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Slow dynamics in glassy systems 

CLARE C. Yut 
Department of Physics and Astronomy, University of California, Irvine. 

California 92697, USA 

ABSTRACT 
We describe similarities in the features of various glassy systems where 

interactions and randomness compete. For example, Coulomb glasses have a 
gap in their single-particle density of states centred at  the Fermi energy. This 
gap is analogous to the hole in the distribution of local fields of spin glasses 
and of ordinary glasses with dipolar interactions between two-level systems. 
When the field or energy where these holes are centred is suddenly shifted by 
the application of an external field, a new hole or gap develops roughly 
logarithmically in time. Such slow relaxation is characteristic of glassy systems. 
If we assume that this logarithmic behaviour applies for small perturbations, then 
thermal fluctuations will lead to  fluctuations in the density of states and l/f’ noise. 

9 1. INTRODUCTION 
It is a great pleasure to contribute an article in honour of Professsor Michael 

Pollak’s seventy-fifth birthday. Professor Pollak has made seminal contributions to 
our understanding of Coulomb glasses. He has drawn me into the field via a number 
of stimulating conversations over the years. I first met Mike on a visit to the 
University of California, Riverside, where he explained that a Coulomb glass is an 
insulator with randomly placed electrons that have Coulomb interactions. Lightly 
doped semiconductors and disordered metals are examples of such systems. I could 
see an analogy between Coulomb glasses and spin glasses and realized that Monte 
Carlo techniques combined with finite-size scaling could be used to revisit the ques- 
tion of whether a Coulomb glass has a second-order phase transition (Lee et uf. 1982, 
1984). Soon afterwards Grannan and I showed that there was indeed a second-order 
phase transition in three dimensions when the disorder arose solely from the random 
placement of the sites where electrons could sit (Grannan and Yu 1993). A few years 
later, Mike came to my office and described some non-equilibrium experiments that 
he, Ovadyahu and Vaknin were working on. He thought there could be a relation to 
experiments being done on ordinary window glasses at low temperatures by 
Osheroff’s group for which my group had been providing some theoretical support 
(Carruzzo et a/. 1994). Mike was right about this and this is what 1 would like to 
discuss here. 

One of the points that I would like to make is that a variety of different 
systems in which interactions and randomness compete behave in similar ways 
because of the physics that they have in common. Examples of such systems are 
spin glasses, Coulomb glasses, ordinary window glasses at  low temperatures, and 
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vortex glasses in superconductors. Let me give a few words of introduction about 
the last two. At low temperatures the thermal and acoustic properties of insulat- 
ing glasses at low temperatures tend to be universal, independent of the chemical 
make-up of the particular material (Phillips 1981, 1987, Hunklinger and 
Raychaudhuri 1986). This includes materials as diverse as amorphous SO2,  poly- 
mers, sol-gels and varnishes. Their physical properties also differ qualitatively 
from crystalline solids. Below 1 K the specific heat is roughly linear in tempera- 
ture, a property which contrasts strongly with the universal T3 behaviour in 
insulating crystals. The thermal conductivity is quadratic in temperature (Zeller 
and Pohl 197 1). Traditionally this low-temperature behaviour has been 
attributed to the existence of tunnelling two-level systems (Anderson et al. 
1972, Phillips 1972). In this picture an atom or small group of atoms tunnels 
between the minima of a double-well potential. However, the true microscopic 
nature of the two-level systems remains a mystery. Two-level systems limit the 
thermal conductivity by scattering phonons. Since two-level systems couple to 
phonons, they can interact with each other by exchanging phonons. Another 
way to say this is to say that two-level systems interact with one another via 
the elastic strain field and this interaction goes as l /r3.  Some fraction of thein 
have electric dipole moments and so these can also interact with each other via 
an electric dipolar interaction which also goes as l / r3 .  It is the two-level systems 
with electric dipole moments which contribute to the dielectric constant, as we 
shall discuss later. 

Vortex glasses refer to magnetic vortices in a superconductor which has ran- 
domly placed pinning sites. The repulsive interaction between the vortices is 
described by a Macdonald function which goes as In ( r / X )  for r << X where X is 
the magnetic penetration depth (Lifshitz and Pitaevskii 1980). At large distances 
( r  >> A), the interaction is screened and falls off exponentially. Without disorder, 
the vortices form a vortex lattice. In the presence of randomly placed pinning 
centres, the position of the vortices is somewhat random and the result is a vortex 
glass. There are a variety of vortex glasses, one of which is the so-called Bose glass 
which draws on the analogy between vortices pinned by columnar defects and the 
world lines of two-dimensional quantum-mechanical bosons (Nelson and Vinokur 
1992, 1993). 

