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First-order pre-melting transition of vortex lattices 
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California 92697, USA 
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ARSTRACT 
Vortex lattices in the high-temperature superconductors undergo a first- 

order phase transition that has thus far been regarded as melting from a 
solid to a liquid. We point out an alternative possibility of a two-step 
process in which there is a first-order transition from an ordinary vortex 
lattice to a soft vortex solid followed by another first-order melting 
transition from the soft vortex solid to a vortex liquid. We focus on the 
first step. This pre-melting transition is induced by vacancy and interstitial 
vortex lines. We obtain good agreement with the experimental transition 
temperature against field, latent heat, and magnetization jumps for 
YBa2Cu307-s and Bi2SrlCaCu208. 

Phase transitions involving vortex lattices in the high-temperature supercon- 
ductors is an area of active study (Blatter et al. 1994, Brandt 1995). Below a 
critical value of the magnetic field, vortex lattices in YBa2Cu307-6 (YBCO) (Safar 
et al. 1993, Liang et al. 1996, Schilling et al. 1996, Welp et al. 1996) and 
Bi2Sr2CaCu208 (BSCCO) (Zeldov et al. 1995, Fuchs et al. 1996, Keener et al. 
1997) undergo a first-order phase transition. This conclusion comes from latent 
heat measurements (Schilling et al. 1996) as well as jumps in the resistivity (Safar 
et al. 1993, Fuchs et, 01. 1996, Keener et al. 1997) and in the magnetization 
(Zeldov et a/. 1995, Liang e f  al. 1996, Welp et al. 1996). It has generally been 
assumed that this is a melting transition from a vortex solid to a vortex liquid. In 
this paper we suggest the possibility that the melting transition actually occurs in 
two steps as the temperature increases; the first step is a first-order pre-melting 
transition from an ordinary vortex lattice to a soft solid with a small but finite 
shear modulus, and the second step is the first-order melting of the soft solid into 
a vortex liquid. In this paper we focus on the first step. We present an analytic 
theory of a first-order pre-melting transition in which the shear modulus jumps 
discontinuously. The transition is induced by interstitial and vacancy line defects 
in the vortex lattice, which soften the shear modulus c66. We find good agreement 
with the experimental curve of transition temperature versus field, latent heat and 
magnetization jumps for YBCO and BSCCO. In the soft solid phase the super- 
conducting phase coherence along the field is destroyed by the wandering of the 
defect lines which become entangled in the vortices of the soft solid lattice 
(Nelson 1991, Frey et al. 1994). However, since wandering is energetically costly, 
the superconducting correlation length along the c axis is long. Finally we spec- 
ulate about the relation between our proposed two-step transition and the well 
known peak effect (Kwok et al. 1994, 1996). 
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Let us describe our scenario for pre-melting. Our approach follows that of 
Granato (1992) who showed that interstitial atoms soften the shear modulus of 
ordinary crystals and lead to a first-order transition. We start with a vortex lattice 
in a clean layered superconductor with a magnetic field H applied perpendicular to 
the layers along the c axis. We consider the vortices to be correlated stacks of 
pancake vortices. We shall assume that the transitiod is induced by topological 
defect lines, that is vacancies and interstitials. In a Delaunay triangulation 
(Preparata and Shamos 1985) a vacancy or an interstitial in a triangular lattice is 
topologically equivalent to a pair of bound dislocations (Ryu and Stroud 1996) as 
well as to a twisted bond defect (Kim et al. 1996). High-temperature decoration 
experiments (Kim et al. 1996) and Monte Carlo simulations (Ryu and Stroud 
1996) have found such defects to be thermally excited. The introduction of these 
defects softens the elastic moduli. Since the energy to introduce interstitials and 
vacancies is proportional to the elastic moduli, softening makes it easier to introduce 
more defects. The softening also increases the vibrational entropy of the vortex 
lattice, which leads to a pre-melting transition. The transition is driven by the 
increased vibrational entropy of the vortex lines of the lattice and not by the entropy 
of the wandering of the defect lines. In fact, Frey et al. (1994) showed that a phase 
transition driven by the entropy of wandering flux lines occurs at  a much higher 
magnetic field than observed experimentally. In the vicinity of the experimentally 
observed first-order phase transition, wandering in the transverse direction by more 
than a lattice spacing is energetically quite costly and therefore rare. (The energy 
scale is set by cox (Blatter et a/. 1994, Brandt 1995). Here s is the interplane spacing 
and e0 is the energy per unit length of a vortex given by 60 = (~+5~/4nX,~)’ where do is 
the flux quantum and Xflb is the penetration depth for currents in the a-b plane.) 

