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We study the charge noise SQ in Josephson qubits produced by fluctuating two level systems
(TLS) with electric dipole moments in the substrate. The TLS are driven by an alternating electric
field of angular frequency Ω and electromagnetic energy flux J . It is not widely appreciated that TLS
in small qubits can easily be strongly saturated if J À Jc, where Jc is the critical electromagnetic
flux. To investigate the effect of saturation on the charge noise, we express the noise spectral
density in terms of density matrix elements. To determine the dependence of the density matrix
elements on the ratio J/Jc, we derive the steady state solution for the density matrix using the
Bloch-Redfield differential equations. We then obtain a general expression for the spectral density
of charge fluctuations as a function of frequency f and the ratio J/Jc. We find 1/f charge noise
at low frequencies, and that the charge noise is white (constant) at high frequencies. Using a flat
density of states, we find that TLS saturation has no effect on the charge noise at either high or low
frequencies.

PACS numbers: 74.40.+k, 03.65.Yz, 03.67.-a, 85.25.-j

I. INTRODUCTION

Noise and decoherence are a major obstacle to using
superconducting Josephson junction qubits to construct
quantum computers. Recent experiments1,2 indicate that
a dominant source of decoherence is two level systems
(TLS) in the insulating barrier of the tunnel junction as
well as in the dielectric material used to fabricate the
circuit. It is believed that these TLS fluctuators produce
charge noise SQ(ω).

3–10

However, previous theories of charge noise8–10 have ne-
glected the important issue of the saturation of the two
level systems by electromagnetic radiation used to ma-
nipulate the qubits. Dielectric (ultrasonic) experiments
on insulating glasses at low temperatures have found that
when the electromagnetic (acoustic) energy flux J used
to make the measurements exceeds the critical flux Jc,
the dielectric (ultrasonic) power absorption by the TLS is
saturated, and the attenuation decreases.2,11–14 Previous
theories of charge noise in Josephson junctions assumed
that the TLS were not saturated, i.e., that J ¿ Jc.
This seems sensible since charge noise experiments15 have
been done in the limit where the qubit absorbed only
one photon. However, stray electric fields could saturate
TLS in the dielectric substrate as the following simple
estimate shows. We can estimate the voltage V across
the capacitor associated with the substrate and ground
plane beneath a Cooper pair box (see Fig. 1) by setting
CV 2/2 = ~ω where ~ω is the energy of the microwave
photon. We estimate the capacitance C = εoεrA/L ∼ 7
aF using the area A = 40× 800 nm2 of the Cooper pair
box, the thickness L = 400 nm of the substrate,15 and the
relative permittivity εr = 10. Using ω/2π = f = 10 GHz,
we obtain a voltage of V ∼ 1.4 mV. A substrate thick-
ness L of 400 nm yields an electric field of E ∼ 3.4× 103

V/m. For amorphous SiO2 at f = 7.2 GHz and SiNx at
f = 4.7 GHz, the critical rms voltage Vc ∼ 0.2 µV,

2 and

with a capacitor thickness of 300 nm, the critical field
is Ec ∼ 0.7 V/m at T = 25 mK. So E/Ec ∼ 5 × 10

3,

and J/Jc = (E/Ec)
2
∼ 2 × 107 À 1. We can do a sim-

ilar estimate to show that a single photon would even
more strongly saturate resonant TLS in the insulating
barrier of the tunnel junction. We use the same num-
bers as before but with C = 1 fF and the thickness of
the junction L = 1.5 nm to obtain E ∼ 7 × 104 V, and
J/Jc ∼ 10

10 À 1. However, there are only a few TLS in
the oxide barrier of a small tunnel junction. For a paral-
lel plate capacitor with L = 1.5 nm and A = 1 µm2, the
volume is Vo = 1.5× 10

−21 m3. With a density of states
PTLS ' 10

45/
(

Jm3
)

' 663/hGHzµm3, there are only 2
TLS with an energy splitting less than 10 GHz. A single
fluctuator would have a Lorentzian noise spectrum. The
presence of 1/f noise implies many more than 2 fluctu-
ators. It is likely that these additional fluctuators are
in the substrate. Our main point is that TLS in small
devices are easily saturated. It is therefore important to
analyze the effect of TLS saturation on the charge noise
both at low and high frequencies f of the noise spectrum.

In this article, we explore the consequences of this sat-
uration on the spectral density of polarization and charge
fluctuations. We consider a driven system consisting of
two level systems with electric dipole moments that fluc-
tuate randomly, leading to fluctuations δP (t) in the po-
larization. In addition, the dipoles moments of these TLS
couple to an applied ac electric field that drives the sys-
tem with an angular frequency Ω.

Let us consider a single two level system. Let the den-
sity matrix ρ of this two level system contain the contri-
butions of the driving field but not the random fluctua-
tions of the dipoles. According to the Wiener-Khintchine
theorem, in the stationary state the polarization noise
spectral density SP (ω) of this two level system is twice
the Fourier transform of the polarization autocorrelation



2

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

TLS

Dielectric substrate with TLSs

z

L

island

Superconducting

FIG. 1: Distribution of two level systems (TLS) in the di-
electric substrate of a Cooper pair box. The superconducting
island with the Josephson junction qubit is the black rectangle
on the top of the substrate.

