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Structural probe of a glass-forming liquid: Generalized compressibility
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We introduce a structural quantity to probe the glass transition. This quantity is a linear generalized com-
pressibility which depends solely on the positions of the particles. We have performed a molecular dynamics
simulation on a glass-forming liquid consisting of a two-component mixture of soft spheres in three dimen-
sions. As the temperature is loweréat as the density is increagedhe generalized compressibility drops
sharply at the glass transition, with the drop becoming more and more abrupt as the measurement time
increases. At our longest measurement times, the drop occurs approximately at the mode coupling temperature
Tc. The drop in the linear generalized compressibility occurs at the same temperature as the peak in the
specific heat. By examining the inherent structure energy as a function of temperature, we find that our results
are consistent with the kinetic view of the glass transition in which the system falls out of equilibrium. We find
no size dependence and no evidence for a second order phase transition, though this does not exclude the
possibility of a phase transition below the observed glass transition temperature. We discuss the relation
between the linear generalized compressibility and the ordinary isothermal compressibility, as well as the static
structure factor.
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[. INTRODUCTION dielectric constant exhibits a peak at a frequency dependent
temperature.

The glass transition is still not well understood despite In an effort to better characterize the glass transition, we
extensive study. There have been two main theoretical apntroduce a structural probe which we call a generalized
proaches to the problem: dynamic and thermodynamiccompressibility20]. Unlike the specific heat which monitors
Theories in the first category view the glass transition as &nergy fluctuations, this linear compressibility is a function
kinetic phenomenon characterized by a growing relaxatiorof the microscopic structure of the system: it depends solely
time and viscositf1-5]. When the relaxation time exceeds on the positions of the particles and not on their previous
the measurement time, particle motion appears to be arrestéistory. Since we do not need to compare the system'’s state
resulting in the glass transition. One of the most prominentt different times, it is not a dynamic or kinetic quantity.
theories espousing this view is the mode coupling theory irRather it is a thermodynamic quantity in the sense that it is
which ideally the relaxation time diverges at a temperaturgurely a function of the microstate of the system dictated by
Tc above the experimental glass transition temperdf8le its location in phase space. The generalized compressibility
Interesting and fruitful concepts such as dynamic inhomogeis easy to compute numerically, and it is simpler than the
neities[4,6,7] and the influence of the energy landscape ordielectric constant which involves both the translation and
relaxation processd8,9] have resulted from this approach. orientation of electric dipoles. In addition, it does not suffer
The thermodynamic viewpoint attributes the glass transitiorfrom finite size effects that can often plague measurements
to an underlying phase transition hidden from direct experi-of the ordinary compressibility deduced from simulations.
mental observation by extremely long relaxation timesThe generalized compressibility can be calculated in either
[1,2,10-12. In most scenarios there is an underlying secondhe canonical or grand canonical ensembles. In particular, it
order phase transition associated with a growing correlatioiis well defined for a system with fixed volunyveand particle
length which produces diverging relaxation times as well asiumberN in contrast to the ordinary compressibility which is
diverging static susceptibliie413—-18. More recently, defined for a system that has fluctuationsNnor V. The
Mezard and Parisi12,19 have argued that the underlying generalized compressibility should be directly measurable
transition is actually a random first order transition signaledexperimentally in colloidal suspensions of polystyrene
by a jump discontinuity in the specific heat. sphereq21] and possibly in other systems as well. In this

Experimentally, the glass transition is characterized bypaper we present measurements of this quantity in a molecu-
both kinetic and thermodynamic features. For example, idar dynamics simulation of a two-component system of soft
the supercooled liquid, kinetic quantities such as the viscosspheres. We find that the linear generalized compressibility
ity and relaxation time grow rapidly as the temperature isdrops sharply as the temperature decreases below the glass
lowered. When the system falls out of equilibrium below atransition temperatur€,. The drop becomes more and more
certain temperature, thermodynamic quantities exhibit feaabrupt as the measurement time increases. This is consistent
tures reflecting the glass transition. For example, as the sysvith the structural arrest associated with a kinetic transition
tem is cooled the specific heat has a steplike form and than which the system falls out of equilibrium. Similar results

are seen as the density is increased at fixed temperature.
The paper is organized as follows. Section Il describes the
*Present address: Internap, Seattle, WA 98101. molecular dynamics simulations. Section Ill describes how
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the relaxation times and mode couplifig are determined. =0.1 with a configuration obtained by cooling the system.
These are useful for setting the time and temperature scaled/e then increased the temperature in stepA®%0.05. As
Section IV describes our specific heat measurements whichefore, we equilibrate at each temperature fdt tife steps
show a peak at the glass transition. Section V derives thand then measure quantities for an addition&l tifie steps.
expressions for the linear and nonlinear generalized com- We have also done some density sweeps in which we fix
pressibilities, and shows our results for these quantities. Ththe temperatureT=1.0) and systematically change the den-
linear generalized compressibility shows an abrupt drop asity. The glass transition occurs as we increase the density.
the same temperature and density as the peak in the specitiolloidal experiments often study the glass transition as a
heat. Section VI compares the ordinary isothermal compresstnction of density. We start each run at a low density (
ibility with our linear generalized compressibility and shows =0.4) and increase the density in stepsAgf=0.025. At