These systems where interactions and randomness compete exhibit common 
features such as a Coulomb gap in the density of single-particle states or a hole 
in the local field distribution. This feature is independent of the particular form of 
the interaction and of the way that randomness is introduced, although the actual 
function describing the gap or hole will depend on the form of the interaction. 
Let us use a simple model of Ising spins to illustrate these general features. 
Assume that spins Si and Sj on sites i and j can have values of +1 and -1 
and that JiJ describes the interaction. There are a number of different ways in 
which we can introduce disorder into this model. If the spins reside on a lattice 
and Jii is a random number, then we have an ordinary king spin glass. This 
corresponds to off-diagonal disorder. Alternatively the spins could be placed 
randomly with Jil = J ( r i j )  a well-defined function of the separation rd between 
sites i and j ,  for example Jii N r i '  would describe a Coulomb interaction. Yet 
another way would be to put the spins on a lattice with Jii = J(r iJ) .  In this case 
we introduce a random field 4i on each site. This corresponds to diagonal dis- 
order. So in general we can write 
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1 

where the effective field on site i is given by 

i#j 

We can map this system on to that of a Coulomb glass by identifying an up spin with 
a site occupied by an electron and a down spin with an unoccupied site. If the spins 
are on a lattice, di would correspond to a random on-site energy. If the spins are 
placed randomly, then we have enough randomness and it is easiest to set 4; to be 
zero everywhere. For a Coulomb glass we can identify the single-particle energy E~ on 
site i with hi in equation (1) with Jv = P * / K ~ , ~ .  where e is the electron charge and K is 
the dielectric constant. We can also use equation (1) as a simplified model of inter- 
acting two-level systems in glasses. In this case, Jii - yY3 (Burin 1995). One can also 
use equation ( I )  as a model of a Bose glass (Taiiber et al. 1995, Taiiber and Nelson 
1995) with S; = 1 if site i is occupied by a vortex and Si = 0 if there is no vortex on 
site i. For a vortex glass, q5j corresponds to a random pinning potential and J ( r v )  is 
the Macdonald function. In all these systems, randomness and interactions produce 
a Coulomb gap-like feature. 

9 2. COULOMB GAP 
It was Pollak (1970) who first pointed out that in a Coulomb glass there must 

exist a Coulomb gap in the single-particle density of states in order for the ground 
state to be stable with respect to single-electron hopping. We can explain this gap 
using a spin-glass analogy. Suppose that we have a spin glass with a fixed total spin 
which corresponds to a fixed number of electrons in a Coulomb glass. In order for 
the ground state of the spin glass to be stable with respect to single spin flips, there 
must be a gap in the local field distribution P(h)  centred at h = 0 (Kirkpatrick and 
Varma 1978). For long-range interactions, the local field distribution goes to zero, 
that is P ( h  = 0) = 0 at T = 0. One way to understand this gap is as follows. Suppose 
that the ground-state spin configuration is found and suppose that the distribution of 
local magnetic fields P(h)  is finite at h = 0. This means that those spins with zero 
local field can flip without changing their energy. However, if they do so, other spins 
have their field altered and so some of them will flip. This in turn causes others to flip 
and so on. This avalanche means that the supposed ground state is not stable. In 
order to have a stable ground state, the distribution at zero field must go to zero as 
11 + 0. Such a gap has been found for a variety of interacting systems with random- 
ness. For a Coulomb glass, the Coulomb gap is centred on the Fermi energy p. Efros 
and Shlovskii (1975) and Shklovskii and Efros (1984) gave a more formal argument 
in which they showed that the gap vanishes as ( E  - p)2 in three dimensions and as 
IE - p(  in two dimensions for a 1/r Coulomb interaction. 

Such a gap also exists for dipoles such as those associated with two-level systems 
in ordinary glasses at low temperatures. This has been shown both theoretically 
(Carruzzo er a/. 1994, Burin 1995) and experimentally (Salvino ef a/. 1994). For a 
l / r3  interaction, an king spin glass on a lattice with a random field and fixed total 
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spin has a gap that is centred at  h = 0 and goes as P ( h )  - I/ln (l//z) (Baranovskii et 
01. 1980). 

A Coulomb gap centred at the chemical potential also exists for flux lines inter- 
acting in a superconductor in which there are random pinning sites. This has been 
shown using Monte Carlo simulations of a Bose glass model where the interaction 
between the vortices is the Macdonald function (Taiiber et al. 1995, Taiiber and 
Nelson 1995). Technically speaking the vortex-vortex interaction is screened and 
falls off exponentially for distances larger than the magnetic penetration depth, so 
the interaction is not truly long range. When the interaction is short range, P ( h )  does 
not go all the way to zero at h = 0. This agrees with Monte Carlo simulations of the 
Bose glass (Tauber et a/. 1995, Taiiber and Nelson 1995). It also explains why there is 
a dip and not a gap at  the Fermi energy in the single-particle density of states for a 
dirty metal on the metallic side of the metal-insulator transition where the Coulomb 
interactions are screened and fall off exponentially (Lee and Ramakrishnan 1985). 