function

SP (ω) = 2

∫ +∞

−∞

d(t1 − t2)e
iω(t1−t2) [〈δP (t1)δP (t2)〉]ρ

= 2

∫ +∞

−∞

d(t1 − t2)e
iω(t1−t2)Tr{ρ〈δP (t1)δP (t2)〉}

where [...]ρ denotes a trace over the density matrix ρ, and
〈...〉 denotes an average over the time series. The den-
sity matrix contains the contributions of the driving field
to SP (ω) while the polarization autocorrelation function
〈δP (t1)δP (t2)〉 contains the contributions of the random
fluctuations of the electric dipoles. We will solve the
Bloch-Redfield equations in steady state to find the time
evolution of the density matrix ρ(t) and its dependence
on the ratio J/Jc(Ω, T ) of the electromagnetic flux J to
the critical flux Jc(Ω, T ) which is a function of the driv-
ing angular frequency Ω and temperature T . The benefit
of this approach is that it is valid in both equilibrium
as well as steady state non-equilibrium situations. From
the polarization noise spectral density, we can obtain the
charge noise SQ(ω). We then average over the distri-
bution of independent TLS. Unlike previous theoretical
efforts,8–10 we use the standard TLS density of states
that is a constant independent of energy.
At low frequencies (hf ¿ kBT ) the system is in equi-

librium, and we find 1/f charge noise that is propor-
tional to the temperature and to the dielectric loss tan-
gent tan δ which has a well known contribution from the
electric dipole moments of TLS.11,16,17 In addition the
low frequency charge noise has negligible dependence on
the incident electromagnetic flux ratio J/Jc. At high fre-
quencies (hf À kBT ) we find that the charge noise is
white noise independent of frequency with a small value
of approximately 4 × 10−17 Hz−1. It has a very weak
dependence on the ratio J/Jc(Ω, T ) and the driving fre-
quency Ω. We also find that the amplitude of the high
frequency white charge noise decreases gradually as the
temperature increases. The fact that the charge noise
spectrum depends very weakly on the ratio J/Jc(Ω, T )
indicates that the saturation of two level systems does
not affect charge noise.

The paper is organized as follows. In Section II, we
present our model of a TLS in an external driving field.
In Section III, we use the fluctuation-dissipation theo-
rem to give an expression for the charge noise in ther-
mal equilibrium. In Section IV, we take a more general
approach that is valid in both equilibrium and nonequi-
librium cases. In particular, we derive a general ana-
lytic expression for the spectral density of polarization
and charge fluctuations of an individual two level system
(also referred to as a fluctuator) in terms of the density
matrix. In Section V, we solve the Bloch-Redfield lin-
ear differential equations for the density matrix. We find
the steady state solution of the Bloch-Redfield equations
and we analyze its dependence on the ratio J/Jc(Ω, T ).
In Section VI, we investigate the noise spectrum of a sin-
gle random telegraph fluctuator. We then average over
the distribution of independent TLS numerically to de-
termine the frequency dependence of the noise spectrum.
A summary is given in Section VII.

II. TWO LEVEL SYSTEM (TLS)

In applying the standard model of two level systems
to Josephson junction devices, we consider a TLS that
sits in the insulating substrate or in the tunnel barrier,
and has an electric dipole moment p consisting of a pair
of opposite charges separated by a distance d. The elec-
trodes positioned at z = 0 and z = L are kept at the
same potential. The angle between p and the z–axis,
perpendicular to the electrodes, is θ. The dipole flips
and induces polarization fluctuations and hence charge
fluctuations on the electrodes. These induced charges Q
are proportional to the z-component of the dipole mo-
ment, pz = p cos θ, i.e., Q = |p cos θ/L|.
The TLS is in a double–well potential with a tunneling

matrix element ∆0 and an asymmetry energy ∆.
16 The

Hamiltonian of a TLS in an external ac field can be writ-
ten as H(t) = H0 +H1(t), where H0 =

1
2 (∆σz +∆0σx),

and H1(t) = −σzp · ξac(t). Here σx,z are the Pauli spin
matrices and ξac(t) = ξac cosΩt is a small perturbing ac
electric field of angular frequency Ω that couples to the
TLS electric dipole moment. ξac points along the z−axis.
After diagonalization of H0, the Hamiltonian becomes

H(t) = H0 +H1(t) (1)

H0 =
1

2
Eσz (2)

H1(t) = −η(∆0σx +∆σz)cosΩt, (3)

where E =
√

∆2 +∆2o is the TLS energy splitting and
η ≡ p · ξac/E. Notice that η is a small dimensionless
variable (η ≈ 5× 10−3 for p = 3.7 D, ξac ≈ 10

3 V/m and
E/h ≈ 10 GHz). The energy eigenbasis is denoted by
{|+〉, |−〉}, and the corresponding eigenvalues are E± =
±E/2, where + (−) refers to the upper (lower) level of
the TLS. The energy splitting E will also be referred to
as ~ω0.
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An excited two level system can decay to the ground
state by emitting a phonon. The longitudinal relaxation
rate is given by:16

T−11 =
γ2d

(2πρ~4)

[(

1

c5`

)

+

(

2

c5t

)]

E∆2o coth (E/2kBT ) ,

(4)
where ρ is the mass density, c` is the longitudinal speed
of sound, ct is the transverse speed of sound, and γd is
the deformation potential. In this paper we will use the
values for SiO2: γd =1 eV, ρ = 2200 kg/m

3, c`=5800
m/s, and ct=3800 m/s. Typically, T1 varies between
T1,min = 10

−9 s and T1,max = 10
4 s for temperatures

around 0.1 K. The distribution of TLS parameters is
given by16,18

P (E, T1) =
PTLS

2T1
√

1− (τmin(E)/T1)
, (5)

where PTLS is a constant density of states that represents
the number of TLS per unit energy and unit volume.
The minimum relaxation time τmin(E) corresponds to a
symmetric double–well potential (i.e., E = ∆0). Alter-
natively, the TLS distribution function can be expressed
in terms of the TLS matrix elements ∆ and ∆0:

P (∆,∆0) =
PTLS

∆0
. (6)

The typical range of values for ∆ and ∆0 are 0 ≤ ∆/kB ≤
4 K and 2 µK ≤ ∆0/kB ≤ 4 K, where kB is the Boltz-
mann’s constant. We will use these values for our numer-
ical integrations in Section VI.