the advantages of the latter. Section VII gives our results foeach density we equilibrate for 401D steps and then mea-
the diffusion constant. Section VIII explains the relation be-sure the quantities of interest fot, additional MD steps.
tween the linear generalized compressibility and the static The glass transition occurs either as the temperature is
structure factor. Finally, we summarize our results in Sec. IXlowered or as the density is raised. It is worth noting that
A brief description of some of these results as well as resultsemperature and density can be combined into a dimension-
for a single component fluid that forms a crystal was re-ess parameter [26],

ported earlief22].

Il. MOLECULAR DYNAMICS SIMULATION I'=pogd T4 (riff=§;§ NaNgoog, (6A)
o

We have performed a molecular dynamics simulation on a
glass-forming liquid[23,24] consisting of a 50:50 binary
mixture of soft spheres in three dimensions. The two types oﬁ'}
spheres, labeled and B, differ only in their sizes. The in-
teraction between two particles a distamagpart is given by
Vop(r)=€[(aa5/T)*+X,p5(r)], where the interaction
length o,5=(0,+0p)/2 with og/op=1.4 (a,=A,B).
For numerical efficiency, we set the cutoff functiai(r)
=r/o,s—\ with \=13/12?""3 The interaction is cutoff at
the minimum of the potentiaV, 5(r). Energy and length are
measured in units o and o, , respectively. Temperature is
given in units ofe/kg wherekg is the Boltzmann’s constant,
and time is in units ofrx\m/e wherem, the mass of the
particles, is set to unity. The equations of motion were inte
grated using the leapfrog meth¢a5] with a time step of
0.005. During each run, the average dengigy=N/L> was
fixed, and the temperature was kept constant using a co
straint algorithm[25]. The volumeV=L3. N=N,+Ng is
the total number of particles. The system occupies a cube
with dimensions ¢L/2, +L/2, +L/2) and periodic bound- lll. RELAXATION TIMES AND MODE COUPLING T
ary conditions. ) _

We have done sweeps of both temperature and density..AS points of reference for the time and temperature.scales,
We fix the parameters so that crystallization is avoided upof i useful to find the mode couplinBc and thex relaxation
cooling or when the density is increased. For the temperaturdmes. We can find the relaxation times using the intermedi-
sweeps, we fix the density at,=0.6. Forog/o,=1.4, this  ate scattering functiof (k,t) which is a useful probe of the
corresponds to a packing fraction of 1.04. Having a packingtructural relaxation. It is the spatial Fourier transform of the
fraction larger than 1 means that each particle was interact;an Hove correlation functiom(ﬁt) and the inverse time

ing With_ other particles most, if nqt all, of the time. Our transform of the dynamic structure faclﬁﬂz,w). There are
measuring procedure is the following. For runs where W&, q gifferent types of intermediate scattering function: the

cool the system, we start each run at a high temperaflre ( . . . . . -
—1.5) and lower the temperature in stepsidF=0.05. At self (incoherenkintermediate scattering functidfy(k,t) and

each temperature we equilibrate for*Ifolecular dynamics the full (coherenkintermediate scattering functida(k,t).
steps(MD step3 and then measure the quantities of interest N @ computer simulation, the seffhcoherent part of the
for N, additional MD steps wher&, =10, 2x10°, 1¢°,  partial intermediate scattering functién ,(k,t) can be cal-
3x 10, or 10. All the particles move at each MD step. The culated directly using27]

results are then averaged over up to 40 different initial con-

ditions (different initial positions and velocities of the N,

spheres We have done some runs in which we heat the = (Et)=i<2 eiIZ~[Fi(t)Fi(O)]> )
system of particles by starting at our lowest temperafure St N, \i=1 ’

here o¢s represents an effective diameter for particles in
e mixture. The concentration of each type of particle is
given by na=Na/N and ng=1-—n,. For our simulations
n,=ng=0.5.T is the relevant parameter when the particles
spend most of their time sampling a nonzero interparticle
potential, i.e., forp " Y*< go¢;. ThusT is particularly useful

for interparticle interactions which fall off with distance as a
power law and do not have a cutoff beyond which the inter-
action is zero. When cooling from the liquid phase, the glass
transition is known to occur arourd=1.45[26].

