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ABSTRACT Noise is a major problem in analyzing tracking data of cargos moved by molecular motors. We use Bayesian
statistics to incorporate what is known about the noise in parsing the trajectory of a cargo into a series of constant velocity
segments. Tracks with just noise and no underlying motion are fit with constant velocity segments to produce a calibration curve
of fit quality versus average segment duration. Fits to tracks of moving cargos are compared to the calibration curves with
similar noise. The fit with the optimum number of constant velocity states has the least number of segments needed to match
the fit quality of the calibration curve. We have tested this approach using tracks with known underlying motion generated by
computer simulations and with a specially designed in vitro experiment. We present the results of using this parsing approach to
analyze transport of lipid droplets in Drosophila embryos.

INTRODUCTION

The internal organization of eukaryotic cells depends upon

intracellular trafficking of cargos along microtubules (MT)

and actin filaments. Kinesin, dynein, and myosin-V are motor

proteins that are responsible for hauling a diverse array of

vesicles and organelles. These include mitochondria, endo-

somes, and even viruses that have entered the cell (1,2).

Cytoplasmic kinesin goes toward the plus end of a microtu-

bule (MT) whereas cytoplasmic dynein moves toward the

minus end of an MT. Although individual motors have been

studied extensively (3,4), the way in which multiple motors

work together to transport a single cargo is not well under-

stood. For example, even though individual motors usually

move in only one direction along a filament, cargos in vivo are

observed to move bidirectionally. These reversals in direction

are likely the result of coordinated switching between differ-

ent types of motors, though the mechanism controlling this

is not understood (1,2,5).

Because it is difficult to visualize individual motors in vivo,

one can study the trajectories or tracks of cargos to help shed

light on how multiple motors move a cargo. Video recordings

can be made of the positions of a cargo in vivo with a spatial

resolution of a few nanometers and a temporal resolution of a

few hundred Hertz (6–8).

One can fit these tracks with a series of line segments where

each segment represents a state of constant velocity motor

motion (9–12). However, it is difficult to do this reliably due

to the uncertainty in inferring the position of the motor from

the position of the cargo. This uncertainty is caused by the

thermal fluctuations of the cargo that is connected to each

motor by a long (;100 nm) floppy linkage. Throughout this

article we will refer to these thermal fluctuations as noise.

Other contributions to the overall uncertainty, such as noise in

the imaging system, can affect the accuracy of the detection of

the position of the cargo itself. In our approach these sources

of uncertainty are handled separately from the thermal fluc-

tuations by choosing an appropriate likelihood function.

So, it is important to separate the underlying motion of

the motor complex from the thermal fluctuations. We have

developed a way to do this that incorporates information or

assumptions about the noise. The result is an algorithm that

reliably parses cargo tracks into constant velocity segments

given what is known about the noise. The major advantage

of our method is that it provides an objective criterion to

determine the number of segments.

Previous approaches to parsing

Several approaches to interpreting the tracking data have been

developed previously. One approach, introduced in Gross

et al. (10), treats the tracks as a sequence of runs and pauses.

Here a run is defined as uninterrupted motion of a cargo in one

direction. A pause is a state with no net motion. The ambiguity

introduced by the thermal fluctuations (noise) is resolved by

requiring the durations of all states to be greater than some

minimum threshold. The value of this threshold represents the

additional information that is required to determine the

number of states.

A second approach, called multiscale trend analysis

(MTA), was used to analyze the tracks in Zaliapin et al.

(13). MTA uses a ‘‘best least squares linear approximation’’

to fit the tracks by a set of linear segments of constant velocity

and constructs a hierarchy of increasingly accurate approx-

imations in which the number of segments increases. The

MTA error spectrum is constructed by plotting the fit error
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versus the number of segments. The optimal fit is determined

by finding a corner point of this spectrum.

Both of these approaches are based upon untested

assumptions. The first approach guesses at a reasonable level

for the relevant thresholds, but in principle this guess could be

inaccurate. Moreover, the value of the threshold can change

depending on the system studied and on the conditions of the

experiment. The MTA approach assumes that there is only

one underlying timescale (other than noise), so that a change

in slope can be interpreted as the transition from signal to

noise, as opposed to from one type of signal to another. It also

assumes that the noise has sufficiently different properties

from the signal to provide a recognizable change in slope of

the MTA error spectrum.

More sophisticated approaches to parsing complex bio-

logical trajectories were recently presented in (14,15). These

approaches use statistical properties of the trajectories to

detect regions of direct motion as well as pauses and regions

of diffusive motion. They work by independently analyzing

and classifying either a small portion of a track (15) or frame-

to-frame displacements (14). In contrast, the approach that we

are presenting here works by repeatedly analyzing a track as a

whole and rejecting or accepting the results of that analysis

based on the properties of the noise present in the track.

Independent noise information is used in parsing

In this article we develop a method of parsing tracks as a series

of constant velocity segments based on the Bayesian formal-

ism. We define a quantitative measure of the quality of the

fit, which can be interpreted as the probability that a set of

states represents a particular tracking series. The number of

segments that is necessary to represent the underlying motion

(as opposed to the thermal fluctuations) of the track is deter-

mined by using independent noise measurements, namely

direct observations of the fluctuations of the position of a

cargo that is not being moved. Using this data we construct a

calibration curve that represents the best fit quality for a given

number of segments. The optimal number of segments for a

track with unknown underlying motion is then determined by

comparing the fit quality of various parsing iterations with the

value given by the calibration curve.

