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Generalized compressibility in a glass-forming liquid 

HERVE M. CARRUZZO and CLARE C. Yut  

Department of Physics and Astronomy, University of California, Irvine, Irvine, 
California 92697, USA 

AE~TRACT 
We introduce a new quantity to probe the glass transition. This quantity is a 

linear generalized compressibility which depends solely on the positions of the 
particles. We have performed a molecular dynamics simulation on a glass- 
forming liquid consisting of a two-component mixture of soft spheres in three 
dimensions. As the temperature is lowered. the generalized compressibility drops 
sharply at the glass transition. Our results are consistent with the kinetic view of 
the glass transition, but not with an underlying second-order phase transition. 

The glass transition is still not well understood despite extensive study. 
Experimentally the glass transition occurs when the relaxation time exceeds the 
measurement time and particle motion appears to be arrested. It is characterized 
by both kinetic and thermodynamic features. In the supercooled liquid, kinetic 
quantities such as the viscosity and relaxation time grow rapidly as the temperature 
is lowered. The glass transition is also reflected in thermodynamic quantities, for 
example the specific heat at constant pressure has a step-like form and the dielectric 
constant has a peak at a frequency dependent temperature. 

Theoretically there have been two main approaches to the problem (Ediger et al. 
1996, Fourkas et al. 1997): dynamic and thermodynamic. The first category has been 
dominated by mode-coupling theory (MCT) in which ideally the relaxation time 
diverges at a temperature Tc above the experimental glass transition (Gotze and 
Sjogren 1992). The kinetic view has produced interesting and fruitful concepts such 
as the influence of the energy landscape on relaxation processes (Goldstein 1969, 
Sastry et al. 1998) and dynamic inhomogeneities (Donati et al. 1998, Yamarnoto and 
Onuki 1997, Tracht et crl. 1998). The thermodynamic viewpoint attributes the glass 
transition to an underlying phase transition hidden from direct experimental obser- 
vation by extremely long relaxation times (Gibbs and DiMarzio 1958, Adam and 
Gibbs 1965. Ediger et 01. 1996, Fourkas et al. 1997, Mezard and Parisi 1999). In most 
scenarios there is an underlying second-order phase transition associated with a 
growing correlation length which produces diverging relaxation times as well as 
diverging static susceptiblities (Kirkpatrick et al. 1989, Dasgupta et ul. 1991, Ernst 
et a/. 1991, Sethna et al. 1991, Kivelson et 01. 1995, Menon and Nagel 1995). More 
recently, Mezard and Parisi (1999) have argued that the underlying transition is 
actually a random first-order transition signalled by a discontinuity in the specific 
heat. 
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In an effort to characterize the glass transition better, we introduce a novel probe 
which we call a generalized compressibility (Yvon 1958). Unlike the specific heat 
which monitors energy fluctuations, this linear compressibility is a function of the 
microscopic structure of the system; i t  depends solely on the positions of the particles 
and not on their previous history. It is a thermodynamic quantity in the sense that It 
is purely a function of the microstate of the system dictated by its location in phase 
space. It is easy to compute numerically, and it is simpler than the dielectric constant 
which involves both the translation and the orientation of electric dipoles. By per- 
forming a molecular dynamics simulation of a two component system of soft 
spheres, we find that the linear generalized Compressibility drops sharply as the 
temperature decreases below the glass transition temperature Ts. The drop becomes 
more and more abrupt as the measurement time increases. 

We now derive expressions for the linear and nonlinear generalized compres- 
sibilities. To probe the density fluctuations, we follow the approach of linear 
response theory and consider applying an external potential (AP /po )p ( r )  which 
couples to the local density p ( r )  = C:, 6(r - r,) where rl denotes the position of 
the ith particle. po  is the average density. LIP has units of pressure and sets the 
magnitude of the perturbation. 4(r) is a dimensionless function of position that 
must be compatible with the periodic boundary conditions imposed on the system, 
that is, it must be continuous across the boundaries but is otherwise arbitrary. This 
adds to the Hamiltonian H of the system a term 

A P  A P  
U = ~ d ryi(r)p(r) = - x C ( r i )  = - p  9' ",JV Po j Po 

where we have defined pCn = s, d'rC(r)p(r) = C, q5(rr). po is the inner product of 4 
and p ( r ) ,  and we can regard it as a projection of the density on to a basis function 
q5(r), that is pm = (plq5). It weights the density fluctuations according to their spatial 
position. The application of the external potential will induce an average change 
Zipd, in p b :  

