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Vertical and meridional distributions of the atmospheric CO,
mixing ratio between northern midlatitudes and southern
subtropics
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[1] The atmospheric CO, mixing ratio was measured using a continuous measurement
system onboard a Gulfstream-II aircraft between the northern midlatitudes and the
southern subtropics during the Biomass Burning and Lightning Experiment Phase A
(BIBLE A) campaign in September—October 1998. The vertical distribution of CO, over
tropical regions was almost constant from the surface to an altitude of 13 km. CO,
enhancements from biomass burning and oceanic release were observed in the tropical
boundary layer. Measurements in the upper troposphere indicate interhemispheric
exchange was effectively suppressed between 2°N—7°N. Interhemispheric transport of air
in the upper troposphere was suppressed effectively in this region. The CO, mixing ratios
in the Northern and Southern Hemispheres were almost constant, with an average value of
about 365 parts per million (ppm) and 366 ppm, respectively. The correlation between the
CO, and NO, mixing ratios observed north of 7°N was apparently different from that
obtained south of 2°N. This fact strongly supports the result that the north-south boundary
in the upper troposphere during BIBLE A was located around 2°N—7°N as the boundary is
not necessary a permanent feature. INDEX TERMS: 0365 Atmospheric Composition and Structure:
Troposphere—composition and chemistry; 0368 Atmospheric Composition and Structure: Troposphere—
constituent transport and chemistry; 0322 Atmospheric Composition and Structure: Constituent sources and

sinks; KEYWORDS: CO,, aircraft, meridional distribution
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1. Introduction

[2] Atmospheric CO, is the second most prevalent green-
house gas, and its mixing ratio has been increasing since the
18th century [e.g., Barnola, 1999]. To predict future CO,
levels, it is necessary to understand the global carbon cycle.
Systematic measurement of the atmospheric CO, is one of
the most promising methods for determining the distribution
and magnitude of natural sources and sinks [e.g., Conway et
al., 1994; Keeling et al., 1995; Francey et al., 1995;
Nakazawa et al., 1997]. Most of the CO, monitoring has
been conducted at the surface sites, but limited CO,
measurements have been carried out in the free troposphere
[Pearman and Beardsmore, 1984; Nakazawa et al., 1991,
1993; Matsueda and Inoue, 1996; Anderson et al., 1996;
Francey et al., 1999; Vay et al., 1999].
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[3] To extract information about sources and sinks from
observed CO, data, many kinds of three-dimensional (3-D)
tracer transport models have been developed and used
[Denning et al., 1999]. Because the expression of vertical
transport is highly important for 3-D models [Denning et
al., 1996], the observed information about vertical CO,
distribution is quite useful for constraining models.

[4] Knowledge of the CO, spatial distribution can be a
powerful tool for determining atmospheric structure and for
understanding the movement of air masses. The CO, mix-
ing ratio is strongly affected near the earth’s surface by
photosynthesis, respiration, oxidation of organic matter,
biomass burning, fossil fuel burning and air-sea exchange,
but in the free troposphere, CO, production and reduction
by chemical reaction is quite small. CO, data have been
used as an air tracer not only in the free troposphere but also
in the stratosphere or in troposphere-stratosphere exchanges
[Boering et al., 1996; Hintsa et al., 1998].

[s] To investigate the impact of biomass burning and
lightning on tropospheric O3 and Oz precursor gases, The
Biomass Burning and Lightning Experiment phase A
(BIBLE A) campaign was conducted using a Gulfstream
II aircraft over Indonesia and northern Australia in Septem-
ber and October 1998. During this campaign, atmospheric
CO, mixing ratios were measured continuously onboard the
aircraft to know the emission factors of O3 precursor gases
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Figure 1. Flight tracks during the BIBLE A campaign.

and to classify origin of air mass. In this paper, we report the
results of vertical and meridional distributions of the atmos-
pheric CO, from northern midlatitudes to the southern
subtropics.