So far we have been concentrating on single-particle hopping or single spin flips. 
However, Pollak has been a strong proponent of the view that, in Coulomb glasses, 
it is the correlated motion of many particles that is important in the physics. No 
doubt this is correct but, to obtain a quantitative measure of the role played by 
many-particle hopping versus single-particle hopping, we should work out what 
effects we can expect from single-particle hopping and then try to compare the results 
with experiment. The discrepancies can probably be attributed to the effects of 
multiple-particle hopping. Such a comparison with experiment has been made for 
two-level systems in glasses (Carruzzo et al. 1994) and this showed that interactions 
between two-level systems must be taken into account. Comparison with experiment 
has not yet been made for Coulomb glasses, but the purpose here is to motivate our 
considerations of single-particle hopping. 

9 3. NON-EQUILIBRIUM EFFECTS 
We have established thal interactions and randomness in spin glasses and dipolar 

glasses produce a hole centred at h = 0 in the local field distribution P(h) .  This is 
analogous to a Coulomb gap centred at the chemical potential in a Coulomb glass. 
We now consider what happens if the centre of the hole is shifted suddenly. For 
example, if an external dc magnetic field /idc is suddenly applied to a spin glass, then 
each spin finds itself in a new effective field h, = h, old + hdc. So effectively Iz = 0 is 
suddenly shifted. The system must dig a new hole in P(h)  centred at  the new h = 0 
and remove the old hole centred at hold = 0. As we shall see, because the system is 
glassy, it makes this adjustment roughly logarithmically in time. 

This non-equilibrium behaviour was first seen by Osheroff 's group at Stanford in 
window glasses at low temperatures in which there are electric dipoles (Salvino et a/. 
1994). They put a thin film (1-3 pm) of glass between two capacitor plates which they 
cooled to low temperatures (20-1000mK). Then they applied a large dc electric field 
(about 106-107 Vm-'). Using an ac capacitance bridge, they watched the capaci- 
tance jump up and then decay roughly logarithmically with time after the dc field 
had been applied. The dipoles which are easiest to polarize are those with a small 
local field, that is those in the vicinity of h = 0. It is these dipoles which contribute 
most to the dielectric constant and to the capacitance. So the jump corresponds to 
what happens to P(h = 0) as the external field is applied (Carruzzo et a/ .  1994). 
When the dc field is applied, a new set of defects find themselves in zero local 
field. The applied dc field effectively shifts the local field distribution along the 
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local field axis. Immediately after the dc field is switched on, P(0)  will be large and 
finite, Thus the polarizability and hence capacitance suddenly increases. The size of 
the jump increases with the depth of the old hole out of which the system jumps. 
Since the hole is smeared by thermal effects, the size of the jump will increase as the 
temperature decreases. Once the dc field is switched on, a new hole develops and the 
capacitance decreases. After applying a fixed voltage for some time (about a day), 
Salvino et ul. (1994) subsequently swept the dc bias field and found a hole in the 
capacitance at the previously applied bias voltage. This corresponds to sweeping h 
without allowing the system to equilibrate and, hence, the sweeps in field map out the 
hole in P ( h )  versus h which is mirrored in the capacitance versus voltage V .  
Theoretical calculations including Monte Carlo simulations of the nearest-neighbour 
Ising spin glass (Carruzzo et al. 1994) and analytic calculations with l / r3  interactions 
(Burin 1995) confirmed this interpretation and showed that the capacitance would 
relax roughly logarithmically in time. 

Similar effects have been seen in Cu-Mn spin glasses by Fenimore and Weissman 
(1994). They have performed the magnetic analogue of the Stanford dielectric experi- 
ments and found similar results. For example, they found a hole in the imaginary 
part of the susceptibility 2’’ versus magnetic field H with the minimum being at the 
field in which the sample was cooled. They also find that X ”  relaxes logarithmically 
in time when they change the applied field from SH to -H. 

