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Invitation: DOFs in QFTs
• There is a clear interpretation in Physics 2C:

• The interpretation in QFTs is not so clear

Serway and Faughn
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DOFs in 2d QFTs
There is a quantity that is known to capture the number of 

degrees of freedom in a 2d CFT:
the central charge

In 2d QFTs it has been known since the 80s that there 
is a quantity that decreases monotonically as we slide 

our RG scale µ downward

An irreversibility of the renormalization group 
flux, captured by this so called c-function, 
which is the central charge at fixed points
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The 2d c-function

At fixed points: 

Then, in two dimensions:

�i(g⇤) = 0 ) c̃(g⇤) = c(g⇤)

Stationary	 at	 the	 fixed	 points

The	 central	 charge-	 
our	 DOF	 counter

c̃ = 2z4hTzz(x)Tzz(0)i+ 4z3z̄hTzz(x)�
i�i(0)i � 6(zz̄)2h�i�i(x)�

j�j(0)i
Define:

dc̃

d logµ
= �iGij�

j

Zamolodchikov ’86
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Gij(g) = (x2)2h�i(x)�j(0)i � 0



Measuring the DOFs

The existence of such a quantity in 4d would go 
a great distance in advancing our understanding 

of, e.g., QCD

We now have a “degrees of freedom” counter that is 
intuitive and has a fantastic property unique to quantum 

field theories

➡ But analogous to the time evolution of 
dissipative systems!

➡Does such a quantity exist?
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The Plan

• Local RGEs in QFTs

• Weyl consistency conditions

• A 2d example

• The 4d case

• The 2n-d case (n ≥ 3)

• The Future
Disclaimer I: we will only consider unitary, renormalizable, 
relativistic theories, i.e. we are being reasonable and 
unsuspecting physicists. The analysis changes completely 
without these requirements on the QFTs
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The local RG flow

Βut what have the gi(x) and γµν(x) got to do with the RG?

Acts as a source for 
composite operators:

Acts as a source for the 
energy momentum tensor:

g

i ! g

i(x)

Oi(x) =
�S

�g

i(x)

�µ⌫ ! �µ⌫(x)

T

µ⌫(x) =
�S

��µ⌫(x)
These tools should allow us to compute something like c-function from 2d, 

but in any dimension

• Let the sliding scale µ be a function of spacetime (let the 
cutoff in a theory be spacetime dependent): µ → µ(x)

• First consider making couplings and the (spacetime) metric a 
function of spacetime, and then relate these to µ(x)
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The “global” RG flow
• Take a step back- the quantity that concerns us is 

the generating functional W:

• The Callan-Symanzik equation tells us how to 
compensate the sliding of µ by changing the couplings: 

eW =

Z
[d�]e�S

✓
µ

@

@µ
+ �i @

@gi

◆
W = 0
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The “global” RG flow
• Now let W be a function of a constant background metric 
γµν, so that rescalings of the length                          are 
equivalent to rescalings of the metric:

✓
µ

@

@µ
+ 2�µ⌫ @

@�µ⌫

◆
W = 0

|x| =
p

�µ⌫x
µ
x

⌫

• This relates scalings of the metric and couplings:
✓
2�µ⌫ @

@�µ⌫
� �i @

@gi

◆
W = 0

By turning this into a local equation, we can capture the effects of 
Weyl transformations on our theory

 (which, in turn, will tell us about (hopeful) c-function candidates) 9



The local RG flow
g

i ! g

i(x) �µ⌫ ! �µ⌫(x)By sending

The appropriate transformations become 

With
�W

� = 2

Z
d

d
x

p
� � �

µ⌫(x)
�

��

µ⌫(x)

��
� =

Z
d

d
x

p
� � �

i(x)
�

�g

i(x)

Here σ(x) is the Weyl transformation parameter

��

µ⌫(x) ! 2�(x)�µ⌫(x)

�g

i(x) ! �(x)�i(x)
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�
�

W
� ��

�
�

�
W = stu↵ from x dependence of �

µ⌫
and g

i



The local RG flow
But not so fast! Presuming we had properly renormalized our 
theory beforehand, W must now include new counterterms 
introduced by the spacetime dependence of gi and γµν:

This looks like a theory on a curved background-
for a flat background and constant gi and σ, we reacquire the 