2. Experiment

[6] The BIBLE A campaign was carried out from Sep-
tember 21 to October 10, 1998. Fifteen observation flights
were conducted during the mission and their spatial cover-
age is shown in Figure 1. The aircraft was equipped with a
suite of instruments capable of quantifying a number of
species including CO,, NO, NO,, CO, O; and aerosols.
CH4, nonmethane hydrocarbons (NMHCs) and halocarbons
were measured from whole air samples collected in stainless
steel canisters on the aircraft. A detailed description of the
BIBLE A campaign is given by Kondo et al. [2001]. The
CO, observations were carried out using a continuous
measurement system with a nondispersive infrared analyzer
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(NDIR) onboard the airplane. Figure 2 shows a schematic
diagram of the CO, measurement system used in this
campaign. The outside air was drawn through the inlet port
mounted at the top of the fuselage and compressed by a
diaphragm pump (Gast, MAA-P108-HB) up to 0.2 MPa.
The inlet port was composed of 3/8-inch-diameter stainless
tube extending 10 cm out from the fuselage, facing the rear
of the aircraft. After passing through a Nafion drier and
magnesium perchlorate, the sample air was introduced into
a NDIR (LI-COR, LI-6262). The loss of CO, by a Nafion
drier and magnesium perchorate is determined to be negli-
gible by introducing standard gases. The sample flow rate
was kept constant at 300 standard cc per minute (sccm) by a
mass flow controller (STEC, SEC4400 mark3). Standard
gases of 342.26 ppm and 386.81 ppm were the CO,-in-air
mixture stored in 2-L aluminum cylinders at 10 MPa.
Solenoid valves selected the flows from sample air or
standard gases. A standard gas with a lower mixing ratio
was continuously introduced into a reference cell at a flow
rate of 5 scem. The absolute pressure of the buffer volume
attached to the outlet of two cells was actively controlled to
0.105 MPa by using a piezo valve (STEC, PV-2000) and a
pressure sensor (Setra, model 270) to avoid a signal drift of
the NDIR associated with changes of cabin pressure. The
difference in the pressure of the buffer volume during the
flight between the altitude of 13 km and 0.4 km was less
than 1 x 10~* MPa.

[7] During flight, each standard gas was introduced into
the sample cell for 30 s every 15 minutes. Data from the
NDIR averaged at 1-s intervals were recorded on a personal
computer. The CO, mixing ratios of sample air were
calculated post-flight by interpolating values of two stand-
ard gases before and after the sample. The influence of
analyzer nonlinearity on the results was estimated to be less
than 0.3 ppm.

[8] The response time of the measurement system caused
mainly by the air exchange in the sample cell was deter-
mined to be about 6 s. The 1-s averaged data are used in this
study to detect a short time correlation with other trace
gases, although the response time is 6 s. The peak-to-peak
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Schematic diagram of the CO, measurement system.
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Figure 3. Vertical distributions of the CO, mixing ratio over (a) Sea of Japan, (b) Saipan, and (c)

Nagoya in the Northern Hemisphere.

noise of data averaged at 1-s intervals was less than 0.2
ppm. The standard gases were calibrated before and after
the campaign against the CO, standard scale at the National
Institute for Environmental Studies (NIES), prepared in
1995 by the gravitational method (NIES95 scale). The
concentration differences in 2-L cylinders between before
and after the campaign were less than 0.3 ppm. The NIES95
scale was compared with the CO, standard scale at the
National Oceanic and Atmospheric Administration/Climate
Monitoring and Diagnostic Laboratory (NOAA/CMDL) in
1996 [Peterson et al., 1997]. The differences in the scales
between the two laboratories were within 0.12 ppm in a
range between 343 and 372 ppm.

3. Results and Discussion
3.1. Vertical Distribution
[9] The BIBLE A campaign was conducted from late

September to early October, which coincided with the
seasonal minimum of CO, mixing ratios at the surface in

northern middle to low latitudes. The seasonal minimum
appears about one month earlier in northern middle to high
latitudes [Nakazawa et al., 1997].

[10] The vertical distributions of the CO, mixing ratio
observed in the Northern Hemisphere during the BIBLE A
campaign are presented in Figures 3a—3c. The CO, mixing
ratios in the free troposphere were almost constant over the
Sea of Japan and Saipan, values being 364.5-365 ppm, and
indicated little influence from local pollution sources. But
layers with low CO, mixing ratios (<364 ppm) were seen at
6 km and 8—9 km over Nagoya (Figure 3¢) and 13 km over
the Sea of Japan (Figure 3a). NO, mixing ratios were
relatively higher (300—500 parts per trillion (ppt)) in those
layers suggesting a stratospheric influence. However, CO,
mixing ratios should be higher in the stratosphere than
troposphere in the late summer/early fall in the northern
middle or high latitudes [Anderson et al., 1996]. Because of
the fact that seasonal CO, cycle of the lower stratosphere
shows a maximum in September, whereas CO, in the upper
troposphere shows minimum in summer at the northern
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Figure 4. Vertical distributions of the CO, mixing ratio over (a) Kalimantan and Sumatera, (b) Java Sea
and Indian Ocean, and (c) Bandung in the tropical region.

mid/high-latitudes [Nakazawa et al., 1991]. Therefore these
CO,-depleted layers aren’t likely attributable to tropo-
sphere/stratosphere exchange.