Experimentally the resistivity at the transition jumps from zero to a finite 
value as the temperature increases. This is consistent with our model since the 
soft solid will have a finite resistivity due to the motion of interstitial (and 
vacancy) lines, The barrier for the motion of interstitials is very small (Frey et 
al. 1994) and is of order 10-3E0 per unit length, where Eo = 2 ~ ~ .  The defect lines 
act like a liquid of lines existing in a soft solid host. Note that, if one tries to 
measure the shear modulus of such a system using resistivity measurements, only 
the defect lines would move relative to the pinned soft solid, and one would 
deduce that the shear modulus was zero (Pastoriza and Kes 1995, Kwok et al. 
1996, Wu et al. 1997). 

The first-order transition is nucleated in a small region by a local rearrangement 
of existing line segments. Slightly above the pre-melting temperature Tp a vortex line 
can distort and make an interstitial and a vacancy line segment that locally create a 
soft solid. This is the analogue of a liquid droplet which nucleates melting of a 
crystal. The role of the surface tension is played by the energy to connect the inter- 
stitial segment to the rest of the vortex line. This connection can be a Josephson 
vortex lying between planes or a series of small pancake vortex displacements spread 
over several layers. When the length l of the interstitial and vacancy segments equals 
the critical length l, the energy gained by pre-melting equals the energy cost of the 
connections. When t > l,, it is energetically favourable for the defect segments to 
grow to the length of the system. 

To study pre-melting we assume that we have a vortex lattice with interstitial and 
vacancy lines extending the length of the lattice. Our goal is to find the free-energy 
density as a function of the concentration n of defect lines. The free energy density is 
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f =fo  +f, +f +f,,,, wherefo is the free-energy density of a perfect lattice,,f, is the 
work needed to introduce a straight interstitial or vacancy line into the lattice,fvib is 
the vibrational free-energy density of the system andf,,, is the free energy due to the 
wandering of the defect lines over distances large compared with the lattice spacing. 
We now examine these terms in detail. 

term (Frey et ul. 1994, Tinkham 1996): 
.fo, the free-energy density of a perfect rigid flux lattice, is given by the London 

where B is the spatially averaged magnetic induction, t a b  is the coherence length in 
the a-b plane and q is 0.130 519 for a hexagonal lattice and 0.133 31 1 for a square 
lattice (Frey et al. 1994). For B near Hcz, fo  is given by the Abrikosov free energy 
(deGennes 1989): 

B2 (Hc2 - B)* 
f o  = G - 8n[1 + ( 2 2  - l)/!3*] ’ 

where the Ginzburg-Landau parameter ti = and the Abrikosov parameter 
is 1.16 for a triangular lattice and 1.18 for a square lattice. 
To calculatefvlb, we follow Bulaevskii et al. (1992). We denote the displacement 

of vth vortex pancake in the nth lane from its equilibrium position by u(n, r,) where 
u = (ux, u,,) and the pancake position r = ( r > ,  r y ) .  The Fourier transform 
u(k, q)  = En, u(n, r,) exp [i(k.r, + qn)]. k = ( k x ,  k , )  and q is the wave-vector 
along the c axis. fvlb = - ( k B T / V )  In Zv ,b  where V is the volume and the vibrational 
partition function Zvlb  is given by 