We have looked for phase separation of the two types of
spheres by examining the distribution of large and small
‘spheres in the neighborhood of large spheres and in the
neighborhood of small spheres. We see no evidence for

hase separation at either high=1.5) or low (T=0.15)
emperatures at a density pf=0.6.
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FIG. 1. The self-intermediate scattering function vs time for a Temperature
system with 512 particles ang,=0.6. The time is given in units of
molecular dynamicéMD) time steps. From left to right, the curves FIG. 2. Relaxation timesg vs temperature. The solid line is the
are for temperaturesT=0.381679, 0.373134, 0.364964, mode coupling fit to the formrg=A(T—Tc)™ ¥ with T¢c=0.303,
0.357 143, 0.34965, 0.342466, 0.33557, 0.328947, 0.321543;=1.735, andA=47.6. The dashed line is the fit to the Vogel-
0.302 114 8, and 0.289 855, respectively. 256 t@pearticles were ~ Fulcher form7y(T)=A exdB/(T—Tyg)] with Tyg=0.21, A=33.3,
used and the wave vect&= 27X 8.3666L, which is the location ~andB=0.803.
of the first peak in the structure factor for typeparticles,L =8.
For each curve the sy_stem was initialized from a configurat'ion afemperature dependencenafT) to the mode coupling form
tha.t temperature obtqlned from parallel Femperlng which is de_TS(T)N(T—TC)77 to find Te.. For the self part of the inter-
scribed in the Appendix. Then the simulation was run only at thatmediate scattering function, the actual valuergincreases

tem_perature. The temperatures were chosen so that the paralle_l teg1- the magnitude of the wave vector decred8&k How-
pering acceptance rates were high. The curves at the seven highes

temperatures were equilibrated fox10P MD time steps before ever,t the valjutehoﬂ'c LZ Indepelrjde?.tt ok. TS(hT) versu; ter;-w
recording the configurations used to calculktgk,t). Each curve perature an € mode coupling Tit aré shown In 9. 2. VVe

of the seven highest temperature curves is averaged over 24 rung'd the be_St fit with the mode coupling temper_atl]i'@
except for T=0.373134 which is averaged over 54 runs. The = 0-303 which corresponds #0=1.46. Note thafl¢ is de-
curves for T=0.328 947 and 0.321543 were equilibrated for 2 termined from measurements made at temperatures where
x10° MD time steps before recording the configurations used tothe system is equilibrated. Also shown in Fig. 2 is the fit to
calculateF¢(k,t). These two curves were averaged over 11 runsthe Vogel-Fulcher formrg(T) =A exd B/(T—Tyg)] with Ty

The curve forT=0.302 114 8 was averaged over 22 runs and was=0.21 which corresponds tb=1.60. In doing the Vogel-
equilibrated for 10 000 MD time steps before recording the configufulcher fit, we were able to use a much broader range of
rations used to calculatés(k,t). The curve forT=0.289 855 was temperatures sinc@yg is much lower than the mode cou-
averaged over 36 runs and equilibrated foa@® MD time steps  pling T¢.

before recording configurations used to calculaik,t). The full intermediate scattering functidf(k,t) is given

. . - by [27]
where the subscript refers to the particle typé or B. r;(t)

is the position of particle at timet, and(- - -) refers to an
average over different configurations. The wave vedtor
=2mq/L whereq is a vector of integers. For an isotropic

systemF ,(k,t) depends only on the magnituéte- |k|. We
will choose k= K,,x Wherek, ., is the position of the first i _
maximum of the partial static structure fac®y(k). In Fig. ~ Where the Fourier transform of the densityi(t)
1 we show the self intermediate scattering funcfiam(k,t) ~ =={L,e (. The subscriptx refers to the particle type,
versus time at temperatures below the caging temperatus or B. The longesta relaxation time can be determined
(T=~0.4). The caging temperature is the highest temperaturtsom the full intermediate scattering function evaluated at
at which a plateau is present in the intermediate scattering Kmax [29]. We setk,=27X8.3666L (L=28) which is
function versus time. The plateau represents the temporaitje location of the first peak in the structure factor for tfe
localization of a particle by a cage of other particles sur-particles. We define ther relaxation timer as the time
rounding it. where F_(knaxt) decays to ¥. At a temperatureT
Mode coupling theory is applicable in the temperature=0.289 585 8 which is just below the mode couplifig, we
range below the caging temperature and somewhat above tfied thatFg(k,t) has fallen to 1¢ at 7= (1.0+0.1)x 10° MD
mode couplingT-. We define the relaxation time, by  time steps for a system with 512 particles of which half are
Fs(k,7)=1/e. We determine the relaxation times for the typeB. This gives us a time scale by which to compare other
seven highest temperatures shown in Fig. 1 and then fit thémes such as our run times. This valuerofhows no signs

. 1
Fa(k)= G (Pia(Dp-k.a(0)), 3
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of aging[30,31] and stays about the same even aftértie 4
steps. At higher temperatures this relaxation time is much .
shorter. o2 fudtuations
The runs used to determine the intermediate scattering g
function were done in a slightly different way from the other 35 ¢
measurements. These runs were performed at a given tem-
perature and density fod . MD time steps with no change in
temperature or density. The runs were started from a configu-
ration that had been equilibrated at that temperature and den-
sity using parallel tempering. The parallel tempering tech-
nigue is described in the Appendix.