[11] The land surface acts as a strong CO, sink in the
summer season because of the active photosynthesis by the
land biosphere. Therefore CO,-depleted air masses may be
formed near the land surface and transported to the middle
or upper troposphere by convective activities. Anderson et
al. [1996] also found such structures with the lower CO,
layer in the northern midlatitudes (30°—40°N) in September
1991 and explained that CO,-depleted layers were lifted by
convective activity over central and northern China and
advected to the experiment area (over the western Pacific)
by rapid horizontal transport. The enhanced NO, mixing
ratios observed in these layers could therefore result from
the biogenic emissions from soils that are known major
source of tropospheric NOy [Yienger and Levy, 1995].
During PEM-West B aircraft observation, the NOy mixing

ratio in the continental air masses increased significantly
between the surface and 4 km, the median value reaching
700—900 ppt in the lower troposphere [Kondo et al., 1997].

[12] Over Saipan, lower CO, mixing ratios were found
near the surface. Back trajectory analysis using the Euro-
pean Center for Medium-Range Weather Forecasts
(ECMWF) suggests that the air mass at 1 km altitude over
Saipan had been transported over the western subtropical
Pacific Ocean, its origin 5 days before was the middle of the
subtropical Pacific (around 21°N, 175°E). The lower mixing
ratios of 363.5-364 ppm were due partly to the CO,
assimilation by local vegetation and partly to CO, uptake
by the western subtropical Pacific Ocean.

[13] The high CO, mixing ratio below 1 km over the Sea
of Japan probably had an anthropogenic origin. The NO,
mixing ratio showed a similar structure, that is, lower values
(<200 ppt) above 2 km, extremely high values (>2000 ppt)
between 1 and 0.5 km and somewhat high values (~450
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Figure 5. Meridional distributions of CO, and NO,
mixing ratios in the upper troposphere observed on the
way from Japan.

ppt) at 0.4 km. A high mixing ratio of C,Cly, which is an
indicator of industrial activities, was 5.4 ppt at 0.4 km,
while upper level mixing ratios were <3 ppt.

[14] Figures 4a—4c show vertical CO, distributions
observed over a tropical region. The CO, mixing ratio
was almost constant (Figures 4a and 4b) from the lower
to upper troposphere, implying that the seasonal change in
biospheric activities in a tropical region is small and/or the
air was well mixed by strong vertical convection. The CO,
values (around 366 ppm) are slightly higher than those
obtained in the free troposphere in the Northern Hemi-
sphere. Constant vertical profiles of CO, were also found
over the tropical region in October, 1991 during the PEM-
West A aircraft campaign [Anderson et al., 1996].

[15] Extremely high mixing ratios of CO, were observed
lower than 1.2 km over Kalimantan (Figure 4a) and the Java
Sea (Figure 4b). At lowest altitude of 1.2 km over Kali-
mantan, NO, and CO mixing ratios as well as CH,; and
NMHCs had enhanced concentrations, whereas no enhance-
ment of CFCs and C,Cl; was observed. This suggests that
biomass burning played a dominant role in the increased
CO;, near the surface over Kalimantan. On the other hand,
no enhanced mixing ratios of NO,, CH4, NMHCs, CFCs or
C,Cl, and slightly decreased O; were observed at 0.3—0.6
km over the Java Sea. Hashida [1996] indicated that CO,
was released from the ocean around the Java Sea by
measuring the partial pressure of CO, (pCO,) in the sea-
water. Therefore observed high CO, mixing ratios over the
Java Sea were likely caused by CO, released from the ocean
and accumulated in the marine boundary layer.

[16] Relatively increased CO, was observed above 12 km
over Sumatera (Figure 4a) and Java Sea (Figure 4b). CO
and NO, mixing ratios also show higher values in these
layers. Kita et al. [2002] indicated that atmospheric con-
vection was active over Indonesia during the BIBLE A
period and the increase of CO in the upper troposphere was
explained as the convective transport of surface air influ-
enced by urban pollution and biomass burning. The CO,
enhancement in the upper troposphere was also possibly
caused by the vertical transport of surface air. Lightning
associated with convection activity mainly contributed to
the observed increase of NOy [Koike et al., 2002].
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Figure 6. Temporal variations of the CO, and NO, mixing
ratios observed from 33°N to 24°N.