III. THERMAL EQUILIBRIUM EXPRESSION
FOR CHARGE NOISE

We begin by considering the case of thermal equilib-
rium. According to the Wiener-Khintchine theorem, the
charge spectral density SQ(ω) is twice the Fourier trans-
form ΨQ(ω) of the autocorrelation function of the fluc-
tuations in the charge. In equilibrium we can use the
fluctuation-dissipation theorem19 to find that the (un-
symmetrized) charge noise is given by:

SQ(k, ω) =
4~

1− e−~ω/kBT
χ′′Q(k, ω), (7)

where Q is the induced (bound) charge on the electrodes
and χ′′Q(k, ω) is the Fourier transform of

χ′′Q(r, t; r
′, t′) =

〈[Q(r, t), Q(r′, t′)]c〉e
2~

(8)

where [...]c is a commutator, and 〈...〉e is an ensemble
average. We use Q =

∫

P · dA, where P is the electric
polarization density, and choose Pz and dA‖ẑ since Q ∼
|pz| to find

χ′′Q(k, ω) = εoA
2χ′′Pz

(k, ω) (9)

where ε0 is the vacuum permittivity, A is the area of
a plate of the parallel plate capacitor with capacitance
C, and χ′′Pz

(k, ω) is the imaginary part of the electric
susceptibility. We set k = 0, and use

εoχ
′′
Pz
(ω) = ε′(ω) tan δ(ω) (10)

where tan δ(ω) is the dielectric loss tangent, and ε′(ω) is
the real part of the dielectric permittivity. We also use

C = ε′A/L (11)

to find

SQ(ω) =
4~C

1− e−~ω/kBT
tan δ(ω), (12)

where SQ(ω) ≡ SQ(k = 0, ω)/Vo, the volume of the ca-
pacitor is Vo = AL, and ε′(ω) = ε′+εTLS(ω) ' ε′ = ε0εr
where εr is the relative permittivity. The frequency de-
pendent permittivity εTLS(ω) produced by TLS is neg-
ligible compared to the constant permittivity ε′.16 The
TLS dynamic electric susceptibilities (χ′(ω), χ′′(ω)), and
hence the dielectric loss tangent, can be obtained by solv-
ing the Bloch equations in equilibrium.11,13,20 One can
then average over the distribution of TLS parameters.
However, since we will be considering driven systems that
are in a nonequilibrium steady state, we need to take the
more general approach that is described in the next sec-
tion.

IV. GENERAL EXPRESSION FOR SPECTRAL
DENSITY OF POLARIZATION AND CHARGE
FLUCTUATIONS OF A TWO LEVEL SYSTEM

The noise in our model is due to a fluctuating two level
system with an electric dipole moment that changes its
orientation with respect to the direction of the applied
driving field while keeping its magnitude constant. In
this section, we begin by deriving a general expression for
the polarization noise SP (ω) of a single TLS that is valid
at all frequencies and in both equilibrium and nonequi-
librium situations. Since we are interested in TLS satu-
ration, this formulation will apply to a driven system in
nonequilibrium steady state. We then relate the polar-
ization noise to the charge noise SQ(ω).
According to the Wiener-Khintchine theorem, the po-

larization spectral density SP (ω) in the stationary state
is twice the Fourier transform of the autocorrelation func-
tion of the fluctuations in the polarization:

SP (ω) = 2

∫ +∞

−∞

d(t1− t2)e
iω(t1−t2) [〈δPH(t1)δPH(t2)〉]ρ .

(13)
The subscript H denotes the Heisenberg representation.
We can rewrite this expression in the Heisenberg repre-
sentation as

SP (ω) = 2

∫ +∞

−∞

d(t1 − t2)e
iω(t1−t2)

× Tr{ρH〈δPH(t1)δPH(t2)〉}, (14)
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where the density matrix ρH is time independent in the
Heisenberg representation, but not in the Schrodinger
representation. We now change from the Heisenberg rep-
resentation to the Schrodinger representation (denoted
by the subscript S). Recall that an operator AH(t)
in the Heisenberg representation can be expressed in
terms of its version in the Schrodinger representation by
AH(t) = U+(t, t0)AS(t)U(t, t0), where U(t, t0) is the uni-
tary evolution operator. Hence,

Tr{ρHδPH(t1)δPH(t2)} = Tr{ρS(t1)δPS(t1)U(t1, t2)

δPS(t2)U(t2, t1)} (15)

≡ F (t1, t2). (16)

To simplify the notation we have temporarily omitted
the symbol 〈...〉 denoting the time average. The spectral
density of polarization fluctuations in the Schrodinger
representation becomes:

SP (ω) = 2

∫ +∞

−∞

d(t1 − t2)e
iω(t1−t2)F (t1, t2), (17)

where the function F (t1, t2) depends on (t1− t2) for sta-
tionary processes. It can be expressed as

F (t1, t2) =
∑

m,n,p

〈m(t1)|ρ(t1)|n(t1)〉〈n(t1)|δP (t1)|p(t1)〉

× 〈p(t1)|U(t1, t2)δP (t2)U(t2, t1)|m(t1)〉

=
∑

m,n,p

〈m(t1)|ρ(t1)|n(t1)〉〈n(t1)|δP (t1)|p(t1)〉

× 〈p(t2)|δP (t2)|m(t2)〉, (18)

where ρ(t) is the density matrix in the Schrodinger rep-
resentation, and m, n, and p denote eigenstates of H0.
As we mentioned in the introduction, we are considering
the density matrix ρ of a single TLS that contains the
time dependence of the external driving field. The ran-
dom dipole fluctuations are contained in δPH(t). Let α
stand form, n, or p. Then |α(t)〉 = exp(−iEαt/~)|α〉 and
H0|α〉 = Eα|α〉. We now switch from |n(t)〉, |m(t)〉, and
|p(t)〉 to the |+〉 and |−〉 eigenstates of a TLS to obtain:

F (t1, t2) = [ρ(t1)δP (t1)]++δP++(t2)

+ [ρ(t1)δP (t1)]−−δP−−(t2)

+ e−iω0(t1−t2)[ρ(t1)δP (t1)]−+δP+−(t2)