Callan-Symanzik equation

�
�

W
� ��

�
�

�
W = terms with derivatives of �µ⌫ , gi, and �

This is our local RG equation
Note an equivalent form:

�µ⌫Tµ⌫ = �iOi+ terms with derivatives on �µ⌫ , gi

The general form of the Weyl anomaly
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Weyl consistency conditions

The Weyl group is Abelian, so its generators obey  

h
�W

� ���
�,�

W
�0 ���

�0

i
W = 0

We can use this to constrain the form of the (Weyl) anomaly, 
much as Wess and Zumino did for SU(3) x SU(3) 

In particular, might these consistency 
conditions pick out a c-function?

Osborn ’91
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Weyl CCs in 2d

In 2d, by power counting, diff-invariance, etc. 
�
�W

� ���
�

�
W =

Z
dv �

✓
1

2
cR� 1

2
�ij@µg

i@µgj
◆
�

Z
dv @µ�wi@

µgi

There is one equation implied by the 
consistency conditions:

@i(c+ wj�
j) = �ij�

j + (@iwj � @jwi)�
j

Contracting with βi:
dc̃

d logµ
= �i�ij�

j It certainly looks 
like a c-theorem...c̃ = c+ wi�

iwith
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Disclaimer II: we will only consider 
dimensionless couplings and flows 
driven by marginal operators. 

Osborn ’91
Jack and Osborn ’13



A c-theorem in 2d?
But will it blend?

Recall that the local RG was a statement of the Weyl anomaly-
from there we can take functional derivatives to get correlation 

functions:
�
�W

� ���
�

�
W =

Z
dv �

✓
1

2
cR� 1

2
�ij@µg

i@µgj
◆
�

Z
dv @µ�wi@

µgi

hT⇢⇢(x)Tµ⌫(0)i � h⇥(x)Tµ⌫(0)i = c(@2
�µ⌫ � @µ@⌫)�

(2)(x)

hT⇢⇢(x)Oi(0)i � h⇥(x)Oi(0)i = wi@
2
�

(2)(x)
⇥ = �iOi

And...
DhTµ⌫(x)T⇢�(0)i = 0 D = µ

@

@µ
+ �i @

@gi

DhOi(x)Oj(0)i+ @i�
khOk(x)Oj(0)i+ @j�

khOi(x)Ok(0)i = ��ij@
2
�

(2)(x)

The consistency conditions are 
fundamentally a relation 

amongst correlation functions
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Ambiguities in the CCs
Correlation functions containing contact terms are ambiguous 

At the level of our consistency conditions, we can see this by 
adding to our generating functional (changing our scheme)

This causes a shift in the parameters of the anomaly:

�c = �i@i↵, �wi = �@i↵+ ↵ij�
j

��ij = �k@k↵ij + @i�
k↵kj + @j�

k↵ik

W 0 = �
Z

dv

✓
1

2
↵R� ↵ij@µg

i@µgj
◆
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A c-theorem in 2d
It blends!

Now the consistency condition
@i(c+ wj�

j) = �ij�
j + (@iwj � @jwi)�

j

is invariant under the ambiguities. 
�c = �i@i↵, �wi = �@i↵+ ↵ij�

j

��ij = �k@k↵ij + @i�
k↵kj + @j�

k↵ikA relation amongst the correlation 
functions allows χij to be related to 

Zamolodchikov’s Gij, once the 
ambiguities are used to identify the two

Hence the (2d) c-theorem is derived by means of the Weyl 
consistency conditions!
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Shall we try 4d?
The consistency conditions procedure can be 

extended to arbitrary number of even dimensions
But let’s not be too hasty and try 4d first:

�
�W

� ���
�

�
W =

Z
dv � T �

Z
dv @µ�Zµ
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T = cW 2 + aE4 +
1

9
bR2

+
1

3
�e
i@µg

i@µR+
1

6
�f
ij@µg

i@µgjR+
1

2
�g
ij@µg

i@⌫g
jGµ⌫

+
1

2
�a
ijr2gir2gj +

1

2
�b
ijk@µg

i@µgjr2gk +
1

4
�c
ijkl@µg

i@µgj@⌫g
k@⌫gl

Zµ =Gµ⌫wi@⌫g
i +

1

3
@µ(dR) +

1

3
RYi@

µgi

+ @µ(Uir2gi +
1

2
Vij@⌫g

i@⌫gj) + Sij@
µgir2gj +

1

2
Tijk@⌫g

i@⌫gj@µgk

This	 form	 chosen	 for	 convenience-	 
we	 can	 always	 integrate	 by	 parts	 to	 

put	 these	 terms	 in	 T



Weyl CCs in 4d

In 4d there are six equations implied by the 
consistency conditions, one of which is:

