VOLUME 71, NUMBER 23

PHYSICAL REVIEW LETTERS

6 DECEMBER 1993

Numerical Renormalization Group Study of the One-Dimensional Kondo Insulator

Clare C. Yu and Steven R. White

Department of Physics, University of California, Irvine, Irvine, California 92717
(Received 14 June 1993)

We have studied the one-dimensional Kondo chain at half filling using a density matrix formulation of
the numerical renormalization group. The charge gap is larger than the spin gap for all antiferromag-
netic values of the exchange coupling J. A new type of excitation, a neutral spin singlet, consists of a
particle and a hole which are repulsive for /X 5t and attractive for J $5¢. As J— 0, RKKY interac-
tions become more important and the staggered susceptibility (g =2kr) diverges. We have also studied
2(q) and the dispersion of the low-lying spin excitations as a function of wave vector q.

PACS numbers: 75.30.Mb, 75.30.Cr, 75.40.Mg, 75.50.Pp

Strongly correlated electrons play a key role in our un-
derstanding of a wide variety of phenomena such as su-
perconductivity, magnetism, and heavy fermion behavior.
Simple models containing the essential physics of these
systems have challenged theorists for decades. The need
for a general method capable of calculating low-lying en-
ergy levels with well-controlled approximations was re-
cently answered by the development of the density matrix
formulation of the numerical renormalization group [1,2].
In this paper we demonstrate the power of this technique
using the one-dimensional Kondo lattice at half filling.
Our choice of the “Kondo insulator” problem reflects in-
terest stimulated by recent experiments exploring the
semiconducting behavior of materials such as CeNiSn
and Ce;Bi4Pt3 [3]

Our results elucidate the nature of the excitations and
the interplay between Kondo and RKKY interactions.
The one-dimensional Kondo lattice at half filling is an in-
sulator with a gap to both spin and charge excitations.
Our work confirms that the charge gap is larger than the
spin gap for all nonzero values of the exchange coupling J
[4,5]. In addition to charge and spin excitations, we find
a new type of excitation, a neutral spin singlet. The
lowest such state consists of a particle and a hole which
are repulsive for J 2 5t and attractive for J < 51, where ¢
is the hopping matrix element. We also find that RKKY
interactions increase in importance as J decreases [6],
leading to a staggered susceptibility y(g =2kr) that
diverges as J— 0. To the best of our knowledge, this is
the first time this divergence has been seen for the Kondo
lattice.

Previous theoretical approaches have suffered from
various limitations that do not hamper our renormaliza-
tion group technique. For example, perturbation theory
is restricted to unphysically large exchange coupling [7];
mean field theory neglects quantum fluctuations [8]; vari-
ational solutions cannot cover the myriad of possible wave
functions [9]; quantum Monte Carlo simulation [10] has
difficulty attaining low temperatures; and exact diagonali-
zation [4] is confined to small lattice sizes ( < 10 sites).

The one-dimensional Kondo lattice has spin- ¥ conduc-
tion electrons that hop from site to site with an on-site
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spin exchange between a local f electron and the conduc-
tion electron on that site. Thus the Hamiltonian is

=—1 X (ciheiriotHe) +I XSy Sic )

where the conduction electron spin density on site i is
Sic=2aﬁCi1;(O'/2)aﬂCiﬁ, the f-electron spin density is S;r
=301 (6/2)apfip, and o4s are Pauli matrices. The
Hamiltonian has SU(2) spin symmetry as well as SU(2)
charge pseudospin symmetry [11]. The pseudospin oper-
ators are 17 =X, (—1D(chef —fifh, 17=U1)T, and
IF=Y,(clheiot filfio—1)/2. Notice that I7 is simply the
charge operator. We set t =1, and we choose J to be an-
tiferromagnetic (J >0). To study the Kondo insulator
we restrict ourselves to half filling where the total number
of conduction electrons /V equals the number of sites L.