+ e+iω0(t1−t2)[ρ(t1)δP (t1)]+−δP−+(t2), (19)

where δPαα′(t) denotes the αα′th element of the δP (t)
matrix, [ρ(t)δP (t)]αα′ represents the αα′th element of the
ρ(t)δP (t) matrix, and ω0 ≡ E/~. We will see in Section
V that ρ+− and ρ−+ are first order in the small parame-
ter η = p·ξac/E. η ¿ 1 for both small and large values of
J/Jc. We assume that the fluctuations in the polarization
δP are also small and of order η. Hence the terms involv-
ing products such as ρ−+δP+−δP−−, ρ+−δP−+δP++,
ρ−+δP++δP+−, and ρ+−δP−−δP−+ are of third order

in small perturbations and can be neglected. This leads
to an approximate expression for F (t1, t2):

F (t1, t2) ≈ ρ++δP++(t1)δP++(t2)

+ ρ−−δP−−(t1)δP−−(t2)

+ e−iω0(t1−t2)ρ−−δP−+(t1)δP+−(t2)

+ e+iω0(t1−t2)ρ++δP+−(t1)δP−+(t2). (20)

Let P||(t) be the projection along the ac external field
of the polarization operator associated with the dipole
moment p of a two level system. P||(t) has stochastic
fluctuations due to the fact that the electric dipole mo-
ment of the two level system randomly changes its orien-
tation angle θ(t) with respect to the applied electric field.
Hence, we can write

P||(t) = −
p cos(θ(t))

Vo

(

∆0
E
σx +

∆

E
σz

)

≡ P0(t)

(

∆0
E
σx +

∆

E
σz

)

, (21)

where P0(t) ≡ −p cos(θ(t))/Vo and Vo is volume. Using
Eqs. (17) and (20), we obtain

SP||
(ω) = 2

∫ +∞

−∞

d(t1 − t2)e
iω(t1−t2)〈P0(t1)P0(t2)〉

×

{(

∆

E

)2

[1− 〈P||〉
2]+

(

∆0
E

)2
[

e−iω0(t1−t2)ρ−−

+ eiω0(t1−t2)ρ++
]

}

, (22)

where 〈P||〉 is the time averaged value of the opera-
tor P||(t). Since for stationary processes the correlator
〈P0(t1)P0(t2)〉 is a function of (t1 − t2), we can define

SP0
(ω) ≡ 2

∫ +∞

−∞
d(t1 − t2)e

iω(t1−t2)〈P0(t1)P0(t2)〉. Then
we have

SP||
(ω) ≡ 2

∫ +∞

−∞

d(t1 − t2)e
iω(t1−t2)

× 〈P0(t1)P0(t2)〉 (23)

=

(

∆

E

)2
[

1− 〈P||〉
2]SP0

(ω)

+

(

∆0
E

)2

[ρ−−SP0
(ω − ω0)

+ ρ++SP0
(ω + ω0)

]

. (24)

This is a general formula for the spectral density of
the polarization fluctuations assuming that the fluctu-
ations in the orientations of the electric dipole moments
of TLS are a stationary process. It has two contribu-
tions. The first term, which is proportional to SP0

(ω), is
the relaxation (REL) contribution. It is associated with
the TLS pseudospin σz whose expectation value is pro-
portional to the population difference between the two
levels of the TLS. The relaxation contribution to phonon
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or photon attenuation is due to the modulation of the
TLS energy splitting E by the incident photons which
have energy ~ω ¿ E. This modulation causes the popu-
lation of the TLS energy levels to readjust which requires
energy and leads to attenuation of the incident flux. The
last two terms in Eq. (24) are proportional to SP0

(ω±ω0)
and are resonance (RES) contributions. The resonance
terms are associated with the x and y components of the
TLS pseudospin that describe transitions between levels.
They describe the resonant absorption by TLS of pho-
tons or phonons with ~ω = E. We will see in section VI
that the relaxation term is dominant at low frequencies,
while the resonance contributions are dominant at high
frequencies.
To obtain the charge noise SQ(ω) from the polariza-

tion noise, we make use of the following formulas. In a
polarized medium, the induced (bound) charge is

Q =

∫

P · dA (25)

where P is the electric polarization. We choose Pz and
dA‖ẑ since Q ∼ |pz| = |p cos θ|. Then

SQ(ω) = A2SPz
(ω) (26)

=
A2SP||

(ω)

3
, (27)

where A is the area of a plate of a parallel plate capacitor
with capacitance C = ε′A/L, and ε′ is the real part of
the dielectric permittivity.
In this section we have derived expressions for the po-

larization and charge noise for a single TLS in terms of
the density matrix. In the next section we will solve the
Bloch–Redfield equations for the time dependent density
matrix of a TLS subjected to an external ac driving field.

V. THE BLOCH-REDFIELD EQUATIONS

From Eqs. (17) and (18), we see that we need the time
dependent density matrix to calculate the polarization
noise spectrum. In this section, we solve the Bloch-
Redfield equations to find the time evolution of the den-
sity matrix of a single TLS subject to an external ac
electric field. These equations combine the equation of
motion of the density matrix with time-dependent per-
turbation theory, taking into account the relaxation and
dephasing of TLS.
We follow Slichter21 and write the following set of lin-

ear differential equations for the density matrix elements
ραα′(t):

dραα′

dt
=
i

~
〈α|[ρ,H0]|α

′〉

+
i

~
〈α|[ρ,H1(t)]|α

′〉

+
∑

β,β′

Rαα′,ββ′ [ρββ′ − ρββ′(T )], (28)

where α and β can be either + or −, corresponding to
the energy eigenstates of the TLS, and Rαα′,ββ′ are the
Bloch-Redfield tensor components which are constant in
time. They are related to the longitudinal and trans-
verse relaxation times, T1 and T2. In Eq. (28), H0 and
H1(t) are Hamiltonians given by Eqs. (2) and (3), re-
spectively. The thermal equilibrium value of the den-
sity matrix is denoted by ρeq(T ). At thermal equilib-
rium, only the diagonal elements of the density matrix
are nonzero, and are given by ρeq−−(T ) = exp(+E/2)/Z
and ρeq++(T ) = exp(−E/2)/Z, where the partition func-
tion Z = [exp(−E/2) + exp(+E/2)]. Eq. (28) can be
written in the form:

dραα′

dt
=
i

~
(Eα′ − Eα)ραα′ +

i

~

∑

α′′

[ραα′′〈α′′|H1(t)|α
′〉

− 〈α|H1(t)|α
′′〉ρα′′α′ ]

