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We propose that a maximum in measurement noise can be used as a signature of a phase transition. As
an example, we study the energy and magnetization noise spectra associated with first- and second-order
phase transitions by using Monte Carlo simulations of the Ising model and 5-state Potts model in two
dimensions. For a finite size system, the total noise power and the low frequency white noise S�f < fknee�
increase as Tc is approached. In the thermodynamic limit, S�f < fknee� diverges but fknee ! 0 and the
total noise power vanishes. f�1

knee is approximately the equilibration time.
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Noise is ubiquitous and is being increasingly used as an
experimental tool to probe condensed matter systems, but
unfortunately, when studying phase transitions, the useful-
ness of the experimental results is diminished by the fact
that little is known about what to expect in the noise
spectra. We propose that an increase in the measurement
noise can be used to signal the onset of a phase transition
since noise arises from the fluctuations of microscopic
entities which, in turn, play a key role in phase transitions.
For example, as a second-order phase transition is ap-
proached, thermal fluctuations are associated with a grow-
ing correlation length that characterizes the size of the
fluctuating entities and with such things as critical opales-
cence in binary fluids [1]. These growing fluctuations
should produce an increase in the noise power as the
transition is approached. In general, it is plausible that a
maximum in the noise in any quantity that is produced by
microscopic fluctuations should signal a phase transition.
Past studies indicate that resistance noise increases in the
vicinity of the metal-insulator transition [2], a spin glass
transition [3], and phase transitions of molecules adsorbed
onto metallic carbon nanotubes [4]. Using noise to look for
a phase transition could be especially useful in systems
such as driven systems [5] or granular systems [6] where
thermodynamic and transport measurements are problem-
atic. However, there are competing tendencies. In the
thermodynamic limit, growing fluctuations lead to diver-
gences in quantities such as the susceptibility and the
specific heat, but the noise in measurements goes to zero
due to self-averaging.

As a simple test case, we have done a systematic study to
determine if the noise power increases in the vicinity of
well-understood first- and second-order phase transitions.
We use Monte Carlo simulations to study the noise spectra
of the energy and magnetization per spin associated with
the phase transitions in two models. In the thermodynamic
limit the 2D Ising model has a second-order phase tran-
sition marked by divergences in the specific heat CV and
magnetic susceptibility � at the transition temperature
Tc � 2:269 [7], while the 2D 5-state Potts model has a

weakly first-order phase transition marked by delta func-
tion singularities in CV [8] and � [9] at Tc � 0:85 [10]. The
temperature is in units of J=kB, where we set the ferro-
magnetic exchange J � 1 and kB is the Boltzmann con-
stant. CV and � are proportional to the variance �2 of
the energy and magnetization fluctuations, respectively.
Correspondingly, we find that, for a given number of spins
N, the total noise power per time step, Stot, as well as the
low frequency noise S�f < fknee� increase as the transition
temperature is approached. Here f is the frequency and
fknee is a crossover frequency. At Tc, S�f < fknee� is inde-
pendent of frequency and diverges in the thermodynamic
limit, but fknee and Stot vanish as N !1. f�1

knee is approxi-
mately equal to the minimum sampling time �teq needed
to obtain accurate thermodynamic averages. For the Ising
model fknee scales like the relaxation rate ��1. At high
frequencies we find for both models that the noise spectral
density S�f > fknee� goes as 1=f�, where the exponent
�< 2. In the case of the second-order phase transition,
we can relate the exponent � to the critical exponents by
using the fluctuation-dissipation theorem and the theory of
dynamic critical phenomena. Our relation for � confirms
previous theoretical work which used noise spectra to
obtain critical exponents for the 2D Ising model [11,12].

The Hamiltonians of the 2D Ising model and the 2D 5-
state Potts model are HIsing � �J

P
i<jsisj and HPotts �

�J
P
i<j��si; sj�, respectively, where ��x; y� is the

Kronecker delta function and �i; j� denotes the nearest
neighbor sites on a square lattice. The spins can take values
si � �1 for the Ising model and si � 0, 1, 2, 3, 4 for the
Potts model. For both models, we apply periodic boundary
conditions for different system sizes N � L� L, where
L � 10, 20, 40, 80, 160. We use Metropolis Monte Carlo
simulations to obtain the time series of the energy and
magnetization. In each simulation, we start from a high
temperature (T � 10), and then gradually cool the system
to T � 0:5. Starting from either hot or cold initial tem-
peratures has little effect on the noise. At each temperature,
we wait until the system equilibrates before recording the
time series that consists of the energy and magnetization
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per spin for at least 10� 217 � 1, 310, 720 Monte Carlo
time steps per spin (MCS). The specific heat per spin CV �
N�2