6PdJ = (P& C I  - (PdJ " Y O '  (21 

where the thermal average ( P ~ ) ~ ,  is given by 

The partition function 2 = Tr {exp [-/?(If + U ) ] }  and Q is the inverse temperature. 
For small values of AP,  this change can be calculated using perturbation theory. Up 
to third order in LIP, we find that 

where the cumulant averages are 
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with the thermal average (p:;) = ( P ; ) [ , = ~ .  The third-order cumulant (equation (6)), is 
zero in the liquid phase because for every configuration there exists an equivalent 
configuration with the opposite sign of pcb - (pdl )  and so we shall not consider this 
term any further. We can recast equation (4) as a power series in the perturbation 
a P: 

where 

where kB is Boltzmann’s constant. In the remainder of this paper we shall focus our 
attention on the linear (XI) and nonlinear (y,,i) dimensionless generalized conipres- 
sibilities defined by the above expressions. We now discuss the choice of the function 
4. We consider applying the potential along the direction p of one of the coordinate 
axes so that 4(r) = qb(rb). A natural candidate for qb(rkL) is cos ( k p r p )  with k = 27crz/L, 

and L’ is the volume V .  In this case, p4 is the kth mode of the 
cosine transform of the density. However, it is sufficient to consider the simpler 
function q b ( ~ [ ~ )  = lrI’l/L. The absolute value means that all the particles feel a force 
along the pth direction pointing towards the origin. The results are very similar to 
4 ( r P )  = cos (kk,rf ’ )  for small k at a fraction of the computational cost. So our results 
in this paper correspond to pd = C, Irf‘l/L. This is rather like a centre of mass. Since 
the system is isotropic, we average over the direction p. 

We have performed a molecular dynamics simulation on a glass-forming liquid 
(Weber and Stillinger 1985, Kob and Andersen 1994) consisting of a 50: 50 binary 
mixture of soft spheres in three dimensions. The two types of sphere, labelled A 
and B, differ only in their sizes. The interaction between two particles a distance r 
apart is given by Vap(i.) = t[(anp/r)lz + X,p(r)]  where the interaction length 
gap = (a, + ap)/2. oB/aA = 1.4 (a, p = A, B). For numerical efficiency, we set the 
cut-off function X,p(r) = r/a,p - X with X = 13/1212’/’3. The interaction is cut off at 
the niininiuni of the potential V,p(r). Energy and length are measured in units of E 

and aA, respectively. Temperature is given in units of f / k B ,  and time is in units of 
~ 7 A ( n i / f ) ” ~ ,  where 111,  the mass of a particle, is set to unity. The equations of 
motion were integrated using the leapfrog method (Rapaport 1995) with a time 
step of 0.005. During each run the temperature was kept constant using a constraint 
algorithm (Rapaport 1995). N = NA + NB is the total number of particles. The 
system occupies a cube with dimensions (& L/2, * L/2, & L/2) and periodic bound- 
ary conditions. Since N and L are fixed in any given run, the density po = N I L 3  is 
also fixed. 

As a point of reference we determined the mode coupling Tc by fitting the data 
for the relaxation time T (  T )  which is defined as the time when the self part of the 
intermediate scattering function F,.,(k, t )  falls to I/e (Kob and Andersen 1994) 

where the subscript a refers to the particle type, A or B. We choose B particles. r i ( t )  
is the position of particle i at time 1 ,  and (. . .) refers to an average over different 
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configurations. The wave-vector k = 27rq/L where q is a vector of integers. For an 
isotropic system Fy,u(k,  t )  depends on only the magnitude k = Ikl. We choose 
k = k,,, = 27cg,,,/L where k,,, is the position of the first maximum of the partial 
static structure factor S ( k ) .  For B type particles we use qmaw = 8.3666. We fit the 
ideal MCT form (Gotze and Sjogren 1992) T ( T )  = A’(T - TC)-? with A’ = 69, 
y = 1.6, T, = 0.306 f 0.005. In finding Tc, we used data from seven temperatures 
in the range 0.33 < T 5 0.39 below the caging temperature (Tcage = 0.4) where the 
intermediate scattering function first begins to show a plateau. Our fit is consistent 
with the mode coupling theory requirement that y 2 1.6. 