+
∑

β,β′

Rαα′,ββ′ [ρββ′ − ρeqββ′(T )]. (29)

Next we use the fact that in the relaxation terms
Rαα′,ββ′ , the only important terms correspond to21,22

α − α′ = β − β′. In addition, the Bloch-Redfield ten-
sor is symmetric, so we have the following relations for
the dominant components:

R−−,++ = R++,−− ≡
1

T1
(30)

R−+,−+ = R+−,+− ≡ −
1

T2
. (31)

The longitudinal relaxation time T1 is given by Eq. (4).
For the transverse relaxation time T2, we will use the
experimental value23

T2 ≈
8× 10−7

T
sec, (32)

where T is in Kelvin. From relations (30) and (31), the
set of linear differential equations (29) becomes

dρ−−
dt

=
i

~
(ρ−+[H1(t)]+− − [H1(t)]−+ρ+−)

+
1

T1
(ρ++ − ρ

eq
++(T )), (33)

dρ++
dt

=
i

~
(ρ+−[H1(t)]−+ − [H1(t)]+−ρ−+)

+
1

T1
(ρ−− − ρ

eq
−−(T )), (34)

dρ−+
dt

=
i

~
(E+ − E−)ρ−+

+
i

~
(ρ−−[H1(t)]−+ − [H1(t)]−−ρ−+

+ ρ−+[H1(t)]++ − [H1(t)]−+ρ++)−
1

T2
ρ−+,

(35)

dρ+−
dt

=
dρ?−+
dt

, (36)
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where [H1(t)]α,β = 〈α|H1(t)|β〉. Using Eq. (3), we can
write the first two equations for the diagonal elements as:

dρ−−
dt

= −
dρ++
dt

=
i

~
(−η∆0cosΩt) (ρ−+ − ρ+−)

+
1

T1
[ρ++ − ρ−− − (ρ

eq
++(T )− ρ

eq
−−(T ))], (37)

while the equation for the off–diagonal element ρ−+ is:

dρ−+
dt

=
i

~
(E+ − E−)ρ−+ +

i

~
(ρ−− − ρ++)(−η∆0cosΩt)

+
i

~
ρ−+(−2η∆cosΩt)−

1

T2
ρ−+. (38)

We look for a steady state solution of the form

ρ−− = r−−, ρ++ = r++ (39)

ρ−+(t) = r−+e
iΩt, ρ+−(t) = ρ?−+(t), (40)

where rαα′ are complex constants. We find that in steady
state the density matrix elements are given by the follow-
ing expressions:

ρ−− =
1

2
+

ρeq−−(T )− 1/2

1 + g(Ω, ω0, T2)× (J/Jc)
(41)

ρ++ =
1

2
+

ρeq++(T )− 1/2

1 + g(Ω, ω0, T2)× (J/Jc)
(42)

ρ−+(t) = −
iT2η∆0
2~

1

[1 + iT2(Ω− ω0)]

×
ρeq−−(T )− ρ

eq
++(T )

1 + g(Ω, ω0, T2)× (J/Jc)
exp(iΩt) (43)

ρ+−(t) = ρ?−+(t), (44)

where η = p · ξac/E, J/Jc = T1T2(η∆0/~)
2/2, and

g(Ω, ω0, T2) = 1/[1+ (Ω−ω0)
2T 22 ]. For a dipole moment

p = 3.7 D, a large electric field ξac = 3 × 10
3 V/m, and

TLS energy splittings of the order of 10 GHz, the dimen-
sionless factor η ≈ 0.005, and it decreases to a value of
5× 10−8 when the amplitude of the applied electric field
is ξac = 0.03 V/m. g(Ω, ω0, T2) is approximately equal
to 1 when the ac driving frequency is resonant with the
TLS energy splitting, i.e., Ω ≈ ω0.
Notice that the off-diagonal elements of the density

matrix are first order in η ¿ 1. They are oscillatory and
small, as shown by the following numerical estimate. For
large electric fields (ξac = 3 × 10

3), η ≈ 0.005, T2 = 8
µs at T = 0.1 K,23,24, ∆0/h ≈ E/h ≈ 10 GHz, and
T1 = 8 × 10

−8 s, we obtain J/Jc = T1T2(η∆0/~)
2/2 ≈

107 À 1, and |ρ−+| ≈ 10−4. For J ¿ Jc, we have
|ρ−+| ≈ 10

−2. Hence, the amplitude of the off-diagonal
density matrix elements is very small. On the other hand,
the diagonal elements have small deviations from their
equilibrium values (at low electromagnetic fields J ¿ Jc)
or from their steady state values (at large electromagnetic
fields J À Jc). Also, as required, Tr{ρ} = ρ−− + ρ++ =
1. In addition, the quantum expectation value of the

z−component of the TLS spin is

〈Sz〉 = (ρ++ − ρ−−) (45)

= −
tanh(E/(2kBT ))

[1 + (J/Jc)× g(Ω, ω0, T2)]
. (46)

Note that all the elements of the density matrix depend
on the ratio J/Jc(Ω, T ). To approximate the populations
of the upper and lower TLS energy levels for small and
large electromagnetic fields, we write down approximate
expressions of ρ−− and ρ++. For J ¿ Jc and g ≈ 1, we
expand ρ−− and ρ++ to first order in J/Jc to obtain:

ρ−− ≈ ρeq−−(T )
(

1−
J

Jc
g
)

+
1

2

J

Jc
g (47)

ρ++ ≈ ρeq++(T )
(

1−
J

Jc
g
)

+
1

2

J

Jc
g. (48)

This means that unsaturated TLS with energy splittings
of the order of 10 GHz at a temperature of 0.1 K have
ρ++ ≈ 0 and ρ−− ≈ 1. Thus the upper level is mostly
unoccupied while the lower level is almost always occu-
pied.
On the other hand, for J À Jc, we can expand the

steady state solution for ρ−− and ρ++ given in Eqs. (41)
and (42) to first order in (J/Jc)