5 4. FORMING THE COULOMB GAP 
Pollak suggested that the physics underlying these experiments could help to 

explain the slow electron relaxation that he, Ovadyahu and Vaknin were seeing in 
their non-equilibriuni experiments on disordered semiconducting indium oxide films 
(Ovadyahu and Pollak 1997, Vaknin et 01. 1998). Similar results have been found in 
metallic films (Martinez-Arizala et al. 1998). The films were grown on insulating 
substrates which separated them from a gate electrode that regulated the electron 
density, and hence the chemical potential, of the film. The conductance G was 
measured as a function of the gate voltage VG. If VG had a particular value Vo, 
for a long time and then was varied over a range of voltages, there was a dip in the 
conductance centred at V,. We identify this dip with the Coulomb gap in the density 
of states because the value of the conductance depends on the density of states at the 
Fermi energy (Vaknin et 01. 1998, Yu 1999). (A similar scenario was qualitatively 
discussed by Martinez-Arizala et al. (1998).) In Mott’s picture of variable-range 
hopping, the hopping conductivity increases when the density of states at the 
Fermi energy increases, since there are then more states to which an electron at 
the Fermi energy can hop (Shkllovskii and Efros 1984). We identify sweeping V,  
with varying the chemical potential without allowing time for equilibration. In effect 
the sweeps scan the density of states. Thus we expect the conductance to increase 
with increasing density of states and hence as the gate voltage V ,  moves away from 
Vl,. 

In the experiments, if the gate voltage was changed suddenly from, say, Yo to V, .  
the conductance had a very fast initial rise, followed by a period of rapid relaxation, 
which in turn was followed by a long period of very slow relaxation. In some cases 
the relaxation was logarithmic in time. Our interpretation of this is that, when the 
gate voltage is changed, the Fermi energy changes, and time-dependent relaxations 
arise because the system must dig a new hole in the density of states at the new Fermi 
energy and remove the old hole at the old Fermi energy. Indeed, Vaknin et of. (1998) 
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found that subsequent sweeps of the gate voltage revealed that the old dip in the 
conductance at Vo fades with time while a new dip centred at V I  increased with time. 
The dip in the conductance and the long time relaxation were present only at very 
low temperatures and not at higher temperatures ( T  2 20 K). 

Our explanation of these experiments is confirmed by the following calculations 
(Yu 1999). Our model of the Coulomb glass follows that of Baranovskii et rrl. (1980). 
In this model, the electrons occupy the sites of a periodic lattice, and the number of 
electrons is half the number of sites. Each site has a random on-site energy q51 chosen 
from a uniform distribution extending from -.4 to A .  Thus, go (the density of states 
without interactions) is flat. A site can contain 0 or 1 electron. In order to follow the 
time development of the Coulomb gap, we assume that the Coulomb interactions are 
turned on at time t = 0. The Hamiltonian can be written as 

where the occupation number n, equals f if site i is occupied and -4 if site i is 
unoccupied, e is the electron charge, K is thk dielectric constant and the step function 
O ( t )  is 0 for t < 0 and 1 for r >, 0. 

The Coulomb gap arises because the stability of the ground state with respect to 
single-electron hopping from an occupied site i to an unoccupied site j requires 
(Shklovskii and Efros 1984) 

A? = E . -  
I J  

E ;  - (4) 
eL 
- > 0, 
two 

where the single-site energy E ,  = 4, + cJ ( e 2 / ~ r l , ) n J .  A: is the change in energy that 
results from hopping from i to j .  So we need to subtract from the density of states 
those states which violate this stability condition. This leads to (Baranovskii er af. 
1980, Burin 1995) 

( 5 )  

where the single-site energy ei = E ,  E~ = E'  and do is the lattice constant. ti: = ni + 4; 
so n: = 1 if site i is occupied and n( = 0 if site i is unoccupied. F(nl, n;) is the 
probability that donors i and j have occupation numbers n; and n; respectively, 
while all other sites have their ground-state occupation numbers i ib.  7;' is the num- 
ber of electrons which jump from site i to sitej per unit time. O ( t  - T ~ )  represents the 
fact that at time r ,  the primary contributions to the change in the density of states 
will be from those hops for which rij < t .  (The exact form of the cut-off is not 
important; for example, replacing O( t - T ~ )  with [ 1 - exp (-l/rv)] affects our results 
only negligibly.) In writing equation (9, we assume that these hops together with 
phonons have equilibrated the system as much as is possible at time t. The hopping 
rate rly' is given by (Shklovskii and Efros 1984) 
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27, [ l  + N(A;)]F(rZ; = 1,n; = 0). -1 U 

where a = nug is the effective Bohr radius of a donor and U B  is the usual Bohr radius 
(ae == i?z2/wz$2). We shall set the mass in equal to the electron mass so that 
aB = 0.529A. N ( b : )  is the phonon occupation factor and reflects the contribution 
of phonon-assisted hopping. We are also allowing for spontaneous emission of 
phonons since we are considering a non-equilibrium situation in which electrons 
hop in order to lower their energy. The coefficient 7; is given by (Shklovskii and 
Efros 1984) 

where El  is the deformation potential, s is the speed of sound and d is the mass 
density. Following Baranovskii et al., we can derive a self-consistent equation for the 
density of states, g(E, t ) :  

