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We briefly review 1/f noise in Coulomb glasses. We then argue that measurements of the second spec-
trum of the noise in Coulomb glasses could help to determine if electron fluctuations are correlated.
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An electron glass is an amorphous insulator in which the electrons see a random potential and are
localized at random positions. If the electrons interact with one another via long range Coulomb inter-
actions, then we have a special case of an electron glass known as a Coulomb glass.

In a broad sense there have been two theoretical points of view of electron hopping in Coulomb
glasses. The single particle approach models the electronic excitations as quasiparticles. Transport is
described by variable range hopping which depends on the single particle density of states. The Cou-
lomb interactions between localized electrons produce a Coulomb gap in the single particle density of
states that is centered at the Fermi energy. The Coulomb gap makes the ground state stable with
respect to single electron hops [1–3]. This approach has been very successful when compared to
experiment. It finds that the conductivity goes as exp ½�ðTo=TÞ1=2� which has been seen experimen-
tally. Tunneling experiments have also seen the Coulomb gap [4].

In the other approach the interactions between electrons produces many body excitations [5]. As a
result transport is accomplished by correlated electron hopping, e.g., sequential hops as well as simul-
taneous or collective hopping. This approach is more difficult to deal with theoretically and is harder
to verify experimentally. In this paper we argue that noise measurements could help to determine if
correlated electron motion is involved in transport in Coulomb glasses.

To an experimentalist, noise is a nuisance at best and a serious problem hindering measurements at
worst. However noise comes from the fluctuations of microscopic entities and it can act as a probe of
what is happening physically at the microscopic scale. Let us set up our notation and define what we
mean by noise. Let dIðtÞ be a fluctuation in some quantity I at time t. If the processes producing the
fluctuations are stationary in time, i.e., translationally invariant in time, then the autocorrelation func-
tion of the fluctuations hdIðt2Þ dIðt1Þi will be a function wIðt2 � t1Þ of the time difference. In this case
the Wiener–Khintchine theorem can be used to relate the noise spectral density SIðf Þ to the Fourier
transform wIðf Þ of the autocorrelation function [6]: SIðf Þ ¼ 2wIðf Þ where f is the frequency. 1/f noise,
which is ubiquitous and dominates at low frequencies, corresponds to SIðf Þ � 1=f .

In Coulomb glasses electron hopping can occur on very long time scales which can produce low
frequency noise. Experimental studies on doped silicon inversion layers have shown that low fre-
quency 1=f noise is produced by hopping conduction [7]. Shklovskii had suggested that 1=f noise is
caused by fluctuations in the number of electrons in an infinite percolating cluster [8]. These fluctua-
tions are caused by the slow exchange of electrons between the percolating conducting cluster and
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small isolated donor clusters. Subsequent theoretical [9–13] and experimental [14–16] work found
1=f noise at low temperatures and low frequencies in Coulomb glasses.

However, it is still unclear what the temperature dependence of the noise amplitude is. Experiments
on doped silicon (Si :B) at temperatures above 1.5 K with a fixed bias current of 4.5 mA found that
the noise increased with increasing temperature [14]. On the other hand measurements on ion im-
planted silicon (Si :B :P) at low temperatures (T < 0:5 K) found that the noise decreased with increas-
ing temperature [15]. Other measurements on doped silicon done between 2 K and 20 K find that the
noise is independent of temperature at lower temperatures and then decreases with temperature at
higher temperatures [16]. The crossover temperature depends on the current bias. This suggests that
the temperature dependence is sensitive to the amount of current bias as well as the temperature [16].

Theoretically, the picture is equally murky. Starting from the model that noise comes from fluctua-
tions dNP in the number of electrons in the percolating cluster due to electron exchange with small
isolated clusters [9], Shtengel and Yu [13] found that the noise increases with increasing temperature
due to the increase in the thermally activated electron hopping. However Shklovskii [12] argued that
the noise decreases with increasing temperature because the probability of finding a isolated cluster
decreases with increasing temperature. (A cluster is isolated if it has no neighbors to which it can hop
within a certain amount of time.) Another temperature dependent factor is the normalization of the
noise amplitude by the size of the percolating cluster NP:

SIðf Þ
I2

¼
2hdNPðt2Þ dNPðt1Þif

N2
P

: ð1Þ

where I is the average DC current, and h. . .if is the Fourier transform of the autocorrelation function.
The size of the percolating cluster increases with increasing temperature. To understand this, note that
two sites have a bond if electrons can hop between them faster than a certain rate which includes
thermally activated hopping. Preliminary calculations [17] on noninteracting electrons with a flat den-
sity of states indicates that NP � T3. If this is included in the calculations of Shtengel and Yu [13]
where the isolated clusters were single sites, the noise amplitude decreases with increasing tempera-
ture. In short, the temperature dependence of the noise is still an open question. Setting this issue of
temperature dependence aside, measurements of the 1/f noise spectrum in Coulomb glasses are not
really able to tell if the fluctuations were single particle or collective. A more relevant measurement
would be the so–called second spectrum of the noise. To understand the second spectrum, consider
the following. Suppose we take a time series on Monday and calculate the first spectrum, i.e., the
noise spectrum Sðf Þ. Then we do the same thing on Tuesday, Wednesday, etc. (In practice one would
want to take sequential spectra as close together in time as possible.) So now we have a set of noise
spectra Sðf Þ taken at different times t2. The second spectrum is the power spectrum of the fluctuations
of Sðf Þ with time, i.e., the Fourier transform of the autocorrelation function of the time series of Sðf Þ
[18–20]. To calculate the second spectrum, we can divide a first spectrum into octaves. An octave is a
range of frequencies from fL to fH where typically fH ¼ 2fL. We can discretize the first spectrum by
associating each octave with the total noise power in that octave. We do this for each data set. For
each octave this gives us a set of numbers with one number from each data set labeled by t2. Now we
can calculate the fluctuations in the noise power in a given octave labeled by frequency f . Then we
can calculate the autocorrelation function of these fluctuations, Fourier transform it and obtain the
noise power S2ðf2; f Þ which is the second spectrum.