duR (ikq) duI (i kq) exp (- ”)] [J n& kB T 
1nzvib = C In 

k,q>O,i 
(3) 

where we have divided by the area r&, of the normal core of a pancake (Bulaevskii 
et al. 1992). uR and uI are the real and imaginary parts of u(k,  q )  and i E { x , y } .  The 
elastic free-energy functional associated with these distortions is 

kq ij 

where i and j E {x,y}, the volume per pancake vortex is vo = ~ q 5 ~ / B ,  and s is the 
interplane spacing. The k sum is over a circular Brillouin zone K i  = 4 7 ~ B / 4 ~ .  The 

2 matrix aij is given by aij = cBk,kj + (c66k + c44Q2)6ij where cB, c66 and c44 are the 
bulk, shear and tilt moduli respectively. cB = c i l  - c66 for a hexagonal lattice. 
Q2 7 2[1 - cos (qs)] /s2.  Diagonalizing ail leads to two eigenvalues: Ae(kq)  = 
c l i k  + c44Q2 and A, = c66k2 + c44Q2, where A is the diagonal matrix, the sub- 
script [ denotes longitudinal and the subscript t denotes transverse. Using this, 
we can integrate over u in equation (3); the remaining sums over k and q are done 
numerically. At low fields ( b  = B/Hc2  < 0.25), the elastic moduli are given by 
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(Blatter et al. 1994, Brandt 1995) 

$[1 + X:(k2 + Q2)] 

4x[1 + Xi,(k2 + Q2)](1 + Xtk2 + Xi,Q2)’ c11 = 

B2 B4o 6; +- 
4Tc( 1 + Xfk2 + A&@) 32n2Xf In (Ki + ( Q / Y ) ~  + A;* c44 = 

+ 

where A, is the penetration depth for currents along the c axis, y = A,/&, is the 
anisotropy, and = 1. At high fields (0 > 0.5) (Blatter et al. 1994, Brandt 1995), c66 
is altered by the factor < w (1 - 0 . X 2 ) (  1 - b)2 (  1 - 0.580 + 0.29b2) and the pene- 
tration depths in e l l  and c44 are replaced by 1’ = A*/(  1 - b )  where X denotes either 
XRh or A,. In addition the last two terms of cd4 are replaced by B40/(16x21:). These 
replacements guarantee that the elastic moduli vanish at Hc2. For YBCO the tem- 
perature dependence of the penetration depths and coherence lengths are given b 

respectively. For BSCCO whose pre-melting field is two orders of magnitude below 
Hc2, X‘(T) = X’(O)/[l - (T/T, , )~]  and & ( T )  = &(O)/[l - ( T / T ‘ ~ ) ~ ]  (Tinkham 
1996). 

The free-energy density f, due to the energy cost of adding a vacancy or inter- 
stitial vortex line is difficult to calculate accurately (Frey et al. 1994). However, we 
can write down a plausible form forfw by noting that a straight line defect parallel to 
the c axis produces both shear and bulk (but not tilt) distortions of the vortex lattice. 
For example, if a defect at the origin produces a displacement u that satisfies 
V - u  = vo6(r)/s, where S(r) is a two-dimensional delta function, then u,(k)  = 
ik,/k’ (Frey et al. 1994). Inserting this in equation (4), we find that 
f w  = (c66 + ? B ) / 2  where cB = Ck cB(q = 0, k). Generalizing this to allow for a 
more complicated distortion and for a concentration n of line defects, we write 
(Granato 1992) 