At low energies, large distances play an important role and so we have replaced the 
sum by an integral over r in the exponent. The origin is at site i .  n ( ~ )  is the occupa- 
tion probability of a site with energy E .  T ( E ’ ,  E ,  r )  is given by equation (6) with rrl 
replaced by r ,  E,  replaced by E ,  and 

Since it is not clear how the stability condition of equation (4) can be applied to 
finite temperatures, we shall confine our calculations to the case of T = 0. In this 
case the phonon occupation factor N ( d i )  = 0 and the electron occupation factor 
F(n,  = 1, n, = 0) = 1 if E ,  < 0 and E, > 0. Otherwise F(n,  = l,nJ = 0) = 0. We set 
the Fermi energy p = 0. We can solve equation (8) iteratively on the computer. For 
the first iteration we start with g(E’, t )  = go, and calculate g(E, t ) .  This is then used as 
the input for g(&’, f) in the next iteration. After a few iterations the typical difference 
between successive iterations is typically less than 1 part in 10’. Because there is 
particle-hole symmetry, we only need to calculate g(E, t )  for E < 0. Figure 1 (a)  
shows the density of states, g(E, t ) ,  as a function of energy at different times, while 
figure 1 (b)  shows g(E, f) as a function of time at different energies. Note the devel- 
opment of the Coulomb gap occurs over many decades in time. The functional form 
of the time dependence of g(E, t )  varies with the energy E and with gs. For example, at 
the Fermi energy g(p, t )  - A - Bln t for go = 2 x lo5 states K-’ A-3 ( A  and B are 
constants) and g(p, t )  N t roo5  for go = 6.25 x lo5 states K-’ AP3. After an infinite 
amount of time, the density of states at the Fermi energy p goes to zero and 
g(E) - E ~ .  For finite times, g(E) - ( E (  in the vicinity of the Fermi energy, though 
there will be thermal smearing at finite temperatures. 

The temporal development of the Coulomb gap is qualitatively consistent with 
the experimental observation of the long-time relaxation of the conductance after the 
gate voltage V ,  has been changed. The exact relation between the conductance and 
the density of states is difficult to ascertain in this case because the system is not in 
equilibrium. However, it is reasonable to assume that the conductance reflects the 

replaced by E ’ .  
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Figure 1. (n) Density of states, g(&), as a function of energy for different times. (h)  Density of 
states as a function of time for various energies. The parameters used are go = 2 x lo5 
states K-' A-3, T = 0, A 104K, K = 10, d = 7.18gcm-', s = 5.0 x lO'cms-', 
El = 5 x lo3 K, and a. = 4 A. The density d is chosen to be that of In203. The energy 
is measured from the Fermi energy p = 0. 

density of states at the Fermi energy. A well-known example is Mott's formula for 
conductivity o due to variable-range hopping (Shklovskii and Efros 1984): 

where To = co /kBg(p )a3 ,  co is a numerical constant and g(p) is the density of states 
at the Fermi energy. While strictly speaking this equilibrium formula does not apply 
to our non-equilibrium situation, we see qualitatively that an increase (decrease) in 
g(p) leads to an increase (decrease) in the conductivity. In the experiments, rapidly 
sweeping the gate voltage V,  varies the chemical potential without allowing time for 
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equilibration. Relating the conductance to the density of states means that the 
sweeps over Vc scan the density of states. To obtain a qualitative feel for this 
connection, we shall use equation (9). Let us assume that our zero-temperature 
density of states continues to be valid at  low temperatures. Then we identify g ( p )  
with g(E) and substitute the g(E) shown in figure 1 into To = co/(keg(.)a3). Here we 
treat E as the instantaneous chemical potential p .  For most of the scan the density of 
states has the linear form g(E) = g ( ~ ~ )  +a(& - E ~ ) ,  where E~ and the slope a are 
constants. The exponent of 1/4 is appropriate for this case. The experiments on 
indium oxide (Ovadyahu and Pollak 1997) were carried out at 4.11 K; so we set 
T = 4K.  The result is shown in figure 2. 

go 0.020 
0 M t=i o - ~  sec 

D--O t=l o - ~  sec 
W t = l  sec 

. et--ht=10+~ sec 
M t=i of6 '^ sec (a) . .  

t= lO+ ' "  sec 
I I I 

200.0 0.015 
-200.0 -1 00.0 0.0 100.0 

Energy [KI 

0.03 I , I I 

g 0.02 

0.01 
10- 

M E  = -200 K 
D---o E = -140 K 
M E=-I00 K 

. H E=-60 K 
E=-40 K 
E=p=O (b) 

