model

$$\mathcal{M}_{p,\mathrm{B}} = \lambda_{\mathrm{B}} = \lambda_{\mathrm{B}} \mathcal{O}_{1}^{\mathrm{NR}} \implies \mathsf{c}_{1}^{p} = \lambda_{\mathrm{B}}, \text{ all other } \mathsf{c}_{i}^{N} = 0$$

e.g. from the QFT Lagrangian $\mathscr{L}_{\rm B} = \frac{\lambda_{\rm B}}{4m_{\rm DM}m_p} \bar{\chi}\gamma^{\mu}\chi \bar{p}\gamma_{\mu}p$

So $R_{\text{tot,B}} = \lambda_{\text{B}}^2 \, \tilde{\mathcal{F}}_{1,1}^{(p,p)}(m_{\text{DM}})$. Now define $\lambda_{\text{B}}^{\text{lim}}(m_{\text{DM}})^2 \equiv \frac{R_{\text{lim}}}{\tilde{\mathcal{F}}_{1,1}^{(p,p)}(m_{\text{DM}})}$

A bound on another model is given by

 $\sum_{i,j=1}^{12} \sum_{N,N'=p,n} \mathsf{c}_i^N(\lambda, m_{\mathrm{DM}}) \, \mathsf{c}_j^{N'}(\lambda, m_{\mathrm{DM}}) \, \mathcal{Y}_{i,j}^{(N,N')}(m_{\mathrm{DM}}) \leqslant \lambda_{\mathrm{B}}^{\mathrm{lim}}(m_{\mathrm{DM}})^2$

The $\mathcal{Y}_{i,j}^{(N,N')}(m_{\text{DM}})$ functions and the $\lambda_{\text{B}}^{\lim}(m_{\text{DM}})$ for different CL's are available on <u>http://www.marcocirelli.net/NROpsDD.html</u>

Tools for model-independent bounds in direct dark matter searches

Data and Results from 1307.5955 [hep-ph], JCAP 10 (2013) 019.

If you use the data provided on this site, please cite: M.Cirelli, E.Del Nobile, P.Panci, "Tools for model-independent bounds in direct dark matter searches", arXiv 1307.5955, JCAP 10 (2013) 019.

This is Release 3.0 (April 2014). Log of changes at the bottom of this page.

Test Statistic functions:

The <u>IS m</u> file provides the tables of IS for the benchmark case (see the paper for the definition), for the six experiments that we consider XENON100, CDMS-Ge, COUPP, PICASSO, LUX, SuperCDMS.

Rescaling functions:

The <u>Y.m</u> file provides the rescaling functions $Y_{ij}^{(N,N')}$ and $Y_{ij}^{Ir(N,N')}$ (see the paper for the definition).

Sample file:

The <u>Sample.nb</u> notebook shows how to load and use the above numerical products, and gives some examples.

Log of changes and releases:

[23 jul 2013] First Release.
 [08 oct 2013] Minor changes in the notations in Sample.nb, to match JCAP version. No new release.
 [25 nov 2013] New Release: 2.0. Addition of LUX results. This release corresponds to version 3 of 1307.5955 (with Addendum).
 [03 apr 2014] New Release: 3.0. Addition of SuperCDMS results. This release corresponds to version 4 of 1307.5955 (with two Addenda).

Some results

By-product

$$\mathscr{L}_{\text{int}} = -i\frac{g_{\text{DM}}}{\sqrt{2}}a\,\bar{\chi}\gamma_5\chi - ig\sum_f \frac{g_f}{\sqrt{2}}a\,\bar{f}\gamma_5f$$

Features

- Spin-dependent interaction
 No A² enhancement, relax Xe bounds
- $g_P >> g_n$ naturally Further relax Xe, Ge bounds $dR_T/dE_R \propto q^4$ Nobody looked at this interaction before

