Global Gas Hunt

FROM 1

aboard the NASA planes, said he believes the cloud of gas may have survived a 10,000-km jour-

”I would have thought it would have dissipated or diluted,” Blake said. "I certainly shows this as not pristine as an area we thought.

Blake has earned widespread recognition as part of the research team led by J. Shurour Rowland, who showed a Na-

The expedition will help gather critical information about the mechanism that causes this cloud and how it interacts with the atmosphere, essential to predicting what the world may look like in the future. The team says they will return to the study in future generations will be likely to look at how the

This year, Blake and other scientists are accepting air samples from the NASA planes at Tahiti, Easter Island, Revillagigedo, and the Antarctic Peninsula for the International Study of Atmospheric Exploration. One important goal is to find out how the different atmospheric conditions affect the cloud.

The air samples are analyzed at NASA’s Jet Propulsion Laboratory in California, where scientists look for clues about the cloud’s origins.

The chemistry of the atmosphere is complex, and the cloud appears to contain a variety of chemicals that could contribute to its formation, said McNellis. Scientists are still working to understand how the cloud has formed.

The chemical composition of the air appears to have changed significantly since the first detection of the cloud.

The results of the research will be announced at a later date.

Mission to Planet Earth

Scientists on two NASA planes are sampling the air from Hawaii to New Zealand to study the

NASA Ames Research Center in Mountain View, Calif., to determine if the atmosphere is changing in the troposphere.

Researchers are trying to measure the impact of human activity on the troposphere, a layer of the atmosphere that is closest to Earth and is affected by pollution and climate change.

The cloud has the chemical signature of burning vegetation and scientists want to find out where it came from. Possibilities include burning Brazilian rainforests and African or Australian grasslands.

The cloud is made up of tiny particles that can reflect sunlight and absorb heat, affecting the temperature and climate of the area.

The team has been monitoring the cloud for several years and has found it to be moving slowly.

The cloud is thought to be caused by a combination of human activities, such as burning and deforestation, and natural processes, such as volcanic eruptions and meteorological events.

The scientists plan to continue monitoring the cloud and study its impact on the environment and climate.