We use the density matrix renormalization group algo-
rithm [1,2] to calculate the ground state and the first few
excited states of the Kondo lattice. This real-space tech-
nique has proven to be remarkably accurate for Heisen-
berg spin chains [12]. Although the Kondo lattice in-
cludes fermion degrees of freedom in addition to spin, the
differences in the algorithms are small; for example,
states of a block are labeled by NV as well as by total S,.
We primarily used the finite system method [2] with open
boundary conditions in which there is no hopping past the
ends of the chain. We studied lattices of size L =4, 6, 8,
16, and 24, keeping up to 180 states per block. The re-
sults were extremely accurate for J>>t, with typical trun-
cation errors of order 10 ~'° for J=10. For J 3¢, the /-
spin degrees of freedom lead to a large number of nearly
degenerate energy levels. As a result, the accuracy was
significantly reduced, with truncation errors of order
10 =% for J =0.5.

In agreement with previous work, we find that the
ground state is a singlet [13] and the lowest excited state
is a spin triplet [4] for all values of J. The energy differ-
ence between these two states is the spin gap As =FE(S
=1,/=0) — E,(S =0,/ =0) where E (S =0,I=0) is the
ground state. The charge gap Ac is the energy difference
between the ground state and the lowest pseudospin trip-
let state, i.e., Ac =E(S=0,I=1) — E,(S=0,/=0). Us-
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ing the Wigner-Eckert theorem, one can show that the
(I=1,5=0) states are the only states |n) for which the
charge density p, has finite matrix elements (n|p,|0) with
the ground state |0). Figure 1 shows As and Ac¢ for
0.5<J =<100. Since the density of states p at the Fermi
energy for free electrons with open boundary conditions is
given by p=2/n%, 0.5 < J < 100 roughly corresponds to
0.1 < Jp <20. Notice that the charge gap is larger than
the spin gap for all nonzero values of J, confirming the
conclusion of previous calculations [4,5]. We also define
a neutral singlet gap as the energy difference between the
ground state and the lowest-lying excited neutral spin
singlet state, i.e., ANs=E (§=0,1=0) —E (S =0,/=0).
The quasiparticle gap is defined by Agp=un+1—un
where the chemical potential is uy =Eg(N)—Eg(N
—1), and N=L for half filling. We find that Agp is
slightly less than Ac¢ for all J. Notice that Agp >0 for
J >0, indicating that the half-filled Kondo lattice is an
insulator, since Agp is much larger at half filling than
away from half filling.

When J >>t, we can describe the eigenstates in terms of
simple on-site states. Each site can be in a singlet state
involving the f electron and a conduction electron with an
energy of —3J/4, a spin triplet state with energy J/4, a
“hole” state with no conduction electrons (S=7%,/
=L =—%)ora “particle” state with two conduction
electrons (S=1,7=4%,1,=%). The particle and hole
states have zero energy. In the ground state every site is
a singlet when J>1t. The lowest excitation consists of a
single site with a spin triplet, with the remaining sites
having singlets, and has Ag=J [5,7]. The lowest-lying
excited spin singlet states with /=0 and I =1 have a site
in a hole state and another site in a particle state, with
Ac=3J/2 [5,7]. Since the particle and hole are /=%
states, they can combine to form /=0 or /=1 states. In
either case, the f electrons on these two sites form a spin
singlet. The low-lying eigenstates consist of linear com-
binations of these local excitations, e.g., they have a
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FIG. 1. The spin gap, neutral singlet gap, and charge gap
versus J with open boundary conditions. To avoid cluttering the
figure, Aqe is not shown since Aqgp overlaps with Ac.

well-defined wave vector g in the case of periodic bound-
ary conditions. These simple estimates of the gaps work
very well for J>>1; e.g., for J=100 we find numerically
that Ag =99.9 and Ans=Ac==148, and for J =10 we find
As =9.39 and ANs=Ac=13.1.

Given that the system is in a certain state, how do we
know what state a site is in? One way is to examine the
eigenstate directly, which we can do for L =4. Another
way is to study the single-site reduced density matrix.
Let 7 label the eight possible states of a single site, and j
label the basis states of the rest of the lattice. Then if the
system is in a state with wave function y, the single-site
density matrix is

pii’ =Z Wi vl (2)
J

where i,i'=1,...,8. For this system the eigenstates of p
are the eigenstates of a single-site Hamiltonian, and the
eigenvalues of p are the probabilities of those states when
the system is in the state y. For example, for the ground
state of a large lattice, the probability of a site being in a
singlet state is unity for J— oo and is 99.1% for J=10.
For J =1, however, it is only 44.9%, with probabilities of
5.5% for each of the three spin triplet states, and 9.7% for
each of the four particle and hole states. Clearly the
strong-coupling picture is no longer valid for J St, where
the eigenstates are a complicated linear combination of
on-site singlet, triplet, hole, and particle states.