Rinse, repeat

Exactly analogous to the 2d case

However, it is not clear that χgij can be related to a positive definite 
“metric” like in 2d- the correlation functions are not as clean

The 4d version of the c-theorem has been proven 
perturbatively

A weak version of the c-theorem has perhaps been proven 
Jack and Osborn ’91

@i(a+
1

8
wj�

j) =
1

8
�g
ij�

j +
1

8
(@iwj � @jwi)�

j

18
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On to 6d
The 6d case is motivated mostly by string 

theoretic constructions and misguided curiosity

6d:
�
�W

� ���
�

�
W =

Z
dv �

65X

i=1

Ti �
Z

dv @µ�
30X

i=1

Zµ
i

Problems: there are 95 independent dim. 6 diff-invariant
terms contributing to the trace anomaly

Opportunities: many patterns in the CCs
emerge that were not apparent in 2d or 4d

19

We’ve got 95 problems but a 
candidate c-function ain’t one



On to 6d
First: the pure dim. 6 curvature terms (known for some 

time):

Bonora, Pasti, and Bregola ’86

K1 = R3, K2 = RR�R�, K3 = RR�µ⌫R�µ⌫ , K4 = R�R�µR
µ
,

K5 = R�Rµ⌫�R
µ⌫ , K6 = R�Rµ⌫⇢R

µ⌫⇢
� , K7 = R�µ⌫Rµ⌫⇢�R

⇢�
�,

K8 = R�µ⌫R⇢�µ�R
⇢�

 ⌫ , K9 = R⇤R, K10 = R� ⇤R�, K11 = R�µ⌫ ⇤R�µ⌫ ,

K12 = R�r@�R, K13 = rR�µrR�µ, K14 = rR�µr�Rµ,

K15 = rR�µ⌫⇢rR�µ⌫⇢, K16 = ⇤R2, K17 = ⇤2R.

Bastianelli, Cuoghi, and Nocetti ’00

A more useful basis:
• The Euler density (1)
• Local Weyl invariants (3)
• Trivial anomalies (6)
• “Vanishing” anomalies (7)

Whose coefficient is our c candidate

Like W2 in 4d

Like◻R in 4d- coefficients shifted by an addition to the action

Like R2 in 4d- do not satisfy the CCs at the fixed points
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In the 6d anomaly
Curvature terms with dimension less than 6