I I I 

10 1 o - ~  1 oo I o5 1 O ' O  

time [sec] 

Figure 2. (a) Dimensionless conductivity U / U ~  as a function of energy for different times. (b) 
Dimensionless conductivity g/uo as a function of time for various energies. The 
conductivities for both (a) and (h) are calculated using Mott's formula (9) with 
T = 4 K ,  a = 5.291 77 A and co = 2.23. The rest of the parameters are the same as 
in figure 1 .  
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The experiments found that the dip in the conductance as a function of gate 
voltage VG, and the long relaxation times of the conductance following a change in 
VG were present only at  low temperatures. These features were not observed at 
T 2 20K. From equations ( 5 )  and (6), we see that an increase in temperature will 
affect g(E,t) in two ways. First the thermal smearing of the occupation factor 
F(n:,n,’) will fill in the Coulomb gap to some extent (Levin et al. 1987, 
Mogilyanskii and Raikh 1989, Hunt 1990, Grannan and Yu 1993, Vojta et ul. 
1993, Li and Phillips 1994, Sarvestani et al. 1995). Secondly, as the number of 
phonons increases with increasing temperature, there is an increase in the phonon 
assisted hopping of electrons. We expect that this leads to a rapid rearrangement of 
electrons on time scales that are too short to observe experimentally. As a result, no 
dips in the conductance and no long time relaxation were seen experimentally at  
higher temperatures. It is difficult to calculate these effects because it is not clear how 
to generalize the stability condition (4) to finite temperatures, although Mogilyanskii 
and Raikh (1989) have suggested one possible way. In addition the system is not in 
equilibrium and hence temperature is not well defined for the electrons. However, 
the absence of the conductance dips at higher temperatures is consistent with this 
scenario. 

To summarize our calculations in this section, we have shown that the time 
development of the Coulomb gap in a Coulomb glass can involve very long time 
scales owing to electron hopping and rearrangement. These results are consistent 
with conductance experiments on disordered semiconducting and metallic films. 
Although we have only considered single-electron hops. these hops are dependent 
upon previous hops of other electrons through their cumulative effect on the single- 
particle density of states. We expect multiple-electron processes also to contribute to 
the conductance, particularly at long time scales. 

s 5 .  l/f NOISE 

In the last section we saw that a sudden shift in the centre of the Coulomb gap or 
of the hole in the local field distribution leads to a new hole forming roughly loga- 
rithmically in time. In this section we argue that such slow relaxation times lead to 
l / f  noise. Low-frequency 1 /f noise (Dutta and Horn 1981, Weissman 1988, Kogan 
1996) is ubiquitous; it is found in a wide variety of conducting systems such as 
metals, semiconductors, tunnel junctions (Rogers and Buhrman 1984) and even 
superconducting quantum interference devices (Koch 1983, Koelle et a/ .  1999). 
Yet the microscopic mechanisms are still not well understood. For the moment let 
us focus on I / f  noise in Coulomb glasses. Experimental studies on doped silicon 
inversion layers have shown that low-frequency l/f noise is produced by hopping 
conduction (Voss 1978). More recent experiments have observed 1 / f  noise down to 
0.1 Hz in boron-doped silicon (Massey and Lee 1997) and in doped germanium 
(Shlimak et nl. 1995). Because the systems are glassy, electron hopping can occur 
on very long time scales and this produces low-frequency noise. In this section we 
show that the resulting noise spectrum goes as f-‘* where f is the frequency and the 
exponent cy M 1. 

Shklovskii developed the first theory of l/f noise in Coulomb glasses. He sug- 
gested that it is produced by fluctuations in the number of electrons in an infinite 
percolating cluster (Shklovskii 1980). These fluctuations are caused by the slow 
exchange of electrons between the infinite conducting cluster and small isolated 
donor clusters. A more rigorous calculation combined with numerical simulations 
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(Kogan and Shklovskii 1981) of Shklovskii's model found a noise spectrum that 
went asf-" where a was considerably lower than 1. Furthermore, below a minimum 
frequency of the order of 1-100 Hz, the noise spectral density saturated and became 
a constant independent of frequency. A similar conclusion holds for a model sug- 
gested by Kozub (1996) in which electron hops within finite clusters produce fluctua- 
tions in the potential seen by hopping conduction electrons that contribute to the 
current. Hunt (1998) used a similar model and included the effect of the size of the 
finite clusters on the polarization currents in these clusters. By taking into account 
the effect of these currents on the conduction through the percolating network, he 
again found l/f noise. Kogan (1998) has argued that transitions between valleys in 
the energy landscape produces l/f noise because high barriers result in slow fluctua- 
tions in hopping conduction. 

