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We have performed a Monte Carlo study of a three dimensional system of classical electrons with
Coulomb interactions at half filling. We systematically increase the positional disorder by starting from
a completely ordered system and gradually transitioning to a Coulomb glass. The phase transition as a
function of temperature is second order for all values of disorder. We use finite size scaling to deter-
mine the transition temperature TC and the critical exponent n. We find that TC decreases and that n
increases with increasing disorder.
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Electrons with long range Coulomb interactions in three dimensions display a rich and complex beha-
vior. If there is translational invariance and a background of compensating positive charge, the system
forms a Wigner crystal at low densities where the potential energy dominates the kinetic energy [1, 2].
In the presence of quenched disorder the competition between interactions and disorder produces a
Coulomb glass. Comparing these two extremes reveals similarities and differences. For example both
undergo a phase transition when the temperature is lowered. In one case an ordered arrangement of
electrons is formed while in the case of the Coulomb glass a highly disordered arrangement is frozen
into place. Yet both low temperature phases have a gap in their single particle density of states.

In this paper we study the effect of gradually introducing disorder into a three dimensional system
of electrons with long range Coulomb interactions. The system is discrete in the sense that the elec-
trons sit on half of the available sites. In the ordered case the sites form a cubic lattice. The disorder
is introduced in the positions of the sites and their deviation from a cubic lattice. The Hamiltonian is

H ¼
P
i> j

ni � Kð Þ ðnj � KÞ
rij

ð1Þ

where we set the charge e ¼ 1, ni is the number operator for site i, rij ¼ jri � rjj, and K is a compen-
sating background charge making the whole system charge neutral. ni ¼ 1 (�1) for an occupied (un-
occupied) site. We consider half–filling with K ¼ 1=2.

We have simulated three dimensional systems of linear size L ¼ 4, 6, and 8. We place N ¼ L3 sites
in the system. We have only considered the case of half filling in order to take advantage of the
particle-hole symmetry. For the ordered case the sites form a cubic lattice. In the ground state, every
other site is occupied; the occupied sites form a face centered cubic (FCC) lattice. We can gradually
introduce disorder by allowing the deviation of a site from its position in a cubic lattice to be chosen
from a Gaussian distribution with a standard deviation of s. This gives the radial distance from the
cubic lattice site. The angular coordinates of the site are chosen randomly using a uniform distribu-
tion. The ordered case corresponds to s ¼ 0. s ¼ 1 corresponds to a very disordered case with a
standard deviation equal to the cubic lattice constant a. For all values of the disorder, the system
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undergoes a second order phase transition as the temperature is lowered. (In the ordered case, con-
straining the electrons to sit on lattice sites rather than allowing them to have continuous translational
degrees of freedom results in a second order phase transition. This is consistent with our observations
of the lack of coexistence of the ordered and disordered phases at TC and with the absence of hysteresis.)
We study the effects on the thermodynamics of this phase transition as a function of the disorder.

We use infinite periodic boundary conditions in which the simulation box is infinitely replicated in
all directions to form a lattice. We use an Ewald summation technique [3] so that an electron on a
given site interacts with the other electrons and all their images via the Coulomb interaction.

We used a Monte Carlo heat bath algorithm. We keep a table of the potential energy at each site.
Each electron is looked at sequentially and moved to one of the available N=2þ 1 sites (its own site
or one of the available N=2 unoccupied sites), chosen with a Boltzmann probability. If the site chosen
is the electron’s originial location, the potential energies are unchanged; if the electron hops to a new
site, we update all the potential energies. If the electron chooses its initial site, which it does with
high probability at low temperatures, we do not have to recompute the potential energies. This speeds
up the simulation considerably, partially compensating for the much longer equilibration times needed
at low temperatures. Our longest run (for L ¼ 4 at T ¼ 0:01) had 3� 106 Monte Carlo steps per
electron. Depending on the system size and temperature, the sample averages involved between 5 and
190 disorder configurations.