−1. The result is

ρ−− ≈
1

2
+
[

ρeq−−(T )−
1

2

]( J

Jc
g
)−1

(49)

ρ++ ≈
1

2
−
[

ρeq−−(T )−
1

2

]( J

Jc
g
)−1

. (50)

Hence, for saturated TLS the lower and upper levels are
almost equally populated, i.e., ρ++ ≈ 1/2 and ρ−− ≈
1/2. This is to be expected since the TLS are constantly
being excited by the ac electric field and de-excited by
spontaneous and stimulated emission. Once the TLS are
saturated, the populations of the lower and upper levels
will have small deviations from their steady state val-
ues. We will look at the saturation effect in more detail
in Section VI where we plot noise spectrum of a single
fluctuator versus J/Jc. This noise spectrum depends on
the density matrix elements ρ++ and ρ−−. As one goes
from the unsaturated regime to the saturated regime,
the amplitude of ρ−− decreases by a factor of two. From
Eq. (24) the polarization noise of a single TLS depends
linearly on ρ−−. Because ρ−− only decreases by a factor
of 2 when the TLS are saturated, we will see that the
saturation of TLS will not play an important role in the
polarization and charge noise spectra.

VI. RESULTS

In this section we begin by studying the polarization
noise spectrum of a single TLS fluctuator as a function of
frequency and electromagnetic flux ratio (J/Jc). We then
obtain the total polarization noise by averaging over the
distribution of independent two level systems. From this
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we get the charge noise which we will analyze at both
low and high frequencies as a function of temperature
and incident electromagnetic flux.

A. Polarization Noise of One TLS Fluctuator

Now that we have the matrix elements of the steady
state density matrix in Eqs. (41)–(44), we can use them
to evaluate the expression for polarization noise found
in Eq. (24). In order to make further progress in eval-
uating Eq. (24), we need to know the polarization noise
spectrum SP0

(ω) of a TLS. So we assume that a sin-
gle TLS fluctuates randomly in time. Its electric dipole
moment fluctuates in orientation by making 180o flips
between θ = θ0 and (θ = θ0 + 180

o), resulting in a ran-
dom telegraph signal (RTS) in the polarization P0(t) =
±p cos(θ0)/V along the external field. The noise spec-
trum is a Lorentzian given by25

SP0
(ω) =

〈δP 20 〉τ

(1 + ω2τ2)
, (51)

where τ is the characteristic relaxation time of the fluctu-
ator. So in Eq. (24), we replace SP0

(ω) by the RTS noise
spectrum with a T1 relaxation time, and SP0

(ω ± ω0) by
the corresponding RTS noise spectrum with a T2 relax-
ation time.
In evaluating Eq. (24) we also need 〈P||〉 which en-

ters into from δP|| = P|| − 〈P||〉. We do not know what
〈P||〉 is when the system is in a nonequilibrium driven
steady state, but we do know it in thermal equilibrium.
So we set 〈P||〉 equal to its thermal equilibrium value,
i.e., 〈P||〉 = − tanh(E/2kBT ). If we did not subtract the
mean polarization, then the noise spectrum associated
with 〈P||(t1)P||(t2)〉 would have an extra term at ω = 0
proportional to δ(ω). Therefore this assumption does not
affect the frequency dependence of the noise spectrum for
ω 6= 0. It does, however, introduce temperature depen-
dence into the noise spectrum.
Putting this all together, we arrive at the following

expression for the spectral density of polarization fluctu-
ations of a single TLS:

SP||
(ω)

〈δP 20 〉
=

(

∆

E

)2
[

1− tanh2(E/2kBT )]
T1

1 + ω2T 21

+

(

∆0
E

)2[

(ρ−−)
T2

1 + (ω − E/~)2T 22

+ (ρ++)
T2

1 + (ω + E/~)2T 22

]

. (52)

The first term is the relaxation contribution and the last
two terms are the resonance contribution.
In Fig. 2, we show the spectral density SP||

(ω)/〈δP 20 〉
of polarization fluctuations of a single TLS at low fre-
quencies. We consider three values of the TLS energy
splitting as shown in the legend. In the low frequency
range, the noise spectrum is dominated by the relaxation
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FIG. 2: Log-log plot of the low frequency polarization noise of
a single two level system given by Eq. (52) versus frequency for
three different values of the TLS energy splitting as shown in
the legend. For all 3 cases, T = 0.1 K, J/Jc = 10−4, Ω = E/~,
and ∆ = ∆0 = E/

√
2.

contribution which is a Lorentzian. Thus the noise spec-
trum is flat for ω ¿ 1/T1. As the frequency increases, it
rolls over at ω ∼ 1/(T1), and goes as 1/ω

2 for ω > 1/T1.
At very high frequencies (ω > |E/~|), it saturates to a
constant (white noise) due to the resonance terms. In
addition, we find that the low frequency noise is inde-
pendent of electromagnetic flux J/Jc and the angular
frequency Ω of the driving electric field.

The contribution of the resonance terms to the noise
spectrum is negligible at low frequencies (ω ¿ E/~)
as expected from simple numerical estimates. However
these resonance terms become important to the noise
spectrum at high frequencies as shown in Fig. 3. The
peaks appear when the resonance condition ω = E/~ is
satisfied. The plot in Fig. 3 was obtained for a low value
of 10−4 for the ratio J/Jc. No noticeable differences were
obtained when increasing the ratio to values as high as
107 (not shown).

Figure 4 shows the polarization noise power of a single
two level system over a broad range of frequencies that
cover both the resonance and relaxation contributions.
At low frequencies there is a plateau. Between 100 kHz
and 1 GHz, the noise spectrum decreases as 1/ω2 due to
the Lorentzian associated with the relaxation contribu-
tion. At higher frequencies there is a resonance peak at
Ω = E/~.