C, kil

25 . .
IV. SPECIFIC HEAT 0 0.5 1 1.5
Temperature

The specific heat is a t_hermodynamlC quantity which Un- FIG. 3. Specific heat at constant volume as a function of tem-
dergoes a change signaling the glass transition. In experjeratyre for binary mixture of 512 particles with a measuring time
mental systems under constant pressure, the specific heat €f-3%x 166 MD steps averaged over six runs,=0.6 andog /o,
hibits a smooth step down as the temperature is lowered 1 4. The specific heat is calculated from energy fluctuations and
through the glass transition. In our simulations, which arepy taking the derivative of the energy with respect to temperature.
done at constant volume, the specific heat has a peak at the

glass transition. It is a useful check of our calculation to S€&00d agreement between calculating the specific heat by tak-
if the peak occurs at the same temperatoredensity as the  jng 5 derivative of the energy with respect to temperature
drop in the linear generalized compressibility. There are tWqgee Eq.(4)] and by using fluctuationgsee Eq.(6)]. This
ways to compute the specific he@y per particle at a con-  jmpjies that the system has equilibrated within the basins that
stant volumeV. The first is by taking a derivative of the t yisits in the energy landscape. We find similar agreement
average energyE) per particle with respect to temperature: for other run times. At low temperatures the specific heat
Cy=d(E)/dT. Since we study the system at discrete tem-goes to &, as expected for classical oscillators, while at
peratures, we approximate the derivative by a finite dlﬁer-high temperature€,, approaches /2, which corresponds

ence, to an ideal gas. The peak in the specific heat occur§ at
(E(T))—(E(Ty_1) ~0.3 which corresponds b~ 1.46. The temperature of the
W(Th)= n n-1/ (4)  peak coincides with the mode couplifig.=0.303 that we
Th=Tha deduced from the intermediate scattering function data.

Longer run times lead to a sharper peak in the specific heat

as can be seen in Fig. 4 which shows the specific heat for 512

particles for several different measuring times. The peaks
NkgB%((E2)—(Ep)?), (5)  would presumably be sharper if we had used a finer tempera-

ture scale. At high temperatures the agreement between the

wherekg is Boltzmann's constang is the inverse tempera- different times is very good. Perera and HarroW/8R] have

ture, andEp is the potential energy per particle. In our three

dimensional simulations the kinetic energy per particle is 4

whereT,>T,_; for all integersn. The second way to cal-
culate the specific heat is from the fluctuations,

given by XgT/2, so it is the fluctuations in the potential A 10° MD steps (40 runs)
energyEp per particle which determine the temperature de- ©—6 2x10° MD steps (32 runs)
pendence of the specific heat. Thus ;':';;213"%‘38’::;;%‘:3:’8)
3 351 *—* 10" MDsteps (6 runs) ]|
Cv=5ka+NkgB2((ER)—(Ep)). (6) 5
S ,
In equilibrium, these two ways of calculating the specific 3 *FA
heat should agree. So we compare the results of calculating
Cy both ways as a check on our calculation and to make sure
the system has equilibrated in all the basins that were visited
in the energy landscape. 285 05 1 15

Temperature

A. Specific heat versus temperature . )
FIG. 4. Specific heat at constant volume as a function of tem-

The specific heat at constant volume exhibits a peak at thgerature for a binary mixture of 512 particles with measuring times
glass transition as shown in Fig. 3. The data in this figure aref 10°, 2x 10°, 1¢f, 3x 1%, and 16 MD time steps. The number
for 512 particles and were averaged over six runs with a@f runs averaged over is indicated in the legend. The specific heat is
measurement time of>310° MD steps. Notice that there is calculated from energy fluctuations,=0.6 andog/oa=1.4.
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FIG. 6. Specific heat during cooling for binary mixtures of 64,
6, 512, and 1000 particles. The measuring time wad® MD

time steps. The specific heat was calculated from fluctuations and
averaged over the number of runs indicated in the legend. Note the
lack of size dependencp,=0.6 andog/op=1.4.