Our procedure for doing runs is as follows. We start each run at a high 
temperature (T  = 1.5) and lower the temperature in steps of AT = 0.05. At each 
temperature we equilibrate for lo4 molecular dynamics (MD) steps and then mea- 
sure the quantities of interest for N ,  additional steps where N ,  = lo5, 2 x lo’, lo6, 
3 x lo6 or lo7. All the particles move at each MD step. The results are then averaged 
over up to 40 different initial conditions (different initial positions and velocities of 
the spheres). 

As a check on our procedure for measuring x1 and xnl, we consider first the case 
of the crystal. To this end, we consider a system of 512 identical (a* = gB) particles 
at a density pn = 1.1. Figure 1 shows the linear compressibility and the diffusion 
constant as functions of temperature for the single-component liquid. At high tem- 
peratures, x1 has a small slope which becomes steeper at  low temperatures. The 
salient feature is the very sharp drop at around T = 0.57 of the linear generalized 
compressibility and the diffusion constant. The specific heat, which is not shown, has 
a sharp delta-function-like peak around T = 0.57. The low-temperature phase 
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Figure 1. Linear generalized compressibility and diKusion constant of a one-component 
system as a function of temperature for 512 soft spheres. Crystallization is clearly 
seen around T = 0.57 (po = 1.1). The measurement time was lo6 MD steps for each 
temperature. The compressibility was averaged over five runs while the diffusion is 
shown for a single run. 
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( T  < 0.57) is a crystal with sharp Bragg peaks in the structure factor. Upon heating 
and cooling, the transition shows hysteresis. All these observations are consistent 
with the fact that crystallization is a first-order transition. Not shown here is the 
nonlinear compressibility which is zero within our numerical error. 

We now examine the response of the two-component glass-forming liquid. All 
the runs were performed at  a density po = 0.6 and oB/oA = 1.4. For these para- 
meters crystallization is avoided upon cooling. Figure 2 shows the linear generalized 
compressibility as a function of temperature for different run times. The compressi- 
bility at high temperatures is independent of T and about an order of magnitude 
larger than that of the single-component fluid. In the vicinity of the glass transition, 
xI drops. Note that, as the measuring time t M  increases, the temperature of the drop 
decreases and becomes more abrupt. The linear compressibility is proportional to the 
width of the distribution of p4. If we regard p4 as a generalized centre of mass, then 
the drop in x1 corresponds to the sudden narrowing of the distribution P ( p 4 )  and the 
sudden arrest in the fluctuations of pm. This behaviour can be quantified using a 
scaling Ansatz: xl(tM, T )  = g(p = t M / 7 ( T ) ) ,  where the characteristic time has the 
Vogel-Fulcher form T ( T )  = exp [ A / ( T  - To)] .  The inset of figure 2 shows that the 
data collapse on to a single curve with A = 0.75 and To = 0.15. (The data could not 
be fitted using T (  T )  = rM,--( T )  = A’(  T - Tc)’ as suggested by simple MCTs (Gotze 
and Sjogren 1992).) This value of To lies below the mode coupling Tc = 0.306, the 
upper bound of the glass transition temperature. Note in figure 2 that the drop 
associated with lo7 MD steps occurs approximately at  the mode coupling 
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Figure 2. Linear generalized compressibility as a function of temperature for different mea- 
surement times t M :  (a), lo5 M D  steps (40 runs); (O), 2 x lo5 MD steps (32  runs); 
(0). lo6 MD steps (10 runs); (O), 3 x lo6 M D  steps (6 runs); (*), lo7 M D  steps 
(4 runs). The system size is 512 particles. po = 0.6 and uB/gA = 1.4. The inset shows 
a T > To subset of the same data scaled as described in text. 
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temperature Tc, indicating that o ~ i r  long runs were in equilibrium down to the mode 
coupling transition temperature. This scaling suggests that >(I  becomes a step func- 
tion for infinite t M  and that the drop in the compressibility would become a dis- 
continuity at infinitely long times. This is consistent with a sudden arrest of the 
motion of the particles in the liquid which is the kinetic view of the glass transition. 
The abrupt drop also appears to be in agreement with the proposal by Mezard and 
Parisi (1999) that the glass transition is a first-order phase transition. However, the 
drop indicates that our simulations are falling out of equilibrium and therefore we 
cannot really tell whether there is a true thermodynamic transition. 