The effect of TLS saturation can be seen at high fre-
quencies in the plot of the noise of a single TLS versus
the ratio J/Jc as shown in Fig. 5. We plotted the spectral
density of polarization fluctuations of an individual TLS
given by Eq. (52) at a fixed high frequency (ω/2π = 9
GHz) versus J/Jc. Notice that the noise is constant as
long as J ¿ Jc, then decreases when the electromag-
netic flux is comparable to the critical flux, and reaches
a value which is 2 times smaller than the previous one for
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J À Jc. This is in agreement with our estimates from
Section V where we saw that as J/Jc increases, ρ−− de-
creases by a factor of 2 from a value close to 1 to a value
close to 0.5 when the TLS is saturated.

B. Polarization and Charge Noise of an Ensemble
of TLS Fluctuators

Until now we have analyzed the contribution of a single
fluctuator to the polarization noise spectrum. We now
average the polarization noise of a single fluctuator over
an ensemble of independent fluctuators in a volume Vo.
The distribution function over TLS parameters was given
in Section II as P (∆,∆0) = PTLS/∆0. Using this, we

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

J / J
c

10
-15

S
in

gl
e 

T
L

S
 N

oi
se

 [
se

c]

FIG. 5: Log-log plot of the high frequency polarization noise
for a single two level system given by Eq. (52) versus J/Jc.
The amplitude of the noise decreases by a factor of two as
saturation is achieved for J/Jc > 1. ω/2π = 9 GHz, E/h =
Ω/2π = 10 GHz, ∆ = ∆0 = E/

√
2, and T = 0.1 K.

obtain:

SP||
(ω)

〈δP 20 〉
= Vo

∫ ∆max

∆min

d∆

∫ ∆0,max

∆0,min

d∆0P (∆,∆0)

×

(

∆

E

)2
[

1− tanh2(E/2kBT )]
T1

1 + ω2T 21

+

(

∆0
E

)2[

(ρ−−)
T2

1 + (ω − E/~)2T 22

+ (ρ++)
T2

1 + (ω + E/~)2T 22

]

≡ VoI(ω; Ω, T, J/Jc), (53)

where I(ω; Ω, T, J/Jc) is the result of integrating over the
distribution of TLS parameters ∆ and ∆0.
To obtain the charge noise SQ(ω) from the polarization

noise, we use Eq. (27) with

〈δP 20 〉 =

〈

(

2p cos θ0
Vo

)2
〉

(54)

=
4p2

3V 2o
. (55)

We obtain

SQ(ω)

e2
=
4

9

( p

eL

)2
VoPTLSI(f ; Ω, T, J/Jc). (56)

We can evaluate Eq. (56) numerically using p = 3.7 D,
PTLS = 10

45 (Jm3)−1, L = 400 nm, A = 40 × 800 nm2,
Vo = AL, ∆min = 0, ∆max/kB = ∆0,max/kB = 4 K, and
∆0,min/kB = 2× 10

−6 K. The results follow.

1. Low Frequency Charge Noise

At low frequencies (ω ¿ |E/~|), the normalized charge
noise spectrum SQ/e

2 is shown in Fig. 6. It is flat at very
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2

averaged over the TLS ensemble versus frequency for different
temperatures. The solid line has a slope of −1 corresponding
to a perfect 1/f spectrum. Between 10−3 and 104 Hz, the
noise spectrum is very close to 1/f . For example, in this
frequency range for T = 0.1 K the noise spectrum goes as
1/(f0.998). J/Jc = 10−4.

low frequencies ωT1 ¿ 1. As the frequency increases, it
rolls over at ω ≈ (T1,max)

−1 and decreases as 1/f noise
between approximately 10−3 and 104 Hz.
This 1/f noise result agrees with the following simple

calculation. Consider an electric dipole moment p in a
parallel plate capacitor at an angle θ0 with respect to the
z−axis which is perpendicular to the electrodes that are
a distance L apart. Assume that the electrodes are at the
same voltage. When the dipole flips by 180o, the induced
charges on the superconducting electrodes change from
∓p cos θ0/L to ±p cos θ0/L. Let δQ denote the magni-
tude of the charge fluctuations. Then δQ = |2p cos θ0/L|.
Hence the charge of the Josephson junction capacitor pro-
duces a simple two state random telegraph signal which
switches with a transition rate τ−1 given by the sum of
the rates of transitions up and down. The charge noise
spectral density is26

S
(i)
Q (ω) = 2

∫ ∞

−∞

d(t1 − t2)e
iω(t1−t2)〈δQ(t1)δQ(t2)〉

= (δQ)2
4w1w2τ

1 + ω2τ2
, (57)

where the superscript i refers to the ith TLS in the sub-
strate or tunnel barrier, and w1 (w2) is the probability of
being in the lower (upper) state of the TLS. In order to
average over TLS, we recall that the distribution func-
tion of TLS parameters can be written in terms of the
energy and relaxation times:16

P (τ, E) =
PTLS

(2τ
√

1− τmin/τ)
. (58)

At low frequencies ωτmin ¿ 1, the main contribution to
the spectral density comes from slowly relaxing TLS for
which P (τ, E) ' PTLS/(2τ). Therefore, the charge noise

of an ensemble of independent fluctuators is

SQ(ω) ' Vo

∫ ∞

τmin

dτ

∫ Emax

0

dE
PTLS

2τ

×
〈δQ2〉

cosh2(E/2kBT )

τ

1 + ω2τ2
. (59)

〈δQ2〉 is the square of the amplitude of charge fluctua-
tions averaged over TLS dipole orientations. We assume
that 〈δQ2〉 is independent of E and τ . At low temper-
atures (kBT ¿ Emax) and low frequencies (ωτmin ¿ 1,
we obtain 1/f charge noise that goes linearly with tem-
perature:

SQ(ω)

e2
'
2π

3
VoPTLSkBT

( p

eL

)2 1

ω
. (60)

This agrees with Kogan26 and Faoro and Ioffe10. To esti-
mate the value of SQ/e

2, we use p = 3.7 D, PTLS ≈ 10
45

(Jm3)−1, L = 400 nm, A = 40× 800 nm2, and Vo = AL.
At T = 0.1 K and f = 1 Hz, we obtain SQ/e