FIG. 5. Specific heat at constant volume during heating and21
cooling a binary mixture of 512 particles with a measuring time of
10° MD time steps averaged over ten rupg=0.6 andog/o
=1.4.

found a specific heat peak in a two dimensional binary mix-
ture of soft spheres. They argue that their peak is an equilib- ) N )
rium feature. However, in our case, at temperatures below N Fig. 7 we show the specific heat as a function of den-
the peak, the system has fallen out of equilibrium and ha§'V- Ask_the density increases, the specific heat rises to a peak
become trapped in a basin in the energy landscape. We sh&i Po . = 0.8. This corresponds = 1.44 which is in good
see this later by examining the energy of the inherent struc@greement with thd" value of 1.46 that we found for the
tures(potential energy minimaas a function of temperature. s_pecmc hea.t .peak when we varied .the temperature. Going to
Thus the fact that the peak in the specific heat occurs at d;ugher q§n5|t|§s corresponds to going to lower temperat_u.res.
very close to the mode couplifii. is a result of the relax- At densities higher than 0.8, the system falls out of equilib-
ation times(see Fig. 2 becoming comparable to and exceed-"UM
ing the simulation run times as the temperature drops below
Tc. When this happens, the system falls out of equilibrium
and undergoes a kinetic glass transition. As we mentioned in the Introduction, the generalized
The specific heaCp of experimental systems at constant compressibilities are thermodynamic probes that are a func-
pressure exhibits a downward step at the glass transition dution of the microscopic structure of the system. They are
ing cooling and a peak at slightly higher temperatures upoisolely a function of the positions of the particles and do not
heating[33]. As can be seen in Fig. 5, in our warming up depend on their histories. So one could take snapshots of the
simulations, which are done at constant volume, the specificonfigurations of the particles at different instances, scramble
heat peak sharpens and moves toward higher temperatures
compared to the cooling runs. This is consistent with what is 4
seen in experiments. The hysteresis is consistent with the
system falling out of equilibrium and getting stuck in a basin
of the energy landscape. 35
As we mentioned in the Introduction, some have sug-
gested that the glass transition has an underlying second or-
der phase transitiopl3—18. Unlike typical second order
phase transitions, there is no experimental evidence that the
specific heat diverges at the glass transition. This is consis-
tent with our simulations. In simulations one looks for a
divergence by examining whether the quantity increases sys-
tematically with system size. In Fig. 6 we pl@, for sys- i . . .
tems with 64, 216, 512, and 1000 particles. As one can see, 0.4 06 D 0.8 1 12
o . . ensity
the specific heat does not exhibit any size dependence. How-
ever, we cannot rule out the possibility that a thermodynamic - F|G. 7. Specific heat vs density for a binary mixture of 512
phase transition occurs at temperatures below where we fallarticles withT=1. The measuring times werex2l0°, 1¢f, and
out of equilibrium. Indeed theories which postulate a thermo3x 166 MD time steps. The specific heat was calculated from fluc-
dynamic transition put the transition temperature well belowuations and averaged over the number of runs indicated in the
the mode coupling ;. legend.p,=0.6 andog/o,=1.4.

B. Specific heat versus density

V. GENERALIZED COMPRESSIBILITIES

C, [k

6—0 2 x 10° MD steps (32 runs)
=—=a 10°MD steps (6 runs)
66— 3 x 10°MD steps (5 runs)

25
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the order of the snapshots, and still be able to calculate thwith the opposite sign of {,—(p,)) and so we will not
generalized compressibilities. Averaging over these snapeconsider this term any further. We can recast Bd) as a
shots corresponds to ensemble averaging. In this sense tpewer series in the perturbatiavP,

generalized compressibilities are thermodynamic quantities

which can be calculated solely from the microstates of the Py _ AP+ 1 (AP, (14
system and do not depend on the system’s dynamics or ki- N~ 6pokeT X 6(pokeT)* X! ’
netics.

We now derive expressions for the linear and nonlineawhere
generalized compressibility. To probe the density fluctua-
tions, we follow the approach of linear response theory and

consider applying an external potentidl R/p,) ¢(F) which
couples to the local density(r)=3N,5(r—r;) wherer,

6 5 1 4
XI:N<(P¢) >C! XnI:_N«P(ﬁ) >c- (15

- ) : , In this paper we will focus our attention on the lineag )X
denotes the position of thith particle. p, is the average ,ng nonjinear ,,) dimensionless generalized compressibili-
density.AP has units of pressure and sets the magnitude Ofio5 defined by the above expressions.
the perturbationgb(F) is a dimensionless function of position  \We now discuss the choice of the functignWe consider
that must be compatible with the periodic boundary condi-applying the potential along the directiqn of one of the
e oo, e mivesios oy T o Fgoinate es so )41 Anatural candiae
, : i P N e
the HamiltonianH of the system a term \;%l(trh )k IS: goskﬂr ) (no |m;:)I|ed sum over repeated.md|¢es
w=2mn/L, wheren=1,2, . ... Inthis casep, is the
AP AP AP kth mode of the cosine transform of the density. We will also
U= —f dero(r)p(r)=— > ¢(r)=—-p,, (7)  consider the simpler functiogs(r*)=|r#|/L. The absolute
Po Jv Po i Po value corresponds to the case where all the particles feel a
. . - - force along theuth direction pointing towards the origin. It
where we have def|neﬂ¢=fvg3r d(r)p(r)=Zi¢(ri). Py gives results very similar te(r*) = cosk,r*) for smallk at
is the inner product o andp(r), and we can regard it as a a fraction of the computational cogtNo sum over repeated
projection of the density onto a basis functigi(r), i.e., indices) So our results in this paper correspond to two cases,
ps={p|¢). It weights the density fluctuations according to

their spatial position. The application of the external poten- =E T (16)
tial will induce an average chang®,, in p,, Pe e
Spg=(Pp)u—{(Pplu=0 (8 which is rather like a center of mass, and
where the thermal averade ;) is given by
pye=2 codk,rt). (17)
|