X(T) = X(O)(I  - T/Tc)-i/3 (Kamal et a/. 1994) and taab(T)  = Eab(0)(l - T / T J  13 

where crl and a2 are dimensionless constants. We expect the isotropic distortion to 
be small, that is a* << 1, and the shear deformation to dominate, that is al >> a’. 
Integrating over n allows the elastic moduli to depend on defect concentration. 
We shall assume that CB is independent of n since we believe that the bulk modulus 
of the vortex solid is roughly the same as that of the soft solid phase. To find ~ ~ ~ ( n )  
(Granato, 1992), we use its definition c66 = a 2 f / a 2 ,  where E is the shear strain. 
Assuming that cB has negligible shear strain dependence, we find that 
(.66(n) c66(0) + [i (d2c66(r1)/tk2) d~ Or 
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If we shear the lattice in the a-b plane along rows separated by a distance d ,  
the shear modulus must be periodic in displacements equal to the lattice 
constant ao. We describe this with the simplest even periodic function: 

d2c66(n)/d&2 = -pc66(n), where ,L? = 4r2d’/a;. Combining this with equation (7), 
we obtain c66(n) = c66(0) exp (-alp.). Thus the shear modulus softens exponen- 
tially with the defect concentration n. This softening lowers the energy cost to 
introduce further defects, and increases the vibrational free energy fvib when c66 (n)  
is used in aV. Substituting c66(n) into equation ( 6 )  forf, yields 

C 6 6 ( U )  = C66(U = 0) COS (27cu/ao) = C 6 6 ( &  = 0) COS ( 2 7 c d ~ l ~ )  where E = u / d .  Then 

The last term that we need to consider is f,,,, the free energy due to the wander- 
ing of the defect lines over distances large compared with the lattice spacing. We can 
estimate f,,, from the following expression (Frey et al. 1994): 

where m g  = 3 for a triangular lattice (BSCCO) and me = 4 for a square lattice 
(YBCO). !, can be thought of as the distance along the z axis that it takes for the 
defect line to wander a transverse distance of one lattice spacing ao. To go from one 
vacancy or interstitial site to the next, the defect line segment must jump over the 
barrier between the two positions. This gives l, a thermally activated form: 
lz - lo eXp(-E/kBT), where l o  M a o ( ~ ~ / t ~ ) * ’ ~  and E M ao(t1tB)1’2. tl is the line 
tension and is given by el N (eo/r2) In (ao/Eab). Numerical simulations (Frey et al. 
1994) indicate that the barrier height is small and we use tg = 2.5 x 10p3eo. f,,, 
itself is quite small compared with the other terms because of the high energy cost of 
vortex displacements. For example, in the soft solid phase at the transition, fwan is 
about two orders of magnitude smaller than f, orfvib. Thus the transition is not 
driven by a proliferation of wandering defect lines because near the transition the 
high energy cost of vortex displacements is not sufficiently offset by the entropy of 
the meandering line (Frey et al. 1994). 

Before we plot f against 1 2 ,  we note that the difference between B and H 
is negligible for YBCO but can be a significant fraction of the pre-melting field 
Hp for BSCCO. To find the value of B to use in the Helmholtz free-energy density 
f ,  we minimize the Gibbs free-energy density G, that is d G / d B  = 0 where 
G = f - B*H/4n .  Because the concentration dependence of B is negligible, 
we find B for n = O  for each value of H and T .  Typical plots of 
Af = f ( n )  - f ( O )  = f ,  + Afvib against n are shown in the inset of figure 1 .  The 
double-well structure of Af is characteristic of a first-order phase transition. The 
equilibrium transition occurs when both minima have the same value of Af. We 
associate the minimum at n = 0 with the vortex solid and the minimum at finite n 
with a soft vortex solid that has a small but finite shear modulus. The defect con- 
centration at the transition is only a few per cent. At higher concentrations, Af 
increases with increasing n because introducing defects costs compressional energy 
which is proportional to the bulk modulus. Thus defects do not proliferate. As an 
estimate of the softness at the transition, for n = 5%, c ~ ~ ( H )  M 0.2c66(0) for BSCCO. 
The strain field &(k)  produced by the defect determines whether the shear modulus 
is zero in the high temperature phase (Marchetti and Nelson 1990). For dislocation 
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Figure 1. First-order phase transition curves of magnetic field against temperature for YBCO 
and BSCCO. The parameters used for YBCO are at,= 2.55, a2 = 0.91485, 4 = 44.1", 
X O b ( O )  = 1186A (Kamal et al. 1994), s =  12A, &,(O) = 15A . y =  5 and 
T,  = 92.74K. The parameters u>ed for BSCCO are a1 = 1.0, 012 = 0.00705, 
4 = 60", & ( O )  = 2000A , s = 14A , &,(O) = 30A , y = 200 and Tc = 90 K. For 
BSCCO we use the low-field form of the elastic moduli from equation (5) and for 
YBCO we use the high-field form. Forfo we use equation (1) for BSCCO and equation 
(2) for YBCO. (For BSCCO we plot B against T because that is what Zeldov et ul. 
(1995) measured). The experimental points for YBCO are from (Schilling et al. 1996) 
and those for BSCCO from Zeldov et of. (1995). The inset shows a typical Af against n 
plot. 

