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Dilute dipolar systems in three dimensions are expected to undergo a spin glass transition as the
temperature decreases. Contrary to this, we find from Wang-Landau Monte Carlo simulations that
at low concentrations x, dipoles randomly placed on a cubic lattice with dipolar interactions do
not undergo a phase transition. We find that in the thermodynamic limit the “glass” transition
temperature Tg goes to zero as 1/

√
N where N is the number of dipoles. The entropy per particle

at low temperatures is larger for lower concentrations (x = 4.5%) than for higher concentrations
(x = 20%).

PACS numbers: 75.10.Nr, 64.70.Pf, 75.40.Mg, 02.70.Uu

Disordered insulating materials often have randomly
placed electric or magnetic dipoles that have long range
dipolar interactions. Examples include impurities in al-
kali halides that can be used for paraelectric cooling [1, 2],
diluted ferroelectric materials [3], disordered magnetic
materials, and frozen ferrofluids [4]. These systems are
typically modeled as spin glasses that have simpler in-
teractions and yet are believed to capture the essential
physics of interacting dipoles. Based on theoretical stud-
ies of spin glasses with long range interactions [5–8], one
would expect dilute Ising dipolar systems to undergo a
spin glass-like transition as the temperature decreases.
However, in this paper we find the surprising result that,
unlike the three dimensional Ising spin glass with 1/r3

interactions [8, 9], dilute Ising dipolar systems do not
undergo a phase transition as the temperature decreases.
This may explain the lack of experimental evidence for
such a transition in very dilute systems.

An example of dipoles is two level systems (TLS) that
dominate the physics of glasses at low temperatures [10].
TLS often have randomly oriented electric dipole mo-
ments that interact through an elastic strain field with
a long range interaction that is a stress tensor general-
ization of the vector dipolar interaction[11]. While there
have been experimental hints of a spin glass transition
among TLS in glasses at low temperatures [12], there has
been no definitive experimental proof that such a tran-
sition occurs. Since the estimated concentration of TLS
is low (100 ppm), our result may explain the absence of
a transition even though TLS dipoles are randomly ori-
ented and may not be Ising.

Another example is the insulator LiHoxY1−xF4 [13] in
which the holmium ions have Ising magnetic dipole mo-
ments that lie along the z-axis due to crystal field effects
[14]. For very dilute systems (x = 4.5%) LiHoxY1−xF4

shows no sign of a transition [15]. The lack of low tem-
perature freezing in LiHoxY1−xF4 has been attributed
to dominant quantum mechanical effects in the so-called
spin liquid or antiglass phase [15, 16]. However, a theo-
retical investigation of whether or not classical interact-
ing dipoles undergo a spin glass phase transition at low

concentrations has been lacking. Several previous stud-
ies of dipolar interactions between randomly placed Ising
dipoles have focussed on the ferromagnetic transition
that occurs at higher dipole concentrations [5, 17, 18].
Monte Carlo simulations have looked at intermediate
concentrations with x ≥ 25% where there is a spin glass
transition [7, 19]. Xu et al. [6] used mean field theory
and found, depending on the lattice structure, ferromag-
netic or antiferromagnetic transitions at higher concen-
trations. They found a spin glass phase at lower spin
concentrations but the properties of this phase were un-
reliable because they had a replica symmetric solution.
In short, there have been no definitive theoretical studies
of the very dilute classical cases. In this paper we present
the results of Wang-Landau Monte Carlo simulations on
classical dilute Ising dipolar systems in three dimensions.
We find that there is no phase transition for low concen-
trations in qualitative agreement with experiment.

In spin glasses the distribution P (q, T ) of the over-
lap order parameter q changes from being a Gaussian
centered at q = 0 at high temperatures to a bimodal
distribution with peaks at q = ±1 at low temperatures.
At intermediate temperatures it is relatively flat. We
can define a characteristic glass transition temperature
Tg as the temperature where P (q, T ) is the flattest. In
the thermodynamic limit we find that for a given dipole
concentration Tg goes to zero as 1/

√
N where N is the

number of dipoles. Also, we examine the entropy and find
that for concentrations less than 20% there is a nonzero
entropy per dipole as T → 0. The entropy and lack of a
transition are consistent with a large number of accessible
low energy states and glassy behavior.