When it is impossible to directly observe the fluctuations

of a cargo with no underlying motion, additional assump-

tions about the fluctuations are necessary to determine the

number of states. This kind of information can also be

incorporated into our method by adding a special term to the

distributions used to compute the fit quality.

Overview of the rest of the article

The rest of the article provides more details to clarify these

ideas, with technical details in the supplement. We first

outline the parsing procedure. Then we evaluate the accuracy

of the parsing procedure using tracking data with ‘‘known

underlying motion’’. These tests demonstrate how thermal

fluctuations present in the data affect our ability to detect

small changes in the velocity or the direction of the underly-

ing motion. To the best of our knowledge, this is the first

systematic investigation of the reliability and accuracy of a

parsing procedure where the properties of the underlying

motion are cleanly known. We further proceed to discuss

the parsing of in vivo data and apply the technique to an

established experimental system. We describe approaches

that can be used to obtain calibration data appropriate for use

with tracking data from an in vivo experiment. After obtain-

ing suitable calibration data, we use the parsing program to

analyze the tracking data of lipid droplets in a Drosophila
embryo. First, we check a previous result (10) that the motion

of lipid droplets can be modeled by a five-state system. The

five states are pauses and long-fast or short-slow runs in both

plus and minus end directions. We conclude by investigating

the possibility that there is a discrete set of preferred velocities

of in vivo cargo motion. Such a possibility was recently

suggested in Levi et al. (16) and Kural et al. (17).

PARSING PROCEDURE

Constant velocity states

Data representation

We are analyzing tracking data, i.e., a time series with each point

giving the location (X and Y coordinates) of the cargo at some

time T. Tracks are chosen that are believed to represent the cargo

moving along a single straight filament (microtubule, actin

filament). However, the precise location of the filament is in

most cases not known. So, first a straight line that best fits all the

data points in the X-Y plane is found. This line serves as an

approximate representation of the filament. This is, indeed, a

reasonable approximation to the actual location of the filament

as was demonstrated in Gross et al. (11). The positions of the

cargo with respect to the filament are then computed by

determining the coordinates along and perpendicular to the line.

The position of the cargo on the filament is specified by

the distance (L) along the filament from the initial position

of the cargo. The time series of these positions is referred to

as the distance versus time (L-T) data. Thus, the purpose of

our algorithm is to approximate L-T data as a segmented line

with the slope of each segment being the velocity of a state.

Put differently, we aim to parse the L-T data into segments

reflecting the underlying series of constant velocity states.

Fitting tracking data by line segments

This task is complicated by the fact that the trajectories are

distorted by the thermal fluctuations of the position of the

cargo around the position of the motors. The thermal fluc-

tuations may make the cargo appear to have more constant

velocity states than actually present or, conversely, several

short constant velocity states may appear as a single segment.
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The task of parsing such a trajectory is a two-stage process.

First, the number of segments (the optimal configuration

given the level and character of noise) has to be determined.

Second, the properties of each segment are found (such as start

time, end time, and slope or velocity). We have developed a

procedure, based on the Bayesian approach, that accom-

plishes both of these goals.

Bayesian approach

Consider the general problem of fitting a set of data points D
by some mathematical model M such as a straight line or a

polynomial. In the Bayesian approach, the measure of the

quality of a fit is defined as the probability that the model

represents a given set of data and is referred to as the poste-

rior probability P(MjD).

The posterior probability is proportional to the product of

two terms:

PðMjDÞ} PðDjMÞPðMÞ: (1)

The relationship described above is known as Bayes

theorem. The first term P(DjM) is called the likelihood

function and is a measure of how close the data points are to the

model (in our case a particular segmented line). This function

reflects the uncertainty in determining the position of the cargo.

It accounts for the effects of the noise present in the imaging

system (such as interlace or shot noise) on the cargo tracking

algorithm. The second term P(M) is called the prior probability

and represents any preexisting knowledge of the system. An

optimal fit maximizes P(MjD). Examples of applications of

this approach, as well as a more detailed introduction, can be

found in Gelman et al. (18) and Werman et al. (19).

In our case the model is a piecewise linear approximation.

The unknown parameters of this model are the locations

of the end points of the segments. The likelihood function,

which takes into account the measurement error associated

with each L-T data point, is analytically derived in Supple-

ment A of the Supplementary Material. We use the prior

probability to ensure causality, i.e., that there are no seg-

ments of negative duration.

Fitting procedure

The fitting procedure works by constructing a family of

approximations of a track. This is done by first fitting a track

by many short segments and then gradually reducing the

number of segments by merging pairs of adjacent segments.

This process continues until there is only one segment left.

Each iteration consists of selecting the pair of segments that is

the best candidate for merging, merging the two segments by

eliminating the vertex connecting the segments, and optimiz-

ing the locations of the remaining vertices (see Supplement C

in Supplementary Material for a detailed outline).

At every iteration the optimal fit of the track by the current

number of segments is determined by maximizing the

posterior probability of the model. We do not simultaneously

optimize the positions of all end points (a prohibitively

complex task). Instead we optimize the positions of the

segments one at a time, in random order, while keeping all

the other segment end points fixed. The optimization loop

continues until the required accuracy has been achieved. A

more detailed description of the optimization algorithm can

be found in the supplement.