We have studied the dispersion of the lowest S =1
(I=0) state for L =4, 6, and 8 with periodic boundary
conditions. The dispersion curves have their maximum at
g =0 and their minimum at ¢ =, in agreement with the
hybridization gap picture in which the lowest energy
spin-flip excitation involves taking an electron from the
lower band ¢ = and putting it in the upper band at g =0
[5,8]. In the large J regime, we expect the spin excitation
bandwidth Wy to be approximately 8¢2/J from perturba-
tion theory in t/J [4,14]. This agrees well with our nu-
merical results, e.g., Ws==0.75 for J=10. As J de-
creases, Wy initially increases, though less rapidly than
8¢2%/J, and then falls rapidly. For example, Ws==1.4 for
J=4 and Wg=0.23 for J =1. These values are less than
the free electron bandwidth of 47 and are roughly compa-
rable to the spin gap, e.g., for L =6 with periodic bound-
ary conditions Ag=2.87 for J=4 and As=0.089 for
J=1. For J<1, other bands drop below the top of the
lowest S =1 band. Of course, as J— 0, all the bands be-
come degenerate and the conduction electrons become
free.

The lowest-lying S =2 state consists of two S =1 ele-
mentary excitations. For ¢/J <1, perturbation theory [7]
indicates that the two triplet excitations will repel each
other [5]. Numerically we find this repulsion exists for
all J since E(S=2) —E,>2[E(S=1)—E,l. Note that
two S =1 elementary excitations can also form an S=0
state. The fact that the lowest S =2 state lies below the
first excited S =0 state for J <1 implies that the triplet

3867



VOLUME 71, NUMBER 23

PHYSICAL REVIEW LETTERS

6 DECEMBER 1993

excitations have ferromagnetic interactions for small J.

By comparing the Kondo and RKKY energy scales,
Varma and Doniach [6] have argued that RKKY interac-
tions will dominate as J decreases, eventually leading to
antiferromagnetic ordering of the localized f spins with
wave vector ¢ =2kr. We have looked for this crossover
in the ground state by calculating both the f-spin-f-spin
correlation function and the staggered susceptibility as a
function of J. Since 2kra =nr for one dimension at half
filling (a is the lattice constant), the f-f correlation func-
tion oscillates in sign from site to site with an amplitude
that decays exponentially with distance (see Fig. 2 inset)
[15]. Exponential decay is characteristic of a system with
gaps in its energy spectrum, though the fit to exp(—r/&)
is much more approximate for J <1 where the gaps are
smaller and the correlation length & becomes comparable
to the lattice size. The correlation length & decreases rap-
idly as J increases, but not in a simple power law or ex-
ponential fashion. Typical numbers are &/a~6 %2 for
J=0.75 and &/a~0.35 %+ 0.001 for J =5.

We expect the staggered magnetic susceptibility y(g
=2kr) to diverge at the transition between magnetic and
nonmagnetic ground states at the critical coupling J =J,.
To calculate y(q), we apply a very small staggered mag-
netic field (10 77¢ < h =<10"%), observe the magnetic
response S;(g), and use S,(g) =x(g)h.(g). We can ap-
ply the field to either the f spin or the total spin (f
spin+conduction spin) on each site. As shown in Fig. 2
for L =4 and 6 with 0.05 < J < 2, y(qg =2kr) diverges as
J— J.=0. We know that y(gq) is infinite for J =0 since
the f electrons are completely isolated in that case. How-
ever, as J— 0, the divergence is most pronounced for
q =2kr due to RKKY oscillations. Our results for L =4
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FIG. 2. The staggered susceptibility y(qg =2kr) versus J for
the ground state with periodic boundary conditions.
0.05 =J =2. The susceptibilities are shown for both the total
spin as well as the f spins. The divergence is due to RKKY in-
teractions. Inset: Ground state f-spin-f-spin correlation func-
tion versus distance for various values of J with open boundary
conditions. RKKY oscillations dominate for small J.
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and 6 are exact since we are able to keep all the states.
For small J, the system is so close to an instability that
the numerical inaccuracy associated with larger lattice
sizes was enough to result in spontaneous magnetization
even for very small fields. For L =4 and 6, we find that
for both the f spin and total spin susceptibility
2(qg=2kp)— J ~? as J— 0. We caution that the depen-
dence on J may change for larger lattice sizes.