We consider Ising dipoles randomly placed on a simple
cubic lattice at concentrations of x = 4.5%, 12%, and
20%. The interaction between any two dipoles ~p1 and ~p2

separated by a vector ~r12 is given by the Hamiltonian:

H(~p1, ~p2) =
~p1 · ~p2 − 3(r̂12 · ~p1)(r̂12 · ~p2)

r3
12

. (1)

In addition to the energy units set by H , the units are
set by ~pi = ±ẑ, the lattice constant a = 1, and Boltz-
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mann’s constant kB = 1. These will be referred to as MC
units where appropriate. We use the Ewald summation
technique to handle the long range nature of the dipole
interactions [20]. For x = 4.5%, the lattices had L3 sites
with L = 6, 8, 10, and 12, and for x = 12% and 20%,
L = 4, 6, and 8. The number of dipoles N is the smallest
even integer greater than or equal to xL3.

The glassy energy landscape at low concentrations
makes it difficult to equilibrate at low temperatures with
the traditional Metropolis Monte Carlo approach. To
overcome this, we have used the Wang-Landau (WL)
Monte Carlo technique [21] to calculate the density of
states n(E) where E is the energy of the system. Briefly,
this algorithm starts with an initial guess n(E) = 1
and executes a weighted random walk on the energy
landscape. Single flips of randomly selected dipoles are
then accepted with a probability of min [1, n(Ei)/n(Ef )]
where Ei and Ef are the energies before and after the
trial flip. If a step is accepted (rejected), then the den-
sity of states is updated by the rule n(Ef(i)) → γn(Ef(i))
where γ > 1 is a scale factor. A histogram of the visited
energies h(E) is recorded. The criterion for a satisfactory
estimate of the density of states is given by the flatness
of h(E), i.e., h(E) > ε 〈h〉 for every energy E where
0 < ε < 1 determines the accuracy; typically, ε ≈ 0.95.
Once the flatness condition is satisfied, the scale factor is
set closer to 1 by the rule γ → √

γ, h(E) is reset to zero,
and the algorithm is repeated. In all cases, we ran 20
iterations with γ starting at e and ending at 1.0000019,
and n(E) was normalized such that

∑

E n(E) = 2N .

The dipolar interaction is nearly continuous so each en-
ergy bin may contain multiple states. We choose the bins
to be as small as possible while maintaining reasonable
computational times. The bin sizes depend on concentra-
tion and system size. The bins are about 0.01 in units of
energy per particle for 20% filling and 0.001 for 4.5% and
12%. The lowest temperature studied (T = 0.05) must
be larger than the largest bin (0.02). We try to keep the
bins small enough so that n(E0) ∼ 2, where E0 is the
energy of the (degenerate) ground state. In all cases ex-
cept one n(E0) ≈ 3.5. The exception (83 at 20%) has
n(E0) ≈ 10, so we discard the low temperature values of
this system.

We average over disorder by having different runs cor-
respond to different quenched placements of dipoles with
random initial orientations. The dipoles are fixed in po-
sition but not in orientation. There are about 1000 runs
for each x and L. As a check of our Wang-Landau pro-
cedure, we were able to enumerate all the states for 1000
different configurations for concentrations of 4.5% (L = 6
and 8), 12% (L = 4) and 20% (L = 4) and determine the
exact density of states. We found very good agreement
with our WL results.