Although this optimization algorithm does not guarantee

the globally optimal solution in the general case, it works well

when the initial positions of the end points are close to their

optimal positions. We ensure that this condition is fulfilled by

using the result found in the previous iteration to initialize the

current iteration. This is done by eliminating one vertex con-

necting two segments in the optimized segmented line found

in the previous iteration and replacing these segments by a

single segment connecting the remaining end points. The

vertex that is eliminated is chosen so that its removal produces

the smallest geometric distortion of the optimized segmented

line. This ensures that the configuration of the new segmented

line is close to optimal (for the system with the number of

segments reduced by one).

Model selection

Up to this point we have established an algorithm that allows

us to fit the distance versus time data by any number of con-

stant velocity segments. Now we need a method for deter-

mining the appropriate number of segments.

Using tracks with no motion to estimate noise

Models with a larger number of segments will generally fit

the data better. Thus, it is impossible to determine the

optimal number of segments without using additional infor-

mation or making assumptions. To address this problem, we

use tracking data with no underlying motion as the source of

the information about the noise present in the tracking data

with unknown underlying motion.

We refer to the tracking data with no underlying motion as

the calibration data. Such data can be obtained in an in vitro

experiment by coating a bead with molecular motors and

allowing it to attach to a filament with no adenosine tri-

phosphate (ATP) present. Under these conditions, the bead is

tethered to the filament through molecular motors, which are

immotile. The fluctuations of this tethered bead can be

recorded, and are expected to reproduce the noise of a bead/

cargo being moved by the motors when ATP is present.

After obtaining a few calibration tracks, we fit each of

them by segmented lines consisting of different numbers of

segments. Then we construct a calibration curve that shows

how well the data that has only noise can be fit by a specific

number of segments.
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For a track with unknown underlying motion, the quality

(posterior probability of the model) of the fit for a given

number of segments cannot be higher than the calibration

value. In the case when it is comparable to the calibration

value, the underlying motion can be faithfully represented by

the number of segments that are currently used. On the other

hand, if the quality of the fit is significantly worse, then more

segments are needed to represent the motion. Therefore, the

best estimate of the optimal number of segments is equal to

the minimum number of segments of the model that gives a

posterior probability comparable to the calibration value.

An example of using the calibration procedure

We have developed a computer simulation that allows us to

generate artificial tracks with known underlying motion and

different amounts of noise to be able to evaluate the per-

formance of our method. A detailed description of this

simulation can be found in the Supplementary Material. Here

we shall use this simulation to give an example of using the

calibration procedure described above.

We start by generating several tracks with no underlying

motion that will serve as calibration data. The calibration

curve is obtained by fitting these tracks by segmented lines

with different numbers of segments. Each track produces its

own unique calibration curve. The final calibration curve is

constructed by averaging the calibration data from all tracks.

Lastly, to mimic experimental data, we produce simulated

tracking data with some known underlying motion.

The fit quality of this simulated track is compared with the

calibration curve in Fig. 1 a. Here we can see that the fit quality

starts to match the calibration curve (falls in the gray area
around the calibration curve) at the fifth point from the right.

This observation implies that fitting the track in question by

less than five segments produces a fit quality that is sig-

nificantly worse than the calibration value. This is confirmed

by the plot (Fig. 1 b), which shows that fitting the tracking data

by four segments leads to significant deviations of the seg-

mented line from the tracking data. Fitting the tracking

data by five (Fig. 1 c) or more (Fig. 1 d) segments results in

quality comparable to the calibration value. So, the simulated

underlying motion can be described by five or more constant

velocity states. However, given the noise, we can only reliably

distinguish five states of motion. There is no way to determine

whether the extra vertex in Fig. 1 d (as compared to Fig. 1 c)

corresponds to a change in the motion or is merely an artifact

of the noise in the track. We therefore conclude that the

optimal number of segments for this track is five. This is

indeed the number of segments specified when the track was

generated.

Calibration procedure is an objective representation
of the noise

The major advantage of using the calibration procedure

described here is that one does not have to rely on any

assumptions about the noise in the system. It serves as an

objective criterion that enables us to determine the number of

distinguishable segments in the presence of the noise.

In a situation where it is impossible to obtain suitable

calibration data one has to make some assumptions about the

noise. Such assumptions can be incorporated in our method

by introducing additional terms into the prior probability

distribution (this case is addressed in more detail in Supple-

ment F, Supplementary Material).

Testing

To test our parsing procedure we used it to parse sets of track-

ing data corresponding to known underlying motion. Three

different approaches (described below) were used to obtain

such sets of tracking data. In all three cases, the underlying

motion is modeled by a set of discrete velocity states.

Three approaches to generating testing data

In the first approach the tracking data is obtained by

superimposing uncorrelated Gaussian noise on top of deter-

ministic underlying motion. The second approach is similar,

however, the noise profile derives from a more complex

model of the thermal motion of the cargo that accounts for

time correlations of the positions of the cargo (see Supplement

B in Supplementary Material for more details). The third

approach requires a special in vitro experiment to be per-

formed. We use an optical microscope to observe a slide that

contains a polystyrene bead attached to a microtubule by a

molecular motor (dynein). With no ATP present in the

environment, the motor does not move, so thermal fluctua-

tions of the bead bound by a molecular motor are observed

directly (20). The underlying motion is then simulated by

using a piezoelectric stage to move the whole slide in the field

of view of a microscope. This setup allows us to obtain

tracking data with known underlying motion and the noise

characteristics of a real cargo attached to a microtubule by a

molecular motor.