We take a different approach in which we focus on fluctuations in the single- 
particle density of states rather than on the percolating network. Electron hopping 
shifts the single-particle energies E because they depend on Coulomb interactions 
with other sites. This leads to fluctuations in the single particle density of states, g ( & ) ,  
which, in turn, produces fluctuations in the conductivity. The conductivity depends 
on the density of states, g(& x p) ,  in the vicinity of the Fermi energy p. Note that 
g(E = p) can be affected by hops between sites i and j even if the energies on these 
sites are not near the Fermi energy because an electron or hole on site i o r j  can 
interact with other sites whose energy is (or was) near the Fermi energy. 

We shall use Mott's argument for variable-range hopping (Mott 1968, 
Ambegaokar et 01. 1971, Shklovskii and Efros 1984) to relate fluctuations in the 
density of states to fluctuations in the resistivity. One can regard a Coulomb glass as 
a random resistor network (Miller and Abrahams 1960) with a transition between 
sites i and j associated with a resistance Rii given by 

(10) 
0 Rij = Rij exp ( l i j  ) 3 

where the prefactor Ri  = kT/e'ya with 7: given by equation (7). In equation (lo), 
the exponent is given by 

The exponent reflects the thermally activated hopping rate between i and j as well as 
the wavefunction overlap between the sites. E~ is given by (Shklovskii and Efros 
1984) 

At both high and low compensations, electron hopping usually occurs on one side of 
the Fermi level p and the lower expression applies. At intermediate compensations 
and in the regime of variable-range hopping, hopping electrons often cross the Fermi 
level and the upper expression applies. 

In the regime of variable-range hopping, Mott pointed out that hopping con- 
duction at  low temperatures comes from states near the Fermi energy. Let E = E - p. 
If we consider states within E~ of the Fernii energy, then the concentration of states in 
this band is N ( q )  = Jzn g(E) dE, where g(E) is the density of states with energy 2 
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measured from the Fermi energy. So the typical separation between sites is 
R = [ N ( E ~ ) ] ~ ” ~ .  To estimate the resistance corresponding to hopping between two 
typical states of the band, we replace r g  with R and (E] - & , I  with E~ in equations (1 1) 
and (12) to obtain [ ( E ~ ) .  Minimizing [ ( E ~ )  yields Eo.  Substituting this into equations 
(1 1) and (10) yields the variable-range hopping formula for the resistivity: 

In our model the noise results from electron hopping which produces fluctuations 
in the density of states g(E) = g ( ~ )  + 6g(E), where g ( ~ )  is the average density of 
states. This in turn creates fluctuations in N ( E ~ ) ,  [ ( E ~ ) ,  Eo and p( T ) .  We can calculate 
these fluctuations by applying perturbation theory (Marion 1970) to the derivation 
of the variable-range hopping formula. We begin by letting [ ( E ~ )  = + X ~ < ( E O ) .  
X is just used to keep track of the various orders of perturbation theory. As before, 
we want to find E~ such that d[(Eo)/dEo = 0. We use a trial solution €0 = E, + X&g, 

and expand d<(Eo)/dEo in powers of A. Solving d<(Eo)/dEo = 0 to first order in X 
leads to 6 ( ( ~ ~ )  = 6p( T ) / p (  T )  = -[2kTg( T ,  E O ) ] - ’  J2zo 6g( T ,  Z) dE. We have included 
the temperature dependence of the density of states because at finite temperatures the 
Coulomb gap fills in and the density of states no longer vanishes at the Fermi energy 
(Levin et al. 1987, Mogilyanskii and Raikh 1989, Hunt 1990, Grannan and Yu 1993, 
Vojta et al. 1993, Li and Phillips 1994, Sarvestani et al. 1995). The autocorrelation 
function for the fluctuations in the resistivity is 

P(T) = P O ( U  exp IE(2O)l. 

(13) 

We assume that there is no correlation between the fluctuations in the density of 
states at different energies; so 

(WT,Z., t 2 )  W T , ? ’ ,  t , ) )  = E@g(T,Z., t2) 6g(T,E, t 1 ) ) W  - E“’), (14) 

where E is an energy of the order of 2E0. Furthermore we assume that the time and 
energy dependences of the density-of-states autocorrelation function are separable, 
allowing us to write 

Ea 

- -co 
dZ.(MT,E, t 2 )  6g(T,E, 2,)) = C(Eo, t 2  - t l ) ,  (15) 

where we are assuming translational invariance in time (stationary processes). 
C(Eo, 2‘) is a function of E0 and temperature. The function f ( T ,  t )  characterizes 
the time dependence of the return to equilibrium by the system after it is perturbed 
by a fluctuation in the density of states. Inserting equations (14) and (15) into 
equation (1 3) yields 