By-product

90% and 99% CL DAMA credible regions, 99% CL limits

Try-product

• = fits to the GC gamma-ray excess + relic abundance

90% and 99% CL DAMA credible regions, 99% CL limits

Try-product

• = fits to the GC gamma-ray excess + relic abundance

90% and 99% CL DAMA credible regions, 99% CL limits

Conclusions for this part

- The full scattering rate at direct DM search experiments can be factored in two pieces:
 - the coefficients c_i^N contain the information on the underlying particle physics model
 - the $\mathcal{Y}_{i,j}^{(N,N')}$ functions contain all the rest, and in principle can be delivered by the experimental collaborations themselves
- With these ingredients, a bound that would otherwise need a PhD student and weeks of coding to perform multiple numerical integrals is computed within minutes
- All the material + a Mathematica sample file is downloadable for instant fun at <u>http://www.marcocirelli.net/NROpsDD.html</u>

Halo-independent stuff

Direct detection rate

$$\frac{\mathrm{d}R_T}{\mathrm{d}E_\mathrm{R}} = \frac{\xi_T}{m_T} \frac{\rho}{m_{\mathrm{DM}}} \int_{v_{\mathrm{min}}(E_\mathrm{R})}^{v_{\mathrm{esc}}} \mathrm{d}^3 v f(\vec{v}, t) v \frac{\mathrm{d}\sigma_T}{\mathrm{d}E_\mathrm{R}} (E_\mathrm{R}, \vec{v})$$

 $\begin{array}{lll} \rho & {\rm DM} \mbox{ local density } & f(\vec{v},t) \mbox{ DM velocity distribution } \\ \xi_T & {\rm target mass fraction } & v_{\rm esc} \mbox{ galactic escape velocity } \end{array}$

$$R_{[E'_1,E'_2]}(t) = \sum_T \int_{E'_1}^{E'_2} dE' \,\epsilon_1(E') \int_0^\infty dE_{\rm R} \,\epsilon_2(E_{\rm R}) G_T(E',qE_{\rm R}) \frac{dR_T}{dE_{\rm R}}$$

E' detected energy $G_T(E', qE_R)$ detector resolution ϵ_1, ϵ_2 efficiencies q quenching factor

Astrophysical uncertainties

e.g.

Three approaches

- O Marginalize over astrophysical uncertainties see e.g. Arina [1310.5718] and references therein
- Try to find alternative halo models, either driven by physical arguments or by fitting simulations or observations

see e.g. references in Freese, Lisanti, Savage [1209.3339]

O Try to factor astrophysics out of your problem as much as you can

Fox, Liu, Weiner [1011.1915], Frandsen, Kahlhoefer, McCabe, Sarkar, Schmidt-Hoberg [1111.0292][1304.6066], Gondolo, Gelmini [1202.6359] + Del Nobile, Huh [1304.6183][1306.5273][1311.4247] [1401.4508], Herrero-Garcia, Schwetz, Zupan [1112.1627][1205.0134] + Bozorgnia [1305.3575], Feldstein, Kahlhoefer [1403.4606], Fox, Kahn, McCullough [1403.6830] + ...

Direct detection rate

$$R_{[E_{1}^{\prime},E_{2}^{\prime}]}(t) = \frac{\rho}{m_{\rm DM}} \sum_{T} \frac{\xi_{T}}{m_{T}} \int_{E_{1}^{\prime}}^{E_{2}^{\prime}} dE^{\prime} \epsilon_{1}(E^{\prime})$$

$$\times \int_{0}^{\infty} dE_{\rm R} \epsilon_{2}(E_{\rm R}) G_{T}(E^{\prime},qE_{\rm R})$$

$$\times \int_{v_{\rm min}(E_{\rm R})}^{v_{\rm esc}} d^{3}v f(\vec{v},t) v \frac{d\sigma_{T}}{dE_{\rm R}}(E_{\rm R},\vec{v})$$

$$R_{[E_{1}^{\prime},E_{2}^{\prime}]}(t) = \frac{\rho}{m_{\rm DM}} \sum_{T} \frac{\xi_{T}}{m_{T}} \int_{E_{1}^{\prime}}^{E_{2}^{\prime}} dE^{\prime} \epsilon_{1}(E^{\prime})$$

$$\times \int_{0}^{\infty} d^{3}v f(\vec{v},t) v$$

$$\times \int_{0}^{E_{\rm R}^{+}(v)} dE_{\rm R} \epsilon_{2}(E_{\rm R}) G_{T}(E^{\prime},qE_{\rm R}) \frac{d\sigma_{T}}{dE_{\rm R}}(E_{\rm R},\vec{v})$$