The second spectrum looks for correlations in the fluctuations that produce the first spectrum. So
the second spectrum can tell us if the fluctuators are correlated or independent. If the second spectrum
is white (independent of f2) and equal to the square of the first spectrum [19–21], the fluctuators are
not correlated. Such noise is called Gaussian. If the fluctuators are correlated, then the noise is non-
Gaussian, and S2 � 1=f 1�b

2 where the exponent ð1� bÞ > 0. It is often useful to plot the second
spectrum S2ðf2; f Þ as a function of the ratio f2=f because over a given time interval the high frequency
fluctuations get averaged more than the low frequency fluctuations.

The second spectrum has been used to differentiate between the hierarchical model and the droplet
model of spin glasses [19, 20] because these two models assume different correlations between the
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fluctuators. These models were originally developed for short range spin glasses. We will take the
liberty of adopting their qualitative features for the case of electron glasses. In the droplet model,
clusters or droplets of rearranging electrons produce fluctuations [22–24]. There are fewer large dro-
plets than small droplets, and the big droplets rearrange more slowly than the small droplets. So the
large clusters contribute to the low frequency noise and the small fast clusters contribute to the high
frequency noise. In the simplest case, the droplets are noninteracting and produce a white second
spectrum. A more sophisticated version has interacting droplets. Large droplets are more likely to
interact with other droplets than are small droplets. So non-Gaussian noise and the second spectrum
will be larger at lower frequencies f1.

In the hierarchical model [19, 20, 25–30] the states (or electron arrangements) of the electron glass
lie at the endpoints of a bifurcating hierarchical tree (which looks more like the roots of a tree). The
Hamming distance D between two states is the fraction of electrons that must rearrange to convert one
state into another. It turns out that D corresponds to the minimum height to which one must go in the
tree in order to get from one endpoint (state) to another. The farther apart 2 states are, the longer the
time to go between them. The tree structure is self similar. As a result, the hierarchical model predicts
that S2 will be scale invariant and will only depend on f2=f and not on the frequency f , while the
interacting droplet model predicts that for fixed f2=f , S2 will be a decreasing function of f [19, 20].
Because of this, the second spectrum can differentiate between the droplet model and the hierarchical
model. Measurements of resistance fluctuations in the spin glass CuMn find that its behavior is con-
sistent with the hierarchical model [19, 20].

Measurements of the second spectrum of the noise in silicon inversion layers in MOSFETs in the
vicinity of the metal– insulator transition have found that the exponent ð1� bÞ changes from being
approximately zero in the metallic phase to a finite value of order unity [31] in the glassy or insulat-
ing phase. Similar results were found for doped silicon crystals Si :P(B) where ð1� bÞ was small in
the metallic phase and became greater than 1 in the insulating phase [16]. The frequency dependence
of S2 indicates that the electronic fluctuations are correlated. Furthermore in the experiments on the Si
MOSFETs, second spectra plots versus f2=f for different values of f fall along one curve, implying
that the hierarchical picture is better suited to describing the insulating phase [31].

Returning to our original question, we see that the measurements of the second spectra imply that
the correlated electron fluctuations are important. We then need to how to reconcile this with the
single quasiparticle picture that has been so successful. One possibility is that correlated electron
motion produces conductance and tunneling characteristics similar to those predicted by the single
quasiparticle picture. Another possibility is the dynamical current redistribution (DCR) model [32] in
which non-Gaussian noise statistics can result from statistically independent fluctuators. As a simple
example of this, consider two fluctuating resistors in parallel. The amplitude of the fluctuation of the
total resistance due to one resistor depends on the state of the other resistor. The DCR model is most
effective near the percolation threshold where a small number of large fluctuators produce frequency
dependence in S2 over a range of 1 or 2 decades. This bandwidth is determined by the frequency of
the independent fluctuators. It could be that single quasiparticle hopping produces non-Gaussian noise
according to the DCR model if one allows for a large number of quasiparticles with a broad distribu-
tion of hopping rates. A third possibility is that the observed non-Gaussian noise arises from none-
quilibrium aging which would result in the first spectrum Sðf Þ deviating from 1=f . For example, if the
fluctuations had a drift that increased linearly in time, then Sðf Þ would go as 1=f 2. Even though the Si
MOSFET experiments do see a first spectrum that approaches 1=f 2 with decreasing electron density,
the experimentalists were careful to rule out aging [33].

In any event it is clear that more work needs to be done both theoretically and experimentally to
understand the implications of the second spectrum. Noise measurements should be done on the insu-
lating side further away from the metal-insulator transition. Theoretical modeling and simulations
could shed some light on the implications of the second spectra measurements.
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