As an independent check of the glass transition temperature, we have calculated 
the specific heat, which is shown in figure 3 .  Note that the temperature of the peak in 
the specific heat agrees with the temperature at which X I  drops. 

The behaviour seen in figure 2 is similar to that seen in measurements of the real 
part of the frequency-dependent dielectric function E’(w) (Menon and Nagel 1995). 
In that case, as the frequency decreased, the temperature of the peak in E‘(w) 
decreased and the drop in d ( w )  below the peak became more abrupt. By extrapolat- 
ing their data to LJ = 0, Menon and Nagel (1995) argued that E’(LJ = 0) should 
diverge at the glass transition, signalling a second-order phase transition. We have 
looked for evidence of this divergence by examining samples of different sizes to see 
whether the linear generalized compressibility increased systematically with increas- 
ing system size. As shown in figure 4 we find no size dependence and no indication of 
a diverging linear generalized compressibility. We also find no size dependence for 
the specific heat and hence, no evidence of a diverging specific heat (not shown). This 
is corroborated by recent MCT calculations of a molten salt which find that 
E’(W + 0) goes to a finite value as the glass transition is approached (Wilke et rrl. 
1999). 

Q 

a--d 1 O5 md steps (40 runs) 
M 2x105 md steps (32 runs) 
~ - - f l  1 O6 md steps (1 0 runs) 

++-+ 10’ md steps (4 runs) 
3x1 O6 md steps (6 runs) 

2.5 I 
0 0.5 1 1.5 

Temperature [MD units] 
Figure 3. Specific heat Ccr at  constant volume as a function of temperature calculated using 

energy fluctuations. All parameters are the same as in figure 2. 
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Figure 4. Linear compressibility as  a function of tempera1 ure for different system sizes: 

(0). 216 particles (5 runs); (a), 512 particles (10 runs); (O),  1000 particles ( 5  runs). 
The measurement time was 10' M D  steps in all cases. The inset shows the linear 
generalized compressibility as a function of temperature for system of 51 2 particles 
upon cooling and heating. The ineasurement time was LOh M D  steps in both cases. The 
data were averaged over ten runs. Other parameters for the main figure and the inset 
are the same as in figure 2. 

We have found hysteresis at the glass transition by first cooling a system of 512 
particles to our lowest temperature T = 0.1 and then heating in steps of AT = 0.05. 
As before, we equilibrate at each temperature for lo4 time steps and then measure 
quantities for an additional lo6 time steps. Our resulls are shown in the inset of 
figure 4. Note the slight hysteresis with the rise in ,%I upon warming being a t  a slightly 
higher temperature than the drop in xI upon cooling. This hysteresis is consistent 
with the kinetic arrest of motion. 

We now turn to the case of the nonlinear generalized compressibility )inl given by 
equation (9). We are motivated by the case of spin glasses where the nonlinear 
magnetic compressibility diverges at the spin-glass transition while the linear com- 
pressibility only has a cusp (Bhatt and Young 1988, Levy and Ogielski 1986). There 
have been a few studies of nonlinear response functions in real glasses (Dasgupta 
ct a/. 1991, Wu 1991), but these have not found any divergences. Our results are 
consistent with this conclusion. In particular we find that the nonlinear generalized 
compressibility is zero above and below the glass transition temperature, although it 
does show a glitch at the glass transition. There is no systematic increase with system 
size, indicating the absence of a divergence. Because znl is sensitive to the tails of the 
distribution of p4, one must be careful to obtain a good ensemble average in the 
liquid above the glass transition temperature. We have done this by carrying out 32 
runs, each involving 200 000 time steps, with different initial conditions, stringing 
them together as though they were one long run and then taking the appropriate 
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averages. This produces a better ensemble average of ( p i ) ?  which enters into xnl in 
equation (6). xn1 also took longer to equilibrate than xI. A plot xnl versus run time 
shows that one needs to run at  least lo6 time steps before xnl appeared to saturate. 

To summarize, we have introduced a new thermodynamic quantity which 
depends solely on the positions of the particles and not on their histories. This 
quantity drops abruptly at the glass transition which is compatible with a kinetic 
arrest of motion, but not with an underlying second-order phase transition. This 
generalized compressibility can be nieasured experimentally. It can be directly mea- 
sured in colloidal experiments which monitor the positions of the particles (Weeks 
et al. 2000). Measurements of the width of the distribution of pq, the spatial Fourier 
transform of the density, would also give the linear generalized compressibility. 
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