Calibration curves

We start the testing by constructing a separate calibration

curve for each of the three sets of testing data described

above (shown in Fig. 2). The parameters of the computer

simulations were adjusted so that the average displacement

of a cargo between two consecutive video frames (30 frames

per second) caused by thermal fluctuations would match that

of a flopping bead bound by a dynein motor. Because of this,

the calibration curves coincide at very short average segment

durations Fig. 2. However, they diverge as the average

duration of the segments used to fit the data increases.

The probability that the positions of several consecutive

data points can be approximated by a straight line is very low

for the case of uncorrelated noise. Hence, the calibration
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curve for the uncorrelated Gaussian noise simulation grows

rapidly in the region of very short segments but saturates

quickly as average segment duration increases. This stands in

contrast to the calibration curve corresponding to the data

simulated with a tethered cargo. In this case the data is

correlated because the cargo has a continuous trajectory. The

corresponding calibration curve at first falls below the

uncorrelated noise calibration curve. This reflects the fact

that the tethered cargo’s trajectory can be well approximated

by short line segments. However, due to the larger range of

motion (250 nm for the tethered cargo versus ;30 nm for the

uncorrelated Gaussian noise), at large segment durations the

quality of the fit is much worse for the correlated data than

for the uncorrelated noise.

FIGURE 1 An example of using the

calibration procedure to determine the

most likely number of segments in a

track. (a) The calibration curve is

derived from a set of computer simu-

lated tracks with no underlying motion.

The horizontal axis is the average

duration of a line segment that is used

to fit the tracking data. The vertical axis

gives the value of the negative loga-

rithm of the posterior probability scaled

by the number of data points, so lower

values correspond to better quality of

the fit. The original calibration data

derived from individual tracks is repre-

sented by the hollow diamonds. The

lower solid line represents the calibra-

tion curve that is obtained by averaging

the calibration data. The gray area rep-

resents the estimate of the error in de-

termining the calibration value. It was

computed as the mean 6 SE and in-

terpolated along the x axis. The dashed

line and solid black circles represent the

dependence of the quality of the fit on

the average duration of a segment in

a fit to a computer-generated track that

corresponds to the underlying motion

with five distinct constant velocity states.

The duration of each state is 1 s, the

velocity alternates between 200 nm/s

and 500 nm/s. The track and the seg-

mented lines corresponding to the points

labeled b, c, and d are shown on corresponding figures. The tracking data of the motion combined with the noise is represented by circles. The solid lines

represent the constant velocity states that were determined by the parsing procedure. Panel b shows the track fitted by a segmented line consisting of four

segments; panel c shows the same track fitted by a segmented line consisting of five segments (the correct number); and panel d shows the track fitted by six

segments.

FIGURE 2 Calibration plots for (a)

the simulated data with no underlying

motion and (b) flopping beads attached

by dynein are shown. The horizontal

axis is the average duration of a line seg-

ment used to fit the tracking data. The

vertical axis is the value of the negative

logarithm of the posterior probability

scaled by the number of data points. In

panel a the dashed line represents the

calibration curve for the data simulated

using the computer model of a flopping

cargo; the solid line represents the cali-

bration curve for data simulated using

uncorrelated Gaussian noise as the model of thermal fluctuations. In panel b the solid line represents the calibration curve obtained from the tracks of flopping

beads attached by dynein. The calibration curves were obtained by (a) averaging the raw calibration data (not shown) obtained by processing 20 simulated

tracks each lasting 20 s, and (b) four tracks with a combined duration of ;250 s for the flopping beads attached by dynein. The gray areas around the curves

represent the uncertainty in the calibration values computed as the standard deviation of the mean of the raw calibration data.
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The calibration curve derived from the in vitro tracking data

of a bead attached by a dynein motor (Fig. 2 b) has a shape

similar to the curve for uncorrelated simulated data, however,

it grows more slowly at short timescales and continues to

grow at large timescales implying the presence of some

correlation.

Reversals and velocity changes

We want to test the ability of the parsing program to identify

segments (changes in velocity) in the presence of the noise.

We identify two extreme types of motion that present a

challenge for a parsing program: small velocity changes and

short reversals. Noise can mask small velocity changes or

even large velocity changes if they occur for a very short

time.

Biologically, short reversals correspond to a situation when

a motor complex that is pulling a cargo, changes direction,

moves in the opposite direction for a short distance, and then

reverses again and continues in the original direction. This type

of behavior is commonly observed in bidirectional transport

(4,11). Such behavior of the motor complex is simulated using

a two-state model with the first state corresponding to a long

segment in one direction and the second state corresponding to

a short segment in the opposite direction. The motor complex

alternates between these two states. Examples of the motion

produced by this model are shown in inserts (see Fig. 5).

Small velocity changes occur when a motor complex

changes velocity without changing the direction of motion,

e.g., when load per motor changes (21). Recent studies

attempted to investigate the velocity changes of motor driven

cargos and relate them to the number of active motors present

on a cargo (12,16). It is thus important to have an objective

measure of the accuracy of detecting velocity changes. Here

again we use a two-state system to model the behavior of the

motor complex.