21

1

d� 1
R, Gµ⌫ , R�µ⌫ ,

1

d� 1
@µR, rGµ⌫

E4 = 2
(d�2)(d�3) (R

�µ⌫R�µ⌫ � 4R�R� +R2),

I = R�µ⌫R�µ⌫ � 4
d�2R

�R� + 2
(d�1)(d�2)R

2, 1
(d�1)2R

2, 1
d�1⇤R,

H1µ⌫ = (d�2)(d�3)
2 E4�µ⌫ � 4(d� 1)H2µ⌫ + 8H3µ⌫ + 8H4µ⌫ � 4R�⇢

µR�⇢⌫ ,

H2µ⌫ = 1
d�1RRµ⌫ , H3µ⌫ = R 

µ R⌫ , H4µ⌫ = R�Rµ�⌫ ,

H5µ⌫ = ⇤Rµ⌫ , H6µ⌫ = 1
d�1rµ@⌫R,

@µE4, @µI,
1

(d�1)2R @µR, 1
d�1@µ⇤R, r⌫H(2,3,4)µ⌫



In the 6d anomaly

Some terms from T

22

T1 = �c1I1, T2 = �c2I2, T3 = �c3I3, T4 = �aE6, T5,...,11 = �b1,...,7L1,...,7,

T12 = I1
i @µg

i @µE4, T13 = I2
i @µg

i @µI, T14 =
1

25
I3
i @µg

i R @µR,

T15 =
1

5
I4
i @µg

i @µ⇤R T16,17,18 = I5,6,7
i @µg

i r⌫H
µ⌫
2,3,4,

T19 =
1

2
G1
ij @µg

i@µgj E4, T20 =
1

2
G2
ij @µg

i@µgj I, T21 =
1

50
G3
ij @µg

i@µgj R2,

T22 =
1

10
G4
ij @µg

i@µgj ⇤R, T23,...,28 =
1

2
H1,...,6

ij @µg
i@⌫g

j Hµ⌫
1,...,6



In the 6d anomaly

Some terms from Zµ

23

Zµ
1 = �b8 @

µE4, Zµ
2 = �b9 @

µI, Zµ
3 = � 1

25
b10 R @µR,

Zµ
4 = �1

5
b11 @

µ⇤R, Zµ
5,6,7 = �b12,13,14 r⌫H

µ⌫
2,3,4

Zµ
8 = G1

i @
µgi E4, Zµ

9 = G2
i @

µgi I, Zµ
10 =

1

25
G3
i @

µgi R2,

Zµ
11 =

1

5
G4
i @

µgi ⇤R, Zµ
12,...,17 = H1,...,6

i @⌫g
iHµ⌫

1,...,6



Weyl CCs in 6d
In 6d there are thirty-six equations implied by the 

consistency conditions, one of which is again:

New	 terms-	 from	 vanishing	 anomalies	 

First point: we still don’t know if we can relate  
 to a positive definite metric

Second point: there must be some mechanism that guarantees
  such a CC will show up in any (even) dimension

H1
ij

24

@i(a+
1

6
b1 � 1

90
b3 +

1

6
H1

j�
j) =

1

6
H1

ij�
j +

1

6
(@iH1

j � @jH1
i )�

j



Weyl CCs in 2n-d
Now notice the following pattern:

Lovelock ’71

Upon integrating by parts, in 2n-d

In fact, it was shown in the 70s that Hµν is the unique tensor with 
properties of the Einstein tensor:

rµr⌫H
µ⌫ = 0

The existence of this tensor is crucial to 
finding a c candidate in 2n-d!

r⌫H
µ⌫ = 0 and Hµ⌫ = H⌫µ With n-1 powers 

of curvature, etc.
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d = 2 0 = ��
R
d2x

p
�R =

R
d2x

p
� �µ⌫ rµ@⌫�

d = 4 0 = ��
R
d4x

p
� E4 = �8

R
d4x

p
�Gµ⌫ rµ@⌫�

d = 2n 0 = ��
R

d2nx
p
� E2n = �8

R
d2nx

p
�Hµ⌫ rµ@⌫�



Weyl CCs in 2n-d
Example: A case in 6d where this does not occur:

The c-candidate terms are all 
proportional to 

This consistency condition is 
proportional to

This	 ruins	 everything!

But in fact, the appearance of this extra term ~χi is generic, and 
ruins any hopes of c-function candidates other than that coming 

from the special Hµν consistency condition

The coefficient of the Euler density and its associated CC are 
indeed quite exceptional, and is the only candidate CC that 

permits a c-function interpretation
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(�@µ�
0 � �0@µ�)H

µ⌫
1

(�@µ�
0 � �0@µ�)H

µ⌫
4

@i(�b1 +
2

3
b7 +

1

12
H4

j�
j) =

1

12
(H4

ij +
1

2
Fij)�

j +
1

12
@[iH4

j]�
j +

1

6
I7
i



Weyl CCs in 2n-d
A consistency condition in any even-dimensional 

spacetime:

@iã = Hij�
j + (@iHj � @jHi)�

j

Our	 metric	 in	 coupling	 space

The monotonicity of a function analogous to the c-function in 2d can 
be established if          is shown to be positive definite

This has been done in 2d (χij) and perturbatively in 4d (χgij)

Hij

Invariant under the 
arbitrariness of the 2n-d 

Weyl anomaly
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“Consequences of Weyl consistency conditions”

Coincides	 with	 the	 
coefficient	 of	 E2n	 
at	 fixed	 points



The Future

• Perturbative proof that           is positive definite 
about a UV fixed point in 6d (in progress)

• Effects of (ir)relevant operators on 
montonicity results

• Weyl CCs in QFTs with a boundary

• Postdoc applications

Thank you!

Hij
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