Since we are looking for a spin glass phase, we define a
generalized Edwards-Anderson overlap order parameter
q = 1

N

∑

i ~p g
i ·~p s

i , where ~p s
i is a dipole in the state of the
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FIG. 1: P (q) at x = 4.5%, L = 10 (46 dipoles). T =5, 1.6,
1.1, 0.9, and 0.5. The lines transition from a Gaussian (T = 5)
to a bimodal distribution (T = 0.5).

current system, and ~p g
i is a dipole in a low energy state

found in a short, initial simulation [22, 23]. Then, to find
the distribution P (q, E), q(E) is sampled and stored in
a histogram during the simulation at the smallest scale
factor where the estimate of the density of states is quite
good. P (q, T ) is calculated as

P (q, T ) = CT (1/Z)
∑

E

n(E)P (q, E) exp(−E/kT ) (2)

where the sum is over all the energy bins and Z(T ) =
∑

E n(E) exp(−E/kT ). CT enforces normalization such
that

∑

q P (q, T ) = 1 for every T . This method has been
seen to give a reasonable order parameter distribution in
the case of a Potts model [23].

It has often been convenient to find the spin glass
transition temperature using Binder’s g = [3 −
〈
(

q4〉/〈q2〉2
)

]/2, and 〈qm〉 =
∑

q qmP (q, T ) [24]. Since
the ground state estimate is not the true ground state,
we eliminate all runs in which g < 0.8 at the lowest tem-
perature. If there is a second order phase transition, plots
of g versus T for different size systems will cross at the
transition temperature [22]. However, we find that these
curves do not cross, so there is no second order spin glass
phase transition.

To investigate this further, we can look at how P (q, T )
changes with temperature. For a system undergoing a
phase transition, we expect P (q, T ) to change from be-
ing a Gaussian centered at q = 0 at high temperatures
to a bimodal distribution with peaks at q = ±1 at low
temperatures. A typical example is shown in Figure 1
for x = 4.5%, L = 10. We define a characteristic “glass”
temperature Tg as the temperature where the distribu-
tion P (q, T ) is flattest. We define the deviation D(T )
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FIG. 2: Deviation from flatness of P (q, T ) for x = 4.5% with
sizes L = 63, 83, 103, and 123. The minima moves left with
increasing size and defines a glass transition temperature. The
plots for x = 12% and 20% are similar.

from flatness in terms of the variance of P (q, T ) as

D(T ) = L3

〈

(

P (q, T )− 〈P (q′, T )〉q′

)2
〉

q

(3)

where 〈. . .〉q indicates an average over all N + 1 possi-
ble values of q. D(T ) is at a minimum when a plot of
P (q, T ) versus q is the flattest, defining Tg. A sample
D(T ) is plotted in figure 2. For a given dilute concentra-
tion, Tg is tending to smaller temperatures as the system
size increases which is consistent with Tg → 0 as L → ∞.
To find the dependence of Tg on the number N of dipoles
for a fixed concentration, we plot the minimum of D(T )
versus N in figure 3. The best fit for dilute cases reveals
that Tg ∼ N−1/2. In contrast, D(T ) for the ordered
case (x = 100%) yields a nonzero transition temperature
independent of N .

The absence of a transition is consistent with the ex-
perimental finding that for very dilute systems (x =
4.5%) LiHoxY1−xF4 shows no sign of a transition [15].
However, the absence of a transition in dilute dipolar sys-
tems is unexpected since 3D Ising spin glasses with 1/r3

interactions undergo a phase transition [8, 9]. P (q) for a
spin glass and for a dilute dipolar system are different; in
the thermodynamic limit as T → 0, P (q) for a spin glass
has a few sharp peaks corresponding to ground state con-
figurations separated by high barriers, while P (q) for the
dilute dipolar system is flat, indicating numerous accessi-
ble low energy states separated by insignificant barriers.
With very low barriers, states at both the top and bottom
of the barrier contribute low energy states. The difference
in barrier heights may be due to every site in a model spin
glass being occupied so that in a spin glass with power

10 102
Number of particles

1

T
g 

(M
C

 u
ni

ts
)

FIG. 3: Log-log plot of the maximum flatness for P (q) versus
the number of dipoles at various concentrations. Open circles
are 4.5%, squares are 12%, triangles are 20%, and upside down
triangles are 100%. The left solid line has a slope of −1/2

corresponding to Tg ∼ N−1/2. The right solid line has a
slope of zero. Fits to Tg ∼ N−α yield α = 0.49(1) for 4.5%,
α = 0.6(1) for 12%, α = 0.45(3) for 20%, and α = 0.02(5) for
100%. The errors in the last digit are in parentheses.

law interactions nearby spins will tend to have stronger
interactions than distant spins and produce large barrier
heights. In a dilute dipole system nearby sites are empty
and so the low energy configurations are determined by
distant dipoles which interact weakly and produce low
barriers.