Testing procedure

For each of these two types of motion we generate three sets

of tracking data using procedures described earlier. We then

parse each track in these data sets into constant velocity

segments using the corresponding calibration curve.

Due to the noise present in the data, the motion described

by the segments identified by the parsing program is not

identical to the underlying motion. We have developed a

procedure that enables us to gauge the ability of the parsing

program to recover the properties of the underlying motion.

First, we construct a distribution of segment velocities for

each set of testing tracks. Figs. 3 and 4 show examples of

such distributions for the cases of short reversals and small

velocity changes, respectively. There are clearly identifiable

peaks in the distributions that represent the different states of

underlying motion, confirming that the number of states of

underlying motion can be recovered by analyzing the seg-

ments detected by the parsing program. The velocities of

these states are recovered by fitting the velocity distributions

by a sum of two Gaussian distributions. As expected, the

uncertainty in determining these velocities (standard devia-

tion) decreases as the lengths of segments increase.

In the second step of the testing procedure we check

whether the transition probabilities between the two states of

the underlying motion can be recovered by analyzing the

sequence of the segments detected by the parsing program.

The underlying motion of the testing tracks was generated

using a model of two alternating states. So, if all segments

were correctly identified by the parsing program, a segment

corresponding to the first state would be between two

segments corresponding to the second state and vice versa.

Using this observation, we define a numerical measure of the

accuracy of parsing as the probability that a randomly selected

sequence of three consecutive segments corresponds to a

valid sequence of states of underlying motion (state 1/state 2/

state 1 or state 2/state 1/state 2). This probability is computed

using the velocity distributions constructed earlier. See Sup-

plement G in the Supplementary Material for details.

Detecting short reversals

The procedure outlined above enables us to make a consistent

estimate of the effect that the properties of the underlying

FIGURE 3 Velocity distributions of

the segments detected by parsing sim-

ulated data corresponding to the under-

lying motion with short reversals. The

horizontal axis is the velocity of seg-

ments detected by the parsing program.

The vertical axis is the number of seg-

ments with that velocity. The velocity

of the underlying motion is 500 nm/s

for the forward state and�500 nm/s for

the reverse state. The length of the

forward state of the underlying motion

is 500 nm. The length of the reverse

state is (a) 40 nm, or (b) 60 nm. The

distributions were fitted by a sum of two Gaussian distributions (solid line). (a) Mean velocities are:�453 nm/s, 503 nm/s. Mean 6 SD are: 304 nm/s, 62 nm/s.

(b) Mean velocities: �492 nm/s, 502 nm/s. Mean 6 SD are: 160 nm/s, 55 nm/s.
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motion and noise have on the parsing accuracy. Fig. 5 shows

the dependence of the parsing accuracy on the length of the

short reverse state.

The ability of the parsing program to detect segments

deteriorates as the length of the short state decreases because

it becomes harder and harder to distinguish the motion

produced by the motor complex from the thermal fluctuations

of the position of the cargo. From Fig. 5 it is evident that the

chances of correctly parsing a track with a 20-nm reverse state

are close to 30% for the data simulated with uncorrelated

noise and for the experimental data. At the frame rate that we

are using (30 frames per second), 80% of segments corre-

sponding to the 20-nm state are represented by a single data

point. The remaining 20% are represented by two data points.

For the tracks simulated with identical underlying motion

and correlated noise, the distribution of segment velocities

cannot be accurately represented by a sum of two Gaussian

distributions. So, the velocity states cannot be identified and

the parsing accuracy cannot be determined.

The probability of correctly parsing the test tracks grows

rapidly as the length of the short state increases. The curves

depicting the dependence of the parsing accuracy on the length

of the short reversed state are very similar for the testing data

generated using the computer simulation with uncorrelated

noise and for the data obtained in vitro. They both reach 90%

when the length of the reversed state approaches 40 nm.

Typically such a state is represented by two or three data points.

The curve corresponding to the data simulated using correlated

noise grows slower than the other two curves.

Detecting small velocity changes

We now turn our attention to the test tracks that correspond to

motion in the same direction with changing velocity. A plot of

the dependence of the parsing accuracy on the difference in

velocities between consecutive segments is shown in Fig. 6.

As expected, the ability of the program to correctly identify

states of motion decreases as the difference in velocity

between the two states decreases. The curves depicting the

dependence of the probability of correctly parsing a set of

three segments on the velocity difference between the slow

and the fast state have similar trends to the curves from the

FIGURE 4 Velocity distributions of

the segments detected by parsing simu-

lated data corresponding to the underly-

ing motion with small velocity changes.

The horizontal axis is the velocity of

segments detected by the parsing pro-

gram. The vertical axis is the number of

segments with that velocity. The dura-

tions of both the fast and the slow state of

the underlying motion are equal to 1 s.

The velocity of the fast state is 500 nm/s.

The velocity of the slow state is (a) 400

nm/s, (b) 300 nm/s. The distributions

were fitted by a sum of two Gaussian

distributions (solid line). (a) Mean ve-

locities are: 392 nm/s, 512 nm/s. Mean 6

SD are: 43 nm/s, 43 nm/s. (b) Mean

velocities are: 294 nm/s, 506 nm/s.

Mean 6 SD are: 39 nm/s, 41 nm/s.