E=kBT
2 and the susceptibility per spin � � N�2

M=kBT
are calculated from �2

E the variance of the energy per spin
and from �2

M the variance of the magnetization per spin.
We define the equilibration time �teq of the energy

(magnetization) to be the minimum sampling time needed
to obtain an accurate thermodynamic average of the energy
(magnetization). To determine �teq, we use a block aver-
aging technique [13,14] in which we divide the energy
(magnetization) time series into equal segments of length
�t, calculate the specific heat (susceptibility) from the
fluctuations in each segment, and then average these val-
ues. The average CV (�) and �2

E (�2
M) initially increase as

�t increases, and then plateau at the equilibrium value
when �t � �teq.

The amplitude of the energy and magnetization fluctua-
tions is largest at Tc as shown in Fig. 1 for the 2D Ising
model. This is reflected in the distributions of the energy
and the magnetization which are much wider at Tc than at

other temperatures. This is also true for the 5-state Potts
model. Thus, the larger the variance, the longer it will take
to fully sample the energy and magnetization distributions
at the critical temperature, and the larger �teq will be. We
shall see that as a result fknee in the noise spectrum will
shift to lower frequencies. The increase in the noise and the
variances at the critical temperature are consistent with the
peaks in CV and � vs T in finite size systems.

Next we calculate the noise spectral density. From the
Wiener-Khintchine theorem, the spectral density Sx�f� of a
time series x�t� is proportional to the Fourier transform of
the autocorrelation function �x�t� of the fluctuations
�x�t� � �x�t� � hxi	: Sx�f� � 2

R
dtei2�ft�x�t�. We

choose the normalization so that the total noise power
per time step is

 Stot �
1

N�

Xfmax

f�0

Sx�f� � �2
x; (1)

where N� is the length of the time series and �2
x is the

variance of x�t�. This way, for a stationary signal x�t� with
power law correlations, Sx�f� will be approximately the
same for different signal lengths. Notice that Stot will be
largest at Tc for a given N.

The noise spectral densities are shown in Fig. 2. At low
frequencies, the noise power S�f� is largest at Tc. In the
high (T ! 1) and low (T ! 0) temperature limits, the
noise power is small and white noise. At intermediate
temperatures, the noise spectra have a plateau at low
frequencies and scale as 1=f� at high frequencies, where
the exponent �< 2. We denote the crossover frequency
between these two regimes by fknee.

For the 2D Ising model the exponent � at Tc can be
related to the critical exponents by using the fluctuation-
dissipation theorem and dynamic critical phenomena [15].
The frequency-dependent susceptibility ��!�, where ! �
2�f, scales as ��!� 
 "���̂�x�, where �̂ is a scaling
function, x � !�
!="z�, z is the dynamic critical ex-
ponent associated with the relaxation time �
 	z, � is the
critical exponent associated with the divergence of the
correlation length 	
 "��, � is the critical exponent
associated with the divergence of the magnetic suscepti-
bility �
 "��, and " � j�T=Tc� � 1j is the reduced tem-
perature. As x! 1,

 ��!� 
 "��
�
!
"z�

�
�a
: (2)

At Tc, " must disappear from ��!�. So a � �=z� and
Re��!� 
!��=z�. Since ��t� is real, Re��!� �
Re���!�, and from the Kramers-Kronig relation we find

 Im��!� �
1

�
P
Z �1
�1

Re��!0�
!�!0

d!0 
!��=z�; (3)

for all !> 0, where P denotes the Cauchy principal value.
Thus from the fluctuation-dissipation theorem, the power
spectrum of the noise becomes
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FIG. 1 (color online). Time series (with 104 MCS) and distri-
butions of the energy and magnetization for the 2D Ising model
(L � 40) at different temperatures. Energy and magnetization
distributions are from a run with 104 and 106 MCS, respectively.
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 SM�!� �
4kBT
!

Im��!�
!�1���=z��; 8 !> 0: (4)

So for the magnetization �M � 1� ��=z��. For the 2D
Ising model, where � � 1, � � 7=4 [7], and z � 2:17 [16],
we find SM�f� 
 f�1:81. From the Monte Carlo simulation
shown in Fig. 2, SM�f� 
 f�1:8, which agrees very well
with our analytic result. Similarly, for the energy noise of
the 2D Ising model, �E � 1� �
=z�� where we now use
the specific heat exponent 
 � 0 [7] instead of �. We find
�E � 1, i.e., 1=f noise (SE�f� 
 f�1) for f� fknee, and
this agrees with Fig. 2. Our expressions for �M and �E
agree with those from [11,12], though they derived them
differently. For the 5-state Potts model, since it has a first-
order phase transition, there are no critical exponents, so
the above arguments do not apply.