The presence of many nearly degenerate accessible
ground states is reflected in the finite entropy per dipole
near T = 0. We find that the low temperature entropy is
larger for the lower concentration. We can calculate the
total entropy Stot(T ) directly from the density of states
obtained by our WL Monte Carlo simulations:

Stot(T ) =
〈E(T )〉

T
+ log Z(T ) (4)

where 〈E(T )〉 is the average energy of the system. Stot is
an absolute entropy and is not defined relative to some
reference value. To compare different system sizes, we
consider the entropy per particle SN = Stot/N where N
is the number of dipoles. The entropy is very smooth,
corresponding to a broad bump in the specific heat.

To determine the entropy in the thermodynamic limit,
we plot SN (T ) versus 1/N at a given temperature T . We
fit a line to the data and then extrapolate to N → ∞.
Then, we plot the extrapolated value versus temperature
(see Figure 4). From Figure 4 it is clear that the 4.5%
and 12% cases have a nonzero entropy at low tempera-
tures, but the 20% case is approaching zero. Finally, the
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FIG. 4: Entropy per particle extrapolated to infinite size.
From top to bottom the fillings are 4.5%, 12%, and 20%. The
curve on the far right is for 100%. The error bars shown
represent the standard error (∼ 10−3) of the distribution of
S(T ). Inset: Entropy at T = 0 phase diagram. The hashed
area is classically not accessible. The solid line is a guide to
the eye. Above 20% S(T = 0) is zero.

extrapolated values are fit with a power law of the form
AT λ +So, where A and λ are constants, and So is a con-
stant representing the zero temperature value of the en-
tropy. The fit values are A = 1.1±0.2, λ = 2.7±0.1, and
So = (7.9±0.3)×10−3 at 4.5%, A = 1.2±0.3, λ = 2.9±0.2
and So = (5.6±0.3)×10−3 at 12%, and A = 0.37±0.05,
λ = 1.9 ± 0.1 and So = (−0.5 ± 0.5) × 10−3 at 20%.
Note, the extrapolation at 20% gives a negative So, so
it is zero; no actual data points have negative entropy.
A phase diagram of the entropies at zero temperature
is constructed in the inset of Figure 4. Notice that the
low temperature entropy increases as the concentration
decreases. This indicates that there are more accessible
low energy states in systems with lower concentrations
where the dipoles interact more weakly. Having a finite
value of So implies that the zero temperature entropy
S(0) may be nonzero, but this is not unprecedented for
a classical system, e.g., noninteracting spins.

We do not think that the finite entropy near T = 0
is due to the finite size of the energy bins. To test the
effect of the bin size, we halved the bin size (doubled the
number of bins) for the case of 63 at 20% and found an
entropy change of about 5% which is consistent with the
error estimates. We also ran the largest exact case (83

at 4.5%) through the WL algorithm with bins of width
0.005, and found a change of 0.9% compared to the exact
result with zero bin width.

To summarize, we find the surprising result that at
low concentrations (x ≤ 20%) there is no spin glass-

like phase transition as the temperature is lowered. This
is consistent with having a large number of nearly de-
generate accessible low energy states. Our result could
explain the lack of experimental evidence for a transi-
tion in LiHoxY1−xF4 for small x and among two level
systems in glasses at low temperatures. Thus, contrary
to widely held notions, materials with dilute electric or
magnetic dipoles cannot necessarily be modeled as spin
glasses with long range interactions.
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