Let Si ¼ 2ðni � KÞ be an effective spin associated with the occupation of site i so that Si ¼ 1 (�1)
for an occupied (unoccupied) site. The Edwards–Anderson order parameter is defined as q � ½hSii2�;
we will denote thermal averages by h. . .i and disorder averages by ½. . .�. We use the moments of the
overlap to define Binder’s g [4, 5]:

g ¼ 1
2

3� hq4i½ �
hq2i½ �2

 !
ð2Þ

Binder’s g provides a way to monitor the phase transition. Since g is dimensionless, we expect that it
should satisfy a scaling form

gðL; TÞ ¼ ĝgðL1=n T � TCð ÞÞ : ð3Þ
Thus at the critical temperature, gðL; TCÞ should have the same value independent of the system size L
(as long as L is sufficiently large for finite size scaling to apply) [4, 5]. We have determined the
critical exponent n and the transition temperature TC as a function of the disorder s through the finite
size scaling of gðL; TÞ [5, 6]. In Fig. 1 we plot gðL ¼ 8; TÞ versus T for various values of s.

Notice that the transition region moves to lower temperatures with increasing disorder. This reflects
the decrease in TC with increasing s. The transition temperature corresponds to the temperature where
the curves of gðL; TÞ versus T for all sizes cross.
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Fig. 1 gðL ¼ 8;TÞ vs. T for s ¼ 0 (45 runs),
s ¼ 0:1 (10 runs), s ¼ 0:2 (5 runs), s ¼ 0:3 (15
runs), s ¼ 0:4 (115 runs), s ¼ 0:5 (45 runs), and
s ¼ 1 (108 runs). The number of runs in parenth-
eses is the number of runs that were averaged to
obtain the data.
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To more accurately determine TC, we use
the scaling hypothesis to collapse the data for
a given value of s onto a single curve as
shown in Fig. 2. TC and n are used as adjus-
table parameters to collapse the data. We can
estimate the errors in the critical temperature
and the critical exponent n by how well the
curves can be made to collapse. The values of
n and TC at various values of s are given in
table 1. In Fig. 3 we plot TC and n versus s.

We can see that the transition temperature decreases from TC ¼ 0:128� 0:001 at s ¼ 0 to
TC ¼ 0:028� 0:001 at s ¼ 1. n increases from n ¼ 0:55� 0:05 at s ¼ 0 to n ¼ 1:30� 0:10 at s ¼ 1.

It is interesting that TC is much lower than the characteristic energies of the system which are of order
unity. This is especially true for large values of the disorder. The reason for this was given by Grannan and
Yu [6] and is as follows. At the temperatures of our simulations, nearby pairs of sites will with high prob-
ability consist of an occupied and an unoccupied site. Since these strongly coupled pairs of sites are close
together, they are guaranteed to have small dipole moments. Therefore, they will interact weakly with the
rest of the system, remaining active down to temperatures much lower than the bare interaction energy.

To summarize, we have performed a Monte Carlo study of a classical three dimensional Coulomb
system of electrons at half filling. We systematically increase the positional disorder by introducing
deviations from positions in a cubic lattice. We start from a completely ordered system and gradually
transition to a Coulomb glass. The phase transition as a function of temperature is second order for all
values of disorder. We use finite size scaling to determine the transition temperature TC and the criti-
cal exponent n. We find that TC decreases and that n increases with increasing disorder.
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Table 1 The values of TC and n for different valuse of s.

s TC n

0.0 0:128� 0:001 0:55� 0:05
0.1 0:123� 0:001 0:57� 0:05
0.2 0:110� 0:001 0:61� 0:05
0.3 0:085� 0:002 0:71� 0:02
0.4 0:045� 0:001 1:05� 0:05
0.5 0:030� 0:001 1:35� 0:05
1.0 0:028� 0:001 1:30� 0:10

Fig. 2 a)–c) gðL;TÞ versus T for s ¼ 0:3, 0.4,
and 1.0 at L ¼ 4, 6, and 8. The solid lines are
guides to the eye. (gðL ¼ 8;TÞ vs. T is virtually
identical.) The number of runs in parentheses is
the number of runs that were averaged to obtain
the data. d) gðL;TÞ for s ¼ 0:3 scaled using
ĝg L1=n T � TCð Þ
� �

with TC ¼ 0:085� 0:002 and
n ¼ 0:071� 0:02. e) gðL;TÞ for s ¼ 0:4 scaled
using ĝg L1=n T � TCð Þ

� �
with TC ¼ 0:045� 0:001

and n ¼ 1:05� 0:05. f) gðL;TÞ for s ¼ 1 scaled
using ĝg L1=n T � TCð Þ

� �
with TC ¼ 0:028� 0:001

and n ¼ 1:30� 0:1.
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Fig. 3 The transition temperature TC (&) and the
critical exponent n (*) versus the disorder s.
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