Algebraic maquillage |

$$R_{[E'_1,E'_2]}(t) = \int_0^\infty \mathrm{d}^3 v \, \frac{\tilde{f}(\vec{v},t)}{v} \, \mathcal{H}_{[E'_1,E'_2]}(\vec{v})$$

$$\tilde{f}(\vec{v},t) \equiv \frac{\rho \sigma_{\text{ref}}}{m_{\text{DM}}} f(\vec{v},t)$$
$$\mathcal{H}_{[E'_1,E'_2]}(\vec{v}) \equiv \sum_T \frac{\xi_T}{m_T} \int_{E_{\text{R}}^-(v)}^{E_{\text{R}}^+(v)} dE_{\text{R}} \frac{v^2}{\sigma_{\text{ref}}} \frac{d\sigma_T}{dE_{\text{R}}}(E_{\text{R}},\vec{v})$$
$$\times \epsilon_2(E_{\text{R}}) \int_{E'_1}^{E'_2} dE' \epsilon_1(E') G_T(E',qE_{\text{R}})$$

Algebraic maquillage II

$$R_{[E'_1,E'_2]}(t) = \int_0^\infty \mathrm{d}v_{\min}\,\tilde{\eta}(v_{\min},t)\,\mathcal{R}_{[E'_1,E'_2]}(v_{\min})$$

$$\tilde{\eta}(v_{\min},t) \equiv \int_{v_{\min}}^{\infty} \mathrm{d}^3 v \, \frac{\tilde{f}(\vec{v},t)}{v}$$

$$\mathcal{R}_{[E_1', E_2']}(v_{\min}) \equiv \frac{\partial \mathcal{H}_{[E_1', E_2']}(v_{\min})}{\partial v_{\min}}$$

Algebraic maquillage II

detector-independent, unknown function of v_{\min} to be determined by data

n /:

- detector
- interaction
- DM mass

Bounds and fits

$$R_{[E'_1,E'_2]}(t) = \int_0^\infty \mathrm{d}v_{\min}\,\tilde{\eta}(v_{\min},t)\,\mathcal{R}_{[E'_1,E'_2]}(v_{\min})$$

For (conservative) bounds on the unmodulated rate, use

 $\tilde{\eta}_{\text{unmod}}(v_0) \ge \tilde{\eta}_0 \,\theta(v_0 - v)$

For "fits", use
$$\overline{\tilde{\eta}_{[E_1', E_2']}(v_{\min})} \equiv \frac{R_{[E_1', E_2']}}{\int_0^\infty \mathrm{d}v_{\min} \,\mathcal{R}_{[E_1', E_2']}(v_{\min})}$$

Spin-independent interaction

Spin-independent interaction

Spin-independent interaction

Sl isospin violating interaction

Sl isospin violating interaction

Sl isospin violating interaction

1000

Magnetic and Anapole DM

Magnetic and Anapole DM

Magnetic and Anapole DM

Instead of crosses

[1403.6830]

- Promising framework to compare different direct detection experiments in a halo-independent way
- Allows to "compare spectra" of different experiments
- Allows to ~fit the DM velocity distribution
- Quite solid in making (conservative) bounds
- So far it looks like astrophysical uncertainties alone cannot accommodate the discrepancies between different experiments

- Non straightforward interpretation of the "crosses"
- Crosses lack a precise statistical meaning
- Difficult mapping of the rate onto v_{min}-space for experiments with different nuclei, as DAMA (Na-I) and CRESST (Ca-W-O)
- No information on how compatible unmodulated and modulated signals are