(p >u=£Tr[e‘B‘H+“)p ]- €)
¢ Z ¢ Since the system is isotropic, we compute the compressibili-

ties for each direction and then average over the diregtion
In most of our calculations we work in the canonical en-

semble where we fix the volumé¥, the numbermN of par-

ticles, and the density,. However, it is straightforward to

The partition functionZ=Tre #(H*Y) and B is the inverse
temperature. For small values afP, this change can be
calculated using perturbation thedr§4]. Up to third order

in AP, we find generalize our results to the grand canonical ensemble where
24 B2 34 b3 the number of particles is not fixed. We simply replace the
Spy=— BA_P@QCJF%I;@;%_ %E_@fm, thermal average defined in E@) by
Po Po Po
10 1
(10 <P¢>u:§ > erNTr{ e AINTUNp T, (18)
where the cumulant averages are N
_ here u is the chemical potentiakiy is the Hamiltonian
(P3)e=(p5)—(ps)% (1  WHSTE A 1S e N .
with N particles,Uy is given by Eq.(7) for a system withN
<p3,)c=(pi>—3<p¢><p$)+2(p¢>3, (12) gﬁgrcl:lgi, andZ is the grand canonical partition function
(P5)e=(Pg) =4 pe)p3) —3(p3)*+ 12 py) X p3)
Z=, etNTr{e AHNTUNT, (19)
—6(py)*, (13 N

with the thermal averagépy)=(py)u—o- The third order The generalized compressibilities can be defined using Egs.
cumulant, Eq.(12), is zero in the liquid phase because for (1) through (15 with the thermal averages(py)
every configuration there exists an equivalent configuratior‘a:<pg>U=0 defined in the grand canonical ensemble.
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0.02

than 1x 10° time steps, to thex relaxation timer which is
about 1x 10P time steps af =0.29 which is just belowl ¢ .
Thus the fact that the drop in the linear generalized com-
pressibility occurs at or very close to the mode coupliiRg

is a result of the relaxation timésee Fig. 2 becoming com-
parable to and exceeding the simulation run times as the
temperature drops beloW. . When this happens, the system
falls out of equilibrium and undergoes a kinetic glass transi-
tion.

The behavior exhibited by, can be quantified using a
scaling ansatzy,(ty ,T)=g[ u=ty /7(T)], where the char-
acteristic time has the Volgel-Fulcher fora{T) = exgd A/(T
—T,)]- The inset of Fig. 8 shows that the data collapse onto
a single curve withA=0.75, T,=0.15.(The data could not
be fitted usingr(T)=A(T—T,)” as suggested by simple
X 10° (O, 32 rung, 16° (L, 10 rung, 3% 1¢° (O, 6 rung, and 10 mode coupling theorief3].) Notice thatT, lies below. t.he
(*, 6 run9 MD steps. The system size is 512 particles=0.6 and Vogel-Fulcher temperaturé,=0.21 and the MCT critical
osloa=1.4. y, is calculated using the absolute value of the par-temperatureTc=0.303 deduced by fitting the temperature
ticles’ positions. InsetT>T, subset of the same data scaled asdependence of the relaxation times. This scaling suggests
described in text. that x; becomes a step function for infinitg, and that the
drop in the compressibility would become a discontinuity at
infinitely long times. This abrupt drop is consistent with a
) . sudden arrest of the motion of the particles in the liquid
~ We now turn to our results for the binary glass-forming,,hich, is the kinetic view of the glass transition. The abrupt
liquid. drop also appears to be in agreement with Mezard and Pari-
si's proposal that the glass transition is a first order phase
transition with a jump in the specific hddt2,19. Indeed the