loops, ~ d , ~ ( k )  is singular as k + 0, and the shear modulus is zero at k = 0 (Marchetti 
and Nelson 1990). For vacancy and interstitial lines, &(k) is finite, and hence the 
shear modulus is non-zero. 

In figure 1 we fit the experimental first-order transition curves in the H-T plane 
using two adjustable parameters: al  and a2. As expected, al  >> a2 and a2 << 1 (see 
figure 1) .  The geometrical quantity /3 can have several values for a given lattice 
structure, depending on which planes are sheared. We choose /3 = rc2 tan2 #J where 
#J is the angle between primitive vectors. Decoration experiments on BSCCO indicate 
a triangular lattice (Kim et al. 1996); so we use #J = 60". For YBCO we choose 
4 = 44.1" which is very close to a square lattice which has 4 = 45". Won and 
Maki (1996) have argued that the d-wave symmetry of the order parameter yields 
a square vortex lattice tilted by 45" from the a axis. In experiments (Yethiraj el al. 
1993, Keimer et al. 1994, Maggio-Aprile et al. 1995 on YBCO 4 was found to range 
from 36" to 45", (our #J equals half the angle cited in their experiments). 
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We can calculate the jump A M  in magnetization at  the transition using 
A M =  -d(AG)/dHl,=, . The jump As in entropy is given by A s =  
- W ~ ~ ( A G ) / ~ T I , , , ~ ,  wiere As is the entropy change per vortex per layer. The 
results are shown in figure 2. We have checked that our results satisfy the 
Clausius-Clapeyron equation As = -(uo A B / h )  dHp/dT. We obtain good agree- 
ment with experiment well below T,. Near T, it is thought that the entropy jump is 
enhanced by microscopic degrees of freedom (Dodgson et a/. 1997, Rae et al. 1997), 
which are not included in our  model. 

We can compare our results with the Lindemann criterion by calculating the 
mean square displacement ( 1 ~ 1 ~ )  at the transition using equation (3): (1.1 ) = 
-(2kBT/vo) Cakq d(ln Z,,,)/dA(cukq), where A is the diagonal matrix similar to 
a.  and a labels the two eigenvalues. Defining the Lindemann ratio CL by 4 cL = ( l ~ i l ~ ) / a &  we find that cL = 0.25 for YBCO at Hp = 5T and that cL z 0.11 
for BSCCO at H p  = 200G. Here we have used the same values of the parameters 
that were used to fit the phase transition curves in figure 1. These values of CL are 
consistent with previous values (Houghton et al. 1989, Blatter et al. 1994, Brandt 
1995). 
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Figure 2. (a),  (b)  Entropy jumps As per vortex per layer against Tp at the transition for YBCO 
and BSCCO. The experimental points for YBCO are from Schilling et al. (1996) and 
those for BSCCO are from Zeldov et a/. (1995). (c), (d) Magnetization jump A M  
against Tp at the first-order phase transition for YBCO and BSCCO. The experimental 
points for YBCO are froin Welp et al. (1996) and those for BSCCO are from Zeldov el 
al. (1995). For the theoretical points the values of the parameters are the same as in 
figure 1 for all the curves. 
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Experiments have found little, if any, hysteresis (Safar et al. 1993, Zeldov et al. 
1995, Keener et al. 1997). This is consistent with our calculations. We can bound the 
hysteresis by noting the range of temperatures between which the soft solid minimum 
appears and the solid minimum disappears. Typical values for the width of this 
temperature range are 300mK for YBCO at H = 5 T  and 1.3K for BSCCO at 
H = 200G. Another measure of the hysteresis can be found in the plots of Af 
against n. The barrier height VB between the minima is low (VBvo M 30mK), 
which is consistent with minimal hysteresis. 