FIGURE 5 The dependence of the

ability of the parsing program to re-

cover the correct sequence of states on

the length of the reverse state (in the

testing data corresponding to the un-

derlying motion with short reversals) is

presented. The vertical axis gives the

probability that any three consecutive

segments detected by the parsing pro-

gram will be in the right sequence (see

text for more details). The horizontal

axis is the length of the reverse state.

The length of the forward state of

underlying motion was fixed at 500

nm. The velocity of the forward state was set at 500 nm/s; the velocity of the reverse state was�500 nm/s. The tracks were either (a) simulated on a computer or

(b) produced by moving a microscope stage with in vitro preparation of a flopping bead attached to a microtubule by a dynein motor. Sample tracks are shown

in inserts. The tracking data are represented by open circles, and the segments detected by the parsing program are represented by the solid lines. For these

tracks the length of the short reverse state of the motor complex is 40 nm.
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previous test. The curve corresponding to the in vitro experi-

mental data (Fig. 6 b) matches closely the curve for the simu-

lated data with uncorrelated noise (Fig. 6 a, solid line). The

accuracy of parsing the simulated data with correlated noise

(Fig. 6 a, dashed line) is considerably lower.

Noise limits parsing accuracy

We attribute the difference in the ability of the program to

correctly parse segments in different types of testing data to

the difference in the properties of the noise present in the

data, which is reflected by the shapes of the calibration

curves (see Fig. 2).

If the calibration curve is flat for some range of the average

segment duration, there is very little chance that a cargo

trajectory with such an average segment duration could be

caused by thermal fluctuations. So, underlying motion with

that average segment duration can be reliably distinguished

from the thermal fluctuations. On the other hand, cargo

trajectories that correspond to nonflat regions of the calibra-

tion curve could be caused by the thermal fluctuations. In

such a case it is not always possible to distinguish the

underlying motion from thermal noise.

For our simulated testing data, the average duration of states

with different velocities is 1 s. In that region the calibration

curve derived from the simulated data with uncorrelated noise

is absolutely flat. So, we expect to be able to identify segments

with very high accuracy. For the same segment duration, the

calibration curve for the data with correlated noise is growing.

In this situation we can only expect to recover the underlying

motion if it moves the cargo a significantly larger distance than

the amplitude of the thermal fluctuations. Both of these expec-

tations are confirmed by the results in Fig. 6 a.

For the testing data with reversals the average segment

duration of underlying motion is between 0.5 and 0.6 s. In

that region both calibration curves are not flat, so the ability

of the program to correctly parse tracking data strongly

depends on the length of the short-reversed segment. This

explains the results in Fig. 5.

Application to experimental data with unknown
underlying motion

In this section we described our tests of the parsing program on

data with known underlying motion. We obtained accurate

estimates of the performance of the parsing program, and we

find that our algorithm works well. We believe the algorithm

should work well on real experimental data. As shown above,

in the simulated data a pair of states with different velocities

can be identified by two peaks in the distribution of the seg-

ment velocities. The same approach can be applied to the ex-

perimental data. If the motion of the motor complex can be

described by a set of states with distinct properties, then it should

be possible to identify these states by using distributions of

lengths and velocities, or by using length-velocity and duration-

velocity plots of segments detected by the parsing program.

Parsing in vivo data

We now use the parsing procedure to analyze in vivo

experimental data that was produced by tracking the motion

of lipid droplets along microtubules in wild-type Drosophila
embryos (phase 2 of development) (9).

Embryos were hand dechorionated and flattened in halo-

carbon oil between the glass slide and a coverslip as previously

described (9). Differential interference contrast images of the

moving lipid droplets were collected by a charge-coupled device

camera (Dage-MTI CCD 100, Michigan City, IN) and recorded

on video cassettes (30 frames per second). Lipid droplets were

then tracked after digitization as previously described (9).

Obtaining the calibration data

Before proceeding with parsing the tracking data, we need

to calibrate the parsing program by using suitable noise

samples. One way to obtain such calibration data would be to

hand pick cargos in a living cell that do not show any

persistent motion and use their random motion for calibra-

tion. This approach is problematic since some cargos are

FIGURE 6 The dependence of the

ability of the parsing program to recover

the correct sequence of states on the

velocity difference between the states

(in the testing data corresponding to the

underlying motion with small velocity

changes) is presented. The vertical axis

gives the probability that any three con-

secutive segments detected by the parsing

program will be in the right sequence

(see text for more details). The hori-

zontal axis is the velocity difference

between the first and the second states.

The velocity of the first state was fixed

at 500 nm/s, the duration of each state was fixed at 1 s. The tracks were either (a) simulated on a computer or (b) produced by moving a stage with in vitro

preparation of a flopping bead attached to a microtubule by a dynein motor. Sample tracks are shown in insets. The tracking data is represented by open circles,

and the segments detected by the parsing program are represented by the solid lines. For these tracks the velocity difference between the two states of motor

complex is 200 nm/s.
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known to move bidirectionally for very small distances by

repeatedly switching the direction of motion. This under-

mines our ability to determine if the cargo is being moved by

a molecular motor just by looking at the recording of the

cargo position. In an attempt to get rid of any motor-driven

motion we microinjected the Drosophila embryos with a

mixture of adenylylimidodiphosphate (AMP-PNP) and ap-

yrase. The former is an ATP analog that works as a motor

inhibitor and the latter is an enzyme that catalyzes the

hydrolysis of ATP to yield AMP and orthophosphate. Both

should act together to inhibit motor-driven motion (22). The

apyrase concentration used was 0.5 unit/ml (Sigma Aldrich

No. A6410-100UN, St. Louis, MO) and that was mixed 1:1

with either 100 mM or 1 M of AMP-PNP (EMD Biosciences

120002, San Diego, CA). The total volume injected was ;1/

50th that of the embryo. For both AMP-PNP concentrations

lipid droplet motion was significantly inhibited, but residual

motion was still observable. This, again, made it problematic

to use apparently stationary cargos for noise calibration.