We now consider fknee, which marks the transition from
white noise to power law behavior. The characteristic time
scale �knee � 1=fknee is set by the equilibration time �teq.
Figure 3 shows the noise spectra and the block scaling
results as a function of 1=f or �t. We see that the time
scale 1=fknee where the power spectrum S�f� flattens off is
comparable to the time �teq. Since the variance is constant
for �t > �teq, S�f� will be constant for f < fknee [13].

Since �teq has a maximum at Tc, fknee is a minimum at Tc
and increases as T moves away from Tc.

For the 2D Ising model in the critical region, we expect
1=fknee to scale in the same way as the relaxation time �
[17]:

 f�1
knee 
 �
 L

z�̂�L=	� 
 Lz�̂�L1=��T � Tc�	: (5)

This scaling gives good agreement with our results as
shown in Fig. 4 where we plot 1=�Lzfknee� vs L1=��T �
Tc�. So for the 2D Ising model, fknee 
 1=Lz 
 1=Nz=d,
where d is the dimension. Using � � 1, we find that the
best fit for the dynamical scaling exponent is z � 2:1�
0:2, which is consistent with previous results [11,12,16].
For the 2D 5-state Potts model, scaling with � does not
apply, but fknee 
 1=N 
 1=Ld.

Size dependence.—In general, we expect the energy and
magnetization per spin in larger systems to be self-
averaging, and hence to have smaller fluctuations and less
noise. For the models we studied, at Tc, S�f� 
 1=�Nf�� at
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high frequencies (f > fknee), and S�f� 
 S�flow� 

1=�Nf�knee� at low frequencies (f < fknee). Since fknee 

N�b, where b � 1 for the 2D 5-state Potts model and b �
z=d for the 2D Ising model, in the thermodynamic limit the
low frequency noise diverges at Tc: S�flow� 
 N

b��1 ! 1
as N ! 1 if �> 1=b [11]. �> 1=b for the energy and
magnetization spectra of both models, so S�flow� diverges.
However, this low frequency region disappears in the ther-
modynamic limit: f < fknee 
 N�b ! 0 as N ! 1 since
b > 0. [At f � 0, S�f � 0� � 0.] As N ! 1, Stot is finite
and decreases as Nb���1��1 with increasing system size.

We now turn to the size dependence at temperatures far
away from Tc where our simulations show that S�f� 
 1=N
and that fknee is the same for different N. Our simulations
verify that the variances decrease as the temperature goes
away from Tc. Moreover, at very high and very low tem-
peratures, our simulations agree with the analytic result
that the variances per spin go as 1=N. In particular, when
T ! 1, the spins are uniformly distributed, and one can
show analytically that for the 2D Ising model ��2

E�1 �
2=N and ��2

M�1 � 1=N, while for the 2D q-state Potts
model ��2

E�1 � n�q� 1�=�2q2N� and ��2
M�1 � �q

2 � 1�=
�12N�, where n is the number of nearest neighbors. If, on
the other hand, the temperature is close to zero so that the
whole system experiences at most one spin flip after one
MCS, the energy and magnetization obey a Poisson distri-
bution, and the probability p of a spin flip goes as p
 N.
In this case, the variance per spin�2

T 
 p=N
2 
 1=N holds

for both the energy and the magnetization of both models.
The combination of �2 / 1=N and Eq. (1) implies that at
temperatures far away from Tc, Stot 
 1=N 
 1=Ld, which
is confirmed by our simulations.

For time series of finite length in finite size systems in
the temperature range T
 < T < Tc where T
 is slightly
below Tc, there can be large changes in the magnetization
corresponding to large clusters of spins flipping. This can
complicate the dynamics by increasing the variance of the
magnetization. However, when N ! 1, T
 ! Tc.

In summary, for fixed N, we show that fluctuations
produce an increase in the low frequency noise S�f <
fknee� and the total noise power Stot as first- and second-
order phase transitions are approached. For a given length
of the time series, fknee may be too low to observe if the
system is too big, indicating that this approach to finding
phase transitions is better suited to small systems. Even
though the 5-state Potts model has a weakly first-order
transition, we find very similar results for the 10-state
Potts model which has a strong first-order phase transition.
Our results show that a maximum in the low frequency
noise as well as in the total noise power per time step can
signal a phase transition. However, one complication is the
presence of disorder, which can lead to an inhomogeneous
transition, e.g., a transition occurring at slightly different
temperatures in different parts of the sample. As a result,
there may not be a clear signature of the transition in the
noise [18]. However, if the noise does exhibit a maximum,
then this is a good indication of a phase transition.
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