[17] Twelve CO, profiles were obtained by flight number
06—12 (27 September to 9 October) over Bandung, Indo-
nesia (Figure 4c). Sporadic CO, enhancement was observed
above 4 km in flight number 09, 10 and 11. NOy and CO
mixing ratios increased simultaneously with CO, in these
layers. Therefore urban pollution and/or biomass burning
also caused CO, enhancement in middle troposphere. If we
exclude the polluted air (typically >150ppt of NO,, and >80
ppb of CO), CO, mixing ratios above 4 km over Bandung
are almost constant, being about 366 ppm. At the altitudes
lower than 3 km over Bandung, higher mixing ratios were
observed early in the morning and lower values were
observed in the evening. In the nighttime, large amount of
CO; is released from land biosphere by respiration and
accumulated in the nocturnal inversion layer. On the other
hand, land biomass absorb large amount of atmospheric
CO, by photosynthesis in the daytime. The differences in
CO, mixing ratio at the lower altitudes were likely created
by diurnal changes in activities in the land biosphere around
Bandung.

3.2. Meridional Distribution

[18] The meridional distributions of the CO, mixing ratio
obtained during the level flight from Nagoya to Alice
Springs via Saipan, Biak, and Darwin in the upper tropo-
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Figure 7. Meridional distributions of the CO, mixing ratio
in background air in the upper troposphere.
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sphere (11—-13 km) are presented in Figure 5. The CO,
mixing ratios in the Northern Hemisphere were generally
lower than those in the Southern Hemisphere. Extremely
low levels of CO, were observed occasionally in the latitude
range from 23°N-34°N. The meridional distributions of
NO, mixing ratio are also presented in Figure 5 for
reference. In the Northern Hemisphere, the NO, mixing
ratio showed large spatial variations at 23°N—-34°N. CO,
and NO, were anticorrelated during this period. Higher NO,
mixing ratios were observed where the CO, is at lower
levels. Variations of the CO, mixing ratio in this region

corresponded negatively with NO, variations (Figure 6),
which indicates that changes in CO, and NO,, were asso-
ciated with varying air masses. As mentioned in section 3.1,
the air mass with high NOy and low CO, mixing ratios
could be from the lower troposphere rather than the strato-
sphere at northern midlatitudes in the summer season. In
addition, higher levels of CO, CH; and NMHCs were
observed in air with lower CO, mixing ratios at 23°N—
34°N. Therefore the air mass with low CO, and high NO,,
mixing ratios was considered to be strongly affected by the
land surface and transported to the upper troposphere within
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Figure 9. Meridional distributions of the CO, mixing ratio
in the upper troposphere observed on the way to Japan.

a couple of days. Matsueda and Inoue [1996] reported that
low mixing ratios of CO,, which largely exceeded the
seasonal variation, with high CH, mixing ratios were
observed in the upper troposphere around 15°N in October
1993 between Sydney, Australia and Tokyo, Japan. They
indicated that the continental surface air was transported
upward and affected the sampling sites.

[19] In the Southern Hemisphere, higher CO, and NO,
mixing ratios were observed at 13°S—16°S. In this region,
enhancement of CO, CH4 and NMHCs mixing ratios were
observed (ACO/ACO, = 0.041 ppm/ppm, ACH4/ACO, =
0.022 ppm/ppm), whereas CFCs and C,Cl, levels showed
no increase. It appears that relatively high CO, mixing
ratios at 13°S—16°S were due mainly to CO, released by
biomass burning.

[20] In order to see background levels of the CO, mixing
ratio in the upper troposphere, CO, results affected by the
land surface were excluded from the meridional distribu-
tions. In this study, air masses with NO, mixing ratios
higher than 150 ppt were considered recently influenced by
surface sources (Figure 5). The selected meridional varia-
tions of the CO, are shown in Figure 7. A clear north-south
difference of atmospheric CO, mixing ratio in the upper
troposphere is evident, with the boundary lying between
2°N and 7°N. Nishi and BIBLE Science Team [2001]
showed that higher cloud top was seen around 5—10°N
along our flight track during 23 September to 12 October
1998 using outgoing longwave radiation. It is almost con-
sistent with the result that the boundary lying between 2°N
and 7°N. The CO, mixing ratios from 7°N to 38°N and
from 2°N to 22°S were almost constant, with average values
of 365 ppm and 366 ppm, respectively. This suggests that, if
we exclude the air influenced by the land surface, the upper
tropospheric air in each hemisphere was mixed well at
latitude. Previous studies conducted at similar longitudes
indicated that CO, mixing ratios in the Northern Hemi-
sphere were lower than those in the Southern Hemisphere in
the upper troposphere during Northern Hemispheric sum-
mer [Nakazawa et al., 1991; Matsueda and Inoue, 1996].