Because of this we have chosen to calibrate the program

using tracking data from video recordings of a flopping bead

in an in vitro environment. To make such recordings, 500-nm

diameter polystyrene beads were covered by molecular

motors that were allowed to attach to a microtubule. With

no ATP present, the motors do not step, and the motion of the

beads caused by thermal fluctuations was observed directly.

Two calibration curves were obtained (see Fig. 7)—one for

dynein motors (this curve is the same as the one discussed in

the previous section) and one for kinesin motors. Notice that

the calibration curves corresponding to the two types of

motors are similar. Therefore we do not expect strong changes

in the thermal fluctuations when a cargo inside a cell reverses

direction (switches from one type of motor to another).

The calibration curves obtained using the data from an in vitro

experiment could be different from what one would obtain using

an ideal set of in vivo calibration data. However, we believe that

the in vitro data provides an overestimate of the noise. There are

two reasons that lead us to this conclusion. First, the viscosity of

the buffer used in the in vitro experiment is much lower than

viscosity of the cytoplasm. Increased viscosity suppresses

particle diffusion, so over the same time period thermal

fluctuations of the position of the cargo in buffer will be larger

than in cytoplasm. Second, there are often additional tethers in

vivo stabilizing the cargos (e.g., the dynactin complex). The

increased rigidity of the linkage between the cargo and the

microtubule is expected to further reduce the random motion of

the cargo (compared with the conditions of our in vitro assays).

We will not be able to detect all constant velocity seg-

ments present in the data because some segments will be

merged together. This is the price we pay for overestimating

the noise by using the in vitro calibration data. It is important

to note that our approach will not detect more segments than

there are distinct states of motion. This is because noisier

calibration data produces a higher calibration curve. So when

the fit quality for a track intersects this calibration curve, the

corresponding segment duration will be larger than for a

calibration curve corresponding to less noise. An example

illustrating this argument is shown in Fig. 7.

Parsing tracking data into runs and pauses

Having constructed the calibration curves we can now

proceed to parsing the tracking data of the lipid droplets in

Drosophila embryos. There are a number of studies that have

looked at this system (9,10) and used other methods to analyze

the tracks. In particular, the tracking data was interpreted in

Gross et al. (10) in terms of runs—states of uninterrupted

motion in one direction. The difference between runs and

segments is that a segment corresponds to a state of constant

velocity motion whereas a run corresponds to a state of motion

in one direction (possibly with changing velocity).

The model proposed in Gross et al. (10) features two states

of motion in each direction: a short slow run and a long fast run,

as well as a state that corresponds to a pause in motion. We have

decided to check this conclusion by using our parsing pro-

cedure. This was done by first parsing the tracking data into

constant velocity segments, then converting the segments into

runs. To accomplish this, all consecutive sets of segments of

motion in the same direction with velocity higher than 100 nm/s

were merged into runs. Segments of motion with velocity lower

than 100 nm/s were interpreted as pauses. Consecutive seg-

ments with such low velocities were merged into a single pause.

After parsing the tracking data in terms of runs and pauses,

we constructed the distribution of run lengths shown in

Fig. 8. The left part of the figure corresponds to motion to-

ward the minus end of the microtubule and the right part

corresponds to motion in the plus end direction. Fitting the

run length distributions by a single decaying exponential

FIGURE 7 Shown are two calibration curves derived from in vitro

tracking of flopping beads attached to a microtubule by multiple dynein

motors (solid curve on dark gray background) or by multiple kinesin motors

(dashed line on light gray background) as well as a curve depicting the

dependence of the fitting quality on the average duration of segments for an

in vivo track of a lipid droplet in a Drosophila embryo (solid line and black

dots). The horizontal axis is the average duration of a segment in a

segmented line used to fit the data. The vertical axis is the negative logarithm

of the posterior probability scaled by the number of data points in a tracking

series (lower values correspond to better fit quality).
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does not give an acceptable fit. Fitting the distributions by a

sum of two exponentials improves the fit dramatically. This

suggests that to adequately describe the motion, two types of

runs (long and short) in each direction are necessary. This

confirms the result previously reported in Gross et al. (10).

Parsing the tracking data into constant velocity segments

Recent studies of melanosome transport in Xenopus melano-

phores (16) and of peroxisome transport in S2 Drosophila cells

(17) raised the interesting possibility that there is a discrete set of

preferred velocities of cargo motion. These preferred velocities

manifested themselves as peaks in the distribution of segment

velocities. In both of these studies, the velocity distributions

were constructed by hand by approximating regions of motion

by segments and using the velocities of these segments.