2 = 2×10−7

Hz−1, which is comparable to the experimental value of
4 × 10−6 Hz−1 deduced from current noise.7 The mag-
nitude of this noise estimate is also in good agreement
with our numerical result from Eq. (56), i.e., SQ(f =
1 Hz)/e2 = 2.9× 10−7 Hz−1.
Another way to obtain low frequency 1/f noise is the

following. At low frequencies the system is in thermal
equilibrium, and we can use Eq. (12) from Section III:

SQ(ω)

e2
=
2kBT

e2/2C

tan δ

ω
. (61)

The TLS contribution to the dielectric loss tangent tan δ
was calculated by previous workers11,16,17 who consid-
ered fluctuating TLS with electric dipole moments. They
found

tan δ =
πp2PTLS

6ε′
(62)

where ε′ is the real part of the dielectric permittivity and
PTLS the constant TLS density of states. By plugging
Eq. (62) into Eq. (61), we recover Eq. (60).

2. High Frequency Charge Noise

Evaluating Eq. (56) numerically at high frequencies
yields the normalized charge noise spectrum shown in
Fig. 7. We have plotted the contributions coming from
the relaxation term and the two resonance terms sepa-
rately. The relaxation term dominates at low frequen-
cies. It gives 1/f noise at very low frequencies, and tran-
sitions to 1/f2 noise when ω > 1/T1,min. On the other
hand, the resonance terms produce white (flat) noise that
dominates at high frequencies. The two curves cross at
approximately 0.1 GHz. The inverse of this crossover
frequency corresponds to T1,min ∼ 10

−9 s.
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FIG. 7: Log-log plot of the high frequency charge noise SQ/e
2

averaged over the TLS ensemble versus frequency. The con-
tributions of the relaxation term and the resonance terms are
plotted separately. The noise spectrum becomes white noise

at frequencies
>∼ 0.1 GHz. The results were obtained using

T = 0.1 K, Ω = 10 GHz, and J/Jc = 107.

Regarding the temperature dependence, we note that
while the low frequency 1/f noise is proportional to tem-
perature, the high frequency white noise amplitude de-
creases gradually with increasing temperature as shown
in Fig. 8. To understand this temperature dependence,
note that at high frequencies the resonant terms dom-
inate. These are the last two terms in Eq. (53). The
dominant contribution to the integral occurs at resonance
(ω = E/~) where the temperature dependence of the in-
tegrand goes as T2 ∼ 1/T and decreases as the temper-
ature increases. However, this decrease is much stronger
than seen in the ensemble averaged noise shown in Fig. 8.
This may be because in obtaining the ensemble averaged
noise, one adds terms away from resonance which have
the opposite trend and increase with increasing temper-
ature as T−12 ∼ T .
In Fig. 9 we show our cumulative numerical results for

the charge noise spectrum at both low and high frequen-
cies. As we mentioned previously, there is no noticeable
dependence on the electromagnetic flux ratio J/Jc at ei-
ther low or high frequencies.
Our result of white noise at high frequencies dis-

agrees with the experiments by Astafiev et al.
15 who con-

cluded that the noise increases linearly with frequency.
However, we caution that the experiments were done
under different conditions from the calculation. The
experimentalists15 applied dc pulses with Fourier com-
ponents up to a few GHz, possibly saturating TLS with
energy splittings in this frequency range. They relied on
a Landau-Zener transition to excite the qubit which had a
much larger energy splitting, ranging up to 100 GHz, and
measured the decay rate Γ1 of the qubit. Then they used
Γ1 to deduce the charge noise spectrum at frequencies
equal to the qubit splitting by using a formula27 derived
assuming a stationary state. It is not clear whether it is
valid to assume a stationary state in the presence of dc

10
-2

10
-1

10
0

Temperature [K]

2e-17

2.5e-17

3e-17

3.5e-17

4e-17

4.5e-17

5e-17

5.5e-17

6e-17

H
ig

h 
Fr

eq
ue

nc
y 

C
ha

rg
e 

N
oi

se
 [

H
z-1

]

FIG. 8: Plot of the high frequency charge noise SQ(ω)/e2

averaged over the TLS ensemble versus temperature. Notice
that the noise decreases gradually with increasing tempera-
ture. This plot was obtained for ω/2π = 10 GHz, a driving
frequency of Ω/(2π) = 10 GHz, and J/Jc = 107.
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FIG. 9: Log-log plot of the charge noise SQ(ω)/e2 averaged
over the TLS ensemble versus frequency. Notice that the re-
sults for large and small values of J/Jc overlap. We have
considered two temperatures, 0.5 K and 0.05, respectively,
and the driving frequency was Ω/(2π) = 10 GHz.

pulses which lasted for a time (∼ 100 ps) comparable to
the lifetime of the qubit.

In contrast, in calculating noise spectra, we make the
customary assumption of stationarity. We relate the
charge noise spectra to the response to an ac drive for
a broad range of frequencies. AC driving of qubits
have been used in both theoretical28–30 and experimental
studies31–34 of qubits. It would be interesting to measure
the frequency and temperature dependence of the charge
noise of Josephson qubits in the presence of ac driving
since no such measurements have been done.
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VII. SUMMARY

To summarize, we have studied the effect of the satu-
ration of TLS by electromagnetic waves on qubit charge
noise. Using the standard theory of two level systems
with a flat density of states, we find that the charge
noise at low frequencies is 1/f noise and is insensitive to
the saturation of the two level systems. In addition the
low frequency charge noise increases linear with temper-
ature. As one approaches high frequencies, the charge
noise plateaus to white noise with a very weak depen-
dence on the driving frequency Ω and the ratio J/Jc.

We found that the high frequency charge noise decreases
slightly with increasing temperature.

Finally we note that while we have been considering a
Josephson junction qubit, our results on charge and po-
larization noise have not relied on the superconducting
properties of the qubit. So our results are much more
general and pertain to the charge noise produced by fluc-
tuating TLS in a capacitor or substrate subject to a driv-
ing ac electric field in steady state.
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