[21] Nakazawa et al. [1991] found that the South Pacific
Convergence Zone (SPCZ) largely suppressed the interhe-
mispheric air exchange and made a clear discontinuity of
CO, mixing ratio at 10—12 km around 0°—10°S of observed
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longitudes from December to April. The CO, discontinuity
found in the present study was located at 2°N—7°N in a
different season. The continuous CO, measurements carried
out during the PEM-West A aircraft campaign in 1991 did
not show a clear interhemispheric difference in the upper
troposphere, even though they flew in September at similar
longitudes [Anderson et al., 1996]. Aircraft measurements
of CO; during the PEM-T campaign found that SPCZ acted
as an effective barrier to meridional transport only at lower
altitudes over the south Pacific, in August—October 1996
[Vay et al., 1999]. In the upper troposphere, they showed
evidence of Northern Hemispheric air being transported to
the Southern Hemisphere. This suggests that the air sup-
pression by the interhemispheric boundary in the upper
troposphere is not always sufficient.

[22] In background air shown in Figure 7, small CO,
variations with peak-to-peak amplitudes of 0.5-0.6 ppm
along the latitude are seen. Because noise levels of the CO,
measurement system used in this study are less than 0.2
ppm, the variations seen in Figure 7 are regarded as actual
spatial CO, changes, with a scale of 10—50 km, in the upper
troposphere. To ascertain the characteristics of air in the
upper troposphere, 1-s averaged data of CO, mixing ratio in
background air were compared with the NOy mixing ratios,
Figures 8a—8e. A negative correlation between CO, and
NO, is seen in Figures 8a and 8b and to the north of 6.9°N
in Figure 8c. On the other hand, a positive correlation is
shown in Figures 8d and 8e, and there is no relation to the
south of 6.9°N in Figure 8c. The NO,-CO, correlations in
each hemispheres are similar to the relation obtained from
the air influenced by lower troposphere. It appears that air
masses in background conditions maintain characteristics
from when the air was in the source/sink region (near the
surface). These correlations strongly support the result that
the north-south boundary lies around 2°N—7°N along the
observed region.

[23] CO, latitudinal distributions in the upper troposphere
observed during the level flight from Bandung to Nagoya
via Biak and Saipan on October 1998 are presented in
Figure 9. The CO, mixing ratio in the northern midlatitudes
changes from 362 ppm to 367 ppm, which is similar to the
results obtained during the flight to Australia. Figure 10
shows the meridional CO, variations in background air
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Figure 10. Meridional distributions of the CO, mixing
ratio in background air observed on the way to Japan.
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way from Bandung to Nagoya at the latitude between (a) 17.6°N and 16.4°N, (b) 10.3°N and 0.1°S, and
(c) 2.2°S and 4.7°S. The solid line represents the least squares fitting to the data.

selected by the same procedures used for Figure 7. As
Figure 10 shows, typical background air was rarely found
north of 16°N. The CO, mixing ratio in the background air
is lower in the northern latitudes, but the atmospheric
boundary between the Northern and Southern Hemispheres
is not evident in Figure 10. The CO, mixing ratios presented
in Figure 10 are compared with the NO, mixing ratio in
Figures 11a—11c. The characteristics of the air mass at each
latitudinal area can be distinguished clearly; a negative
correlation between the two mixing ratios can be seen to
the north of 16.4°N and a positive correlation can be seen to
the south of 10.3°N. As can be seen, Figure 11, the north-
south boundary of the upper troposphere appears to lie
between 16.4°N and 10.3°N and appears to have moved
northward from September to October 1998.

4. Summary and Conclusions

[24] The atmospheric CO, mixing ratio was measured to
determine the CO, spatial distributions between the north-
ern midlatitudes and the southern sub tropics. The back-
ground CO, mixing ratios were about 365 ppm in the
Northern Hemisphere and 366 ppm in the Southern Hemi-
sphere, in September and October 1998. These mixing
ratios extended from the lower to the upper troposphere.
In addition to these levels, relatively high or low mixing
ratios that were affected by strong sources or sinks were

sometimes observed. In the upper troposphere at 23°N—
34°N, extremely low mixing ratios were observed. This
result indicates that air masses previously in contact with
the land surface can be transported to the upper troposphere
in a wide range of latitudes. Using CO, spatial distributions,
we showed a clear boundary of air between the Northern
and Southern Hemispheres in the upper troposphere. Meas-
uring CO, spatial distribution is useful not only for under-
standing the global carbon cycle but also for understanding
the atmospheric structure and the transport of air masses.
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