To test these conclusions in the lipid droplet system, we used

our parsing procedure on tracking data of the lipid droplet motion

in Drosophila embryos. The distributions of segment velocities

obtained from this data do not show any significant peaks (Fig.

9). These distributions were constructed using the procedure

described in this manuscript, by first fitting tracks by connected

constant velocity segments. However, for comparison with Levi

et al. (16), we only used the velocities of the segments that closely

match the tracking data (root mean square (RMS) deviation from

the fit line of ,20 nm) and have duration exceeding 0.4 s. Unlike

Levi et al. (16), no upper limit on segment duration was imposed,

since our approach independently establishes the number of

segments in a track. Another difference between our approach

and the approach used in Levi et al. (16) and Kural et al. (17) is

that we analyze whole tracks whereas only select portions of the

tracks were considered in Levi et al. (16) and Kural et al. (17).

SUMMARY

We have presented a method of parsing the motion of actively

transported cargos into a series of constant velocity states. This

is a probabilistic method based on the Bayesian approach. The

main advantage of this method is that it determines the

appropriate number of segments present in a given track. This

is done in an objective way by comparing the fit quality

produced by fitting a track with unknown underlying motion

by some number of segments to the fit quality produced

by fitting a track with no underlying motion by the same

number of segments. The number of segments that adequately

represent the underlying motion in the track is equal to the

minimum number of segments that are necessary to get

comparable fit qualities for the track with unknown under-

lying motion and for the track with no underlying motion.

Another advantage of our method is flexibility. The

Bayesian approach is more flexible than conventional fitting

methods based on the least squares distance approach. In our

method the function that describes the uncertainty associated

with the position of the data points is not fixed (as is the case

in the least squares distance approach) and can be specified

FIGURE 8 Distributions of run

lengths for minus (left) and plus (right)
end transport in a wild-type Drosophila

embryo are shown. The runs were

determined by first parsing the tracking

data into segments of constant velocity

motion using the parsing program with

a multiple kinesin calibration curve

(shown in Fig. 7). Then consecutive

segments of motion in the same direc-

tion were combined to produce runs.

A velocity threshold of 100 nm/s was

used to determine pauses in motion.

The run length distributions were fitted

by single (gray dashed line) and double (black solid line) exponential curves. The value of reduced x2 produced by fitting the plus-end distribution by a single

exponential curve is 5.89 and the optimal value of the fitting parameter (average run length) is 427 nm. For the double exponential fit, the value of the reduced

x2 is 0.86 and the values of the fitting parameters are 78 nm and 852 nm. Fitting the distribution of minus-end run lengths by a single exponent produced

average run length of 282 nm with x2
r ¼ 4:81. For the double exponential fit, the values are 62 and 503 nm with x2

r ¼ 1:76.

FIGURE 9 Distributions of segment

velocities of (a) plus-end and (b) minus-

end directed motion of lipid droplets

in Drosophila (phase 2) embryos are

shown. The segments were obtained by

parsing the tracking data using multiple

kinesin calibration curve. For each seg-

ment a RMS value of the deviation of the

data points from the segmented line was

computed. Only segments with the RMS

value of deviation ,20 nm, velocities

.100 nm/s, and duration .0.4 s were

used to construct the histograms.
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explicitly. This potentially allows us to analyze data with

different types of noise using the same method.

We have extensively tested the parsing method by using it

on tracking data with known underlying motion. Three sets of

tracks with different noise characteristics were used in testing.

Two of them were generated on a computer and the third was

obtained in a special in vitro experiment. In each set there

were tracks corresponding to two types of underlying motion.

Tracks that correspond to persistent motion of the motor

complex in one direction that would periodically get reversed

for a short time were used to test the ability of the program to

detect reversals in motion. The ability of the program to detect

changes in velocity that are not accompanied by a change

in the direction of motion was investigated using data that

corresponded to continuous motion of the motor complex in

one direction with periodic changes in velocity.

The results of the testing indicate that the parsing program

can successfully recover the number of states of underlying

motion and the properties of these states (velocity, duration,

and length). The accuracy of the program is defined as the

shortest duration of the reversed segment or the minimum

velocity difference that can be detected reliably. By using

testing data with different models of thermal fluctuations we

have established that the accuracy of the method is only

limited by the characteristics of the thermal fluctuations.

Finally, we have applied our method to parse in vivo tracking

data. We used recordings of lipid droplets being transported

along microtubules in wild-type Drosophila embryos. In an

earlier study (10) it was established that motion of lipid droplets

in a Drosophila embryo can be described as a five-state system.

Every state represents a run of uninterrupted motion in some

direction or a pause. The model consists of short and long runs

in both directions on the microtubule and a pause. A run ends in

a pause or in a run in the opposite direction. By definition a run

cannot immediately follow a run in the same direction. We

were able to verify the previous result using our Bayesian

parsing technique. This was done by first parsing the tracking

data in terms of constant velocity segments and then converting

the segments into runs by merging consecutive segments of

motion in the same direction and using a fixed velocity

threshold to determine pauses. Finally the distributions of

lengths of runs were analyzed to show that for each direction,

there were two distinct populations of runs.

Finally, we have checked the possibility that in vivo

cargoes have a discrete set of well-defined preferred veloc-

ities. Using our parsing technique and the tracking data of

lipid droplets in wild-type Drosophila we find no evidence for

any preferred velocities.
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