In going from the normal metallic phase to the vortex solid, two symmetries are 
broken: translational invariance and gauge symmetry, which produce the supercon- 
ducting phase coherence along the magnetic field. In the soft solid phase, longitu- 
dinal superconductivity is destroyed by the wandering of the defect lines which 
become entangled with the soft solid vortices. (A vortex solid with entangled vortex 
lines has been termed a supersolid (Nelson 1991, Frey e t  al. 1994). Even though line 
wandering is energetically costly and therefore rare, it does occur. As a result, the 
correlation length along the c axis will be quite long. This is consistent with mea- 
surements in YBCO of the c axis resistivity for which it is found that there is loss of 
vortex velocity correlations for samples thicker than 100 pm (D. Lopez 1996, private 
communication, Lopez et al. 1996a,b). For samples thicker than the longitudinal 
correlation length, the loss of longitudinal superconductivity coincides with the pre- 
melting transition (Chen and Teitel, 1995). This agrees with experiments which 
indicate that the loss of superconducting phase coherence along the c axis coincides 
with the first-order transition (D. Lopez 1966, private communication, Lopez et nl. 
1996a,b). 

Because the soft solid is a lattice with a few per cent of defect lines, the Fourier 
transform of the density-density correlation function should exhibit Bragg peaks. 
Relative to the ordinary vortex solid, the intensity of these peaks would be slightly 
diminished by the defect lines; so it would be difficult to detect the transition via 
neutron scattering. In going from the soft solid to the normal metallic state, transla- 
tional invariance is regained by a first-order melting transition. Thus there are two 
transitions: the pre-melting transition and the melting of the soft solid. Melting is 
obsertable in small-angle neutron scattering experiments (Cubitt et al. 1993) in 
which a rapid decrease in the intensity of the Bragg spots is seen. The region of 
the phase diagram where the soft solid exists may be quite narrow, of the order a 
degree Celsius or less in temperature (Kwok et al. 1994). There is the intriguing 
possibility that our scenario of two transitions may be related to the peak effect in 
which the critical current as a function of temperature or field is observed to increase 
sharply below the melting transition (Kwok et al. 1994). This increase is believed to 
result from the enhanced pinning of flux lines due to the softening of the shear 
modulus c66 (Larkin et al. 1995). 

To summarize we have discussed the possibility that a vortex lattice melts in two 
stages. First it undergoes a first-order pre-melting transition into a soft solid fol- 
lowed by another first-order phase transition into a liquid. The pre-melting transi- 
tion is induced by vacancy and interstitial vortex lines that soften the shear modulus 
and enhance the vibrational entropy. The entanglement of these defect lines with the 
vortex lines of the soft solid leads to the loss of longitudinal superconducting phase 
coherence. However, the correlation length corresponding to longitudinal supercon- 
ductivity is quite long because line wandering is energetically costly and there- 
fore rare. We obtain good agreement with the experimentally measured curve of 
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transition temperature against field, latent heat, and jumps in magnetization for 
BSCCO and YBCO. The Lindemann ratio cL is about 11% for BSCCO and 
about 25% for YBCO. The hysteresis is small. 
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