To relate this to the spectral density S(w) of the noise, let 
yp(t2 - t l )  = (6p(T,  t 2 )  6p(T,  t l ) )  and let ?,bp(u) be the Fourier transform of 
qjp(t2 - t , ) .  According to the Wiener-Khintchine theorem (Kogan 1996), for a 
stationary process the spectral density of fluctuations is given by 
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This equation for S,(w) is valid for both cases in equation (12). 
We do not know the temperature dependence off ( T ,  t ) ;  so for the moment we 

shall suppress this and just refer tof(t). As we showed in the last section, after large 
deviations from equilibrium, the density of states returns to equilibrium with a time 
dependence given by g ( p ,  t )  - -In t or g(p, t )  - t-' where 6' << 1 (Yu 1999). Let us 
assume that these functional forms also hold forf(t) in the linear response regime at 
low temperatures. If a fluctuation Sg(p, t = 0 )  at t = 0 pushes the density of states 
away from its mean equilibrium value at the Fermi energy, then this perturbation 
will decay according to f ( t )  which enters into equations (15) and (16). Our non- 
equilibrium calculation indicates that f ( t )  can have the form 

where t < to, and to is of the order of the age of the Universe or longer, or 

f2(t) = B2fpB, (19) 

where 6' << 1, and B, and B2 are positive constants. In both cases, t is greater than 
some tmin of the order of s, say. The time dependence is a function of the energy, 
so here we set E = p. Fourier transforming ( t )  and keeping the real part, we find 
that 

This implies that the noise spectral density S(w) - l/w. Fourier transforming f2(t)  
and keeping the real part yields 

for 8 << 1. This implies that S(w) - 1 /tk8. 

Let us summarize our argument for l / f  noise in Coulomb glasses. Electron 
hopping leads to fluctuations in the density of states that relax back to equilibrium 
roughly logarithmically in time. This leads to l/f noise in the spectral density S(w) 
of the noise in the resistivity. In particular we find that S(w) - l/wN where a = 1 if 
the relaxation is logarithmic in time, and Q = 1 - 6' if the relaxation is a power law 
that goes as t-' where 6' << 1. In general, a depends on temperature (Massey and Lee 
199'7) and is weakly dependent on the non-interacting density of states, go, and on 
the time scales. As equation (17) indicates, the noise amplitude also depends on the 
temperature. Unfortunately we cannot ascertain these temperature dependences 
because we do not know the temperature dependence of the fluctuations Sg( T ,  Z,  r )  
in the density of states. However, we believe that our mechanism for I / f  noise 
should be valid at low temperatures ( T  5 20 K) where the logarithmic time depen- 
dence of the conductance is observed after the Coulomb glass has been pushed out of 
equilibrium by the sudden application of a gate voltage (Ovadyahu and Pollak 1997, 
Martinez-Arizala e )  a/. 1998, Vaknin et a[. 1998). 



1222 c .  c .  Yu 

So far we have been discussing 1 I f  noise in Coulomb glasses but we believe that 
these arguments can be generalized to a variety of systems where interactions and 
randomness compete. As we discussed earlier, ordinary glasses and spin glasses 
recover roughly logarithmically in time when pushed out of equilibrium. If we 
assume that this logarithmic behaviour also applies in the linear response regime 
where there are small perturbations, then it is reasonable to expect that the auto- 
correlation function dip( t )  for fluctuations in the local field distribution will have a 
logarithmic time dependence: 

(The subscript P in $‘p(t) refers to the distribution P(lz).) These fluctuations can be 
thermal fluctuations of the spins in a spin glass or the dipoles in a dielectric glass or 
the electron occupation of the sites in a Coulomb glass. Fourier transforming +p( t )  
yields a noise spectral density that goes as l / f :  

1 
SP(W) = 2+‘p(Wj ;’ (23) 

Thus we expect a variety of glassy systems to exhibit l/f noise in a measurable 
quantity. 

To summarize, systems which are glassy owing to the competition between dis- 
order and interactions exhibit some very similar features. Coulomb glasses have a 
gap in their single-particle density of states which is analogous to the hole in the 
distribution of local fields of spin glasses and ordinary glasses with dipolar interac- 
tions between two level systems. When the field or energy where these holes are 
centred is suddenly shifted by the application of an external field, a new hole or 
gap develops roughly logarithmically in time. Such slow relaxation is characteristic 
of glassy systems. If we assume that this logarithmic behaviour applies for small 
perturbations, then thermal fluctuations will lead to fluctuations in the density of 
states and l / f  noise in a measurable quantity. 
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