We will first discuss the linear generalized compressibilitytemperature at whicly, drops agrees with the temperature of
calculated from the absolute values of the particle positionshe peak in the specific heat shown in Fig. 4. The specific
using Eqgs(15) and(16). Figure 8 shows the linear general- heat provides an independent check of the glass transition
ized compressibility as a function of temperature for differ-temperature. However, the drop i and the specific heat
ent run times. The compressibility at high temperatures ipeak are due to the system falling out of equilibrium, and
independent off. In the vicinity of the glass transitioy, therefore we cannot really tell if there is an underlying true
drops. Notice that as the measuring titye increasegand  thermodynamic transition.
hence as the cooling rate decreasése temperature of the One way to see that the system is falling out of equilib-
drop decreases and becomes more abrupt. The measurifigm is to plot the inherent structure energy per particle
time can be thought of as the number of snapshots at a sing[®,35,36. An inherent structure is a particular system con-
temperature that we use to calculate the compressibility. Thiguration whose energy corresponds to the minimum of a
linear compressibility is proportional to the width of the dis- basin in the energy landscape. The energy landscape is a
tribution of p,,, so the drop iny, corresponds to the sudden 3N+ 1 dimensional surface defined by the potential energy
narrowing of the distributiorP(p,). If we regardp, as a  of the system which is a function of the particles’ coordi-
generalized center of mass, then the dropyjrsignals the nates. During each run we sampled the configurations found
sudden arrest in the fluctuations of the generalized center @it each temperature. Each configuration lies somewhere in a
mass. In other words, at the glass transition the motion of thbasin and we used the method of conjugate grad{@Tisto
particles is largely frozen and hence, the generalized centdind the inherent structure energy of that basin. The result is
of mass does not move around much. This is consistent witeshown in Fig. 9 where we plot the average inherent structure
recent observations of the colloidal glass transition in whichenergies versus the temperature of the configuration that was
the size of the clusters of “fast” particles drops dramatically originally saved. At high temperatures the inherent structure
at the glass transitiof21]. energye,s per particle is flat as a function of temperature. As

Notice that at longer measuring times, the temperatur¢he system is coolede,s decreases rather steefd]. The
Tarop @t Which the generalized linear compressibility drops isinherent structure energy flattens off at low temperatures

0.015

X 0.01 t

0.005

_ADE\ « Em

3

4
107

10° 10°y10° 10° 10°
.

1 1.5

0.5
Temperature

FIG. 8. Linear generalized compressibility as a function of tem-
perature for different measuring timeg : 10° (A, 40 rung, 2

A. Results for linear generalized compressibility

1. x, from absolute value of positions versus temperature

roughly at the mode coupling temperatdrg=0.303. Let us
defineTy,p as the temperature at whigh has dropped half-
way down. For 10 MD steps, T~ 0.33; for 3<10° MD

steps, T gop~0.30; and for 16 MD steps, Tgop~0.27. Thus

where the system has fallen out of equilibrium and has be-
come stuck in one basin. For each measuring time the tem-
perature below which the generalized linear compressibility
drops corresponds to the temperature below which the inher-

we are able to stay in equilibrium down to the mode couplingent structure energy flattens off at low temperatures. Thus the
temperature for our longer runs. This is what we would ex-temperature of the drop i, and the peak in the specific heat
pect when we compare these run times, which are longerorresponds to the temperature below which the system falls
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FIG. 9. Inherent structure energy per particle as a function of F|G, 11. Linear generalized compressibility as a function of
temperature for a system of 512 particles at different measuringemperature for a binary mixture of 512 particles upon cooling and
times. Other parameters are the same as in Fig. 8. heating. The measuring time was®1dD steps in both cases. The

data were averaged over ten runs. Other parameters are the same as
out of equilibrium and ceases to explore deeper basins of thié Fig. 8.
energy landscape.

The behavior of the linear generalized compressibilityparameter may not couple to the local dengiy).
seen in Fig. 8 is similar to that seen in measurements of the So far we have shown the results of cooling the system. In
real part of the frequency dependent dielectric functionorder to look for hysteretic behavior we have done runs in
¢'(w) [18]. In that case as the frequency decreased, the tenwhich we heat a system of 512 particles by starting at our
perature of the peak ig’'(w) decreased and the drop in lowest temperatur&=0.1 with a configuration obtained by
¢'(w) below the peak became more abrupt. By extrapolatingooling the system. We then increased the temperature in
their data tow=0, Menon and Nage[18] argued that steps ofAT=0.05. As before, we equilibrate at each tem-
¢'(w=0) should diverge at the glass transition, signaling aperature for 1 time steps and then measure quantities for
second order phase transition. We have looked for evidencan additional 18 time steps. Our results are shown in Fig.
of this divergence by examining samples of different sizes tal1. Notice the slight hysteresis with the rise iy upon
see if the linear generalized compressibility increased syswarming being at a slightly higher temperature than the drop
tematically with system size. As shown in Fig. 10 we find noin y, upon cooling. This hysteresis is consistent with the
size dependence and no indication of a diverging linear gerkinetic arrest of motion and with the hysteresis found for the
eralized compressibility. However, as we mentioned earlierspecific heat in Fig. 5.
this does not preclude the possibility that a thermodynamic
phase transition occurs beloly,,. It simply means that if 2. x; from cosine of positions versus temperature
there is a growing correlation length, it is smaller than the
size of our system af>T,,. Another possible reason for
the absence of size dependence may be that if there is
underlying thermodynamic phase transition, then its ordega

We now consider calculating the linear generalized com-

ressibility from the cosine transform of the density using
%hs.(lS) and (17). So if we apply a cosine potential along,
y theu=x direction, then