Recent neutron scattering experiments on the Kondo
insulator CeNiSn found that y(g) was independent of ¢
[16]. However, our results as well as general considera-
tions indicate that for the Kondo lattice the behavior of
x(g) versus g depends on the value of J/t. Since the
ground state is a singlet with a gap to spin excitation,
2(g=0)=0 for all values of J/t. On the other hand,
x(q =2kp) diverges as J— J,, but is quite small for large
J. This implies that the curve y(g) versus g will vary
strongly for small J, but will be flat for large J/t. Since
real materials such as CeNiSn have small J/¢, as indicat-
ed by the small energy gaps seen experimentally, our re-
sults do not explain the neutron scattering experiments
[16].

In strong coupling, the lowest-lying excited spin singlet
states with /=0 and /=1 consist of a particle-hole pair.
We have verified this picture in a number of ways: (1)
direct examination of the eigenstate for L =4; (2) finding
the eigenvalues of the density matrix in Eq. (2); and (3)
noting that the f-spin-f-spin correlation function has
qualitatively the same spatial dependence as the conduc-
tion electron density-density correlation function for large
J. (For small J, the f-spin-f-spin correlation function
acquires RKKY oscillations which do not appear in the
density-density correlation function.) To determine
whether or not the particle and hole attract or repel each
other, we can compare A¢ and Ans to the quasiparticle
gap Agp which gives the energy of the particle and hole
infinitely far apart. If the particle and hole attract,
Aqgp —Ac,ns > 0. In this case, the particle and hole prefer
to be nearest neighbors, and the binding energy Aqe
—Ac,ns should be independent of the lattice size. On the
other hand, if the interaction is repulsive, Aqgp —Ac,Ns
< 0. In this case the particle and hole prefer to be far
apart and the magnitude of the repulsive energy
|AqQp — Ac,ns| decreases as L increases. Figure 3 is a plot
of Agp —Ac,ns versus J. For the 7 =1 state, which deter-
mines Ac, the particle and hole are repulsive for all J.
However, for the I =0 state, which determines Ans, the
particle and hole are repulsive for J 2 5 and attractive for
J <5. The curves show the expected L dependence for
JZ 1. For JX1, finite size effects separate the curves.
Further confirmation of this interpretation for the /=0
state comes from the conduction electron density-density
correlation functions shown in the inset to Fig. 3. (The
f-spin-f-spin correlation functions look similar.) In the
attractive regime, the magnitude of the correlation func-
tion has a maximum for nearest neighbor distances, while
in the repulsive regime the maximum occurs at greater
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FIG. 3. Agp —Ac,ns versus J with open boundary conditions.
Open symbols refer to the Ans and filled symbols to Ac.
Agp —Ac,Ns > 0 indicates that the particle and hole attract
while Agp —Ac,Ns <0 implies that they repel. Inset: Conduc-
tion electron density-density correlation function of the lowest
excited (/=0, S =0) state versus distance. For J=1.5 (attrac-
tive regime), the particle and hole have their largest correlation
on nearest neighbor sites. For J=10 (repulsive regime), the
particle and hole move farther apart as L increases. Open
boundary conditions were used.

separations as L increases [17].

To understand this behavior for J S5, note that the
particle and hole have a hard core repulsion as well as
RKKY interactions that grow as J decreases. Since 2kp
is n/a, we expect the RKKY interaction between a parti-
cle and a hole with opposite f spins to have maximum at-
traction between nearest neighbor sites. For the case of
the pseudospin triplet, this attraction is overcome by the
hard core repulsion because the spatial wave function is
symmetric. However, for the singlet state, the antisym-
metric spatial wave function ignores the hard core repul-
sion, and the particle and hole attract. For JX 5, RKKY
interactions are very weak, and the particle and hole
separate in both cases.

To conclude, we have shown that a recently developed
renormalization group technique enables us to uncover
the physics of strongly correlated electron systems by cal-
culating the low-lying energy levels. For the one-
dimensional Kondo insulator, we examined the nature of
the excitations, and we studied how RKKY interactions
increase as J decreases.
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