0.02
ps= 21 coskyx), (20
0.015 |
where the wave vectok,=2mn/L with n=1,2,.... The
wave vectors are compatible with the periodic boundary con-
X 0.01

ditions of our simulations. Since the system is isotropic, we
0—o &’ particles (5 runs) averagey, over thex, y, andz directions. The resulting linear
&—=a 8’ particies (6 runs) generalized compressibility is qualitatively similar in its tem-
©— 10" particles (7 runs) 1 . P
perature dependence to the linear compressibility calculated

using the absolute values of the particles’ positifs).
(16)]. Figure 12 shows the linear generalized compressibility
versus temperature for various values of the wave vector.
The data is for a binary mixture of 512 particles with a mea-

FIG. 10. Linear compressibility as a function of temperature forsuring time of 16 MD steps and averaged over ten runs.
different system sizes: 216, 512, and 1000 particles. The measuringist as for the absolute value case, we find that as we in-
time was 3x10° MD steps in all cases. Other parameters are thecrease the measuring time, the drop in the linear generalized
same as in Fig. 8. compressibility calculated using cosine becomes sharper at

0.005

0 0.5 1 1.5
Temperature

021204-8



STRUCTURAL PROBE OF A GLASS-FORMING.. .. PHYSICAL REVIEW 66, 021204 (2002

0.5 0.50

04 F

0.40 [
03

% %
0.30

01

0.20 :
00 8 : . 1.0 2.0

0.0 0.5 1.0 15
Temperature

3.0 2.0 5.0 6.0
wave vector k [units of 2r/L]

FIG. 12. Linear generalized compressibility as a function of ' 'G- 14. Linear generalized compressibility as a function of
temperature for a binary mixture of 512 particles for different val- Wave Vector for a binary mixture of 512 particles for different val-
ues of the wave vectok=2mn/L. The measuring time was ues of the temperature. The temperature is measured in MD units.
10° MD steps in all cases. The data were averaged over ten rund.Né Measuring time was 10MD steps in all cases. The data were

The susceptibility was calculated using E¢s5) and (17). Other averaged over ten runs. The susceptibility was calculated using Egs.
parameters are the same as in Fig. 8. (15) and(17). Other parameters are the same as in Fig. 12.

the glass transition. This is shown in Fig. 13 which shoqws to what we see when we cool the system at fixed density. The
as a function of temperature for measuring times of 2density (p~0.8I'~1.44) at which the drop occurs agrees
X 10, 1¢°, and 3<x10° MD steps withk=2x/L, i.e., n with the density at which there is a peak in the specific heat
=1. Figure 14 shows the linear generalized susceptibilit@S shown in Fig. 7.
versus the wave vectdein units of 277/L for various tem-
peratures. Note that the dependence is nonmonotonic. 4. x, from absolute value of positions versus temperature

in a slab geometry

3. x) versus density So far we have considered systems with a fixed number of

In Fig. 15 we plot the generalized linear compressibility particles, but as we mentioned earlier in this section, we can
versus density calculated from the absolute value of the pageneralize our results to the grand canonical ensemble where
sitions of the particles. In Fig. 16 we plot the generalizedthe numberN of particles can vary. We have examined the
linear compressibility versus density calculated from the cogeneralized linear compressibilifg calculated from the ab-
sine of the particles’ positions. In both cases we see yhat solute value of the particle positions using E($) and(16)
drops with increasing density. The drop becomes mordor a slab of our system. In other words we have divided a
abrupt as the measuring time increases. This drop is similaystem of 8 particles into eight slabs of equal thickness

perpendicular to the axis. The number of particles in any

0.5 . . given slab is not fixed. However, in Eq15) we set the
04 | 7k oo GeESESS 0.02 | ' ' o]
GC—O2x 105MDsleps {32 runs)
=—a10°MD steps (6 runs)
03 { ©—3x 10° MDsteps (5 runs)
%
02 r
X |
&—©2 x 10° MD sleps (32 runs) o.01
0.1 o—a 10° MD steps (10 runs)
&—6 3 x 10° MD steps (5 runs)
0.0 = . .
0.0 0.5 1.0 1.5
Temperature 0 S
. . . ) 0.4 0.6 0.8 1 1.2
FIG. 13. Linear generalized compressibility as a function of Density
temperature for a binary mixture of 512 particles for different val-
ues of the measuring time. The measuring times axd@®, 10, FIG. 15. Generalized linear compressibility as a function of den-

and 3x10° MD steps. The data were averaged over the number osity for a binary mixture of 512 particles @t= 1. The measurement
runs indicated in the legend. The susceptibility was calculated usingmes are % 10°, 1P, and 3x10° MD steps.og/oa=1.4. The

Egs. (15 and (17). The wave vectok=2#/L, i.e.,n=1. Other  data were averaged over the number of runs indicated in the legend.
parameters are the same as in Fig. 12. xi is calculated using the absolute value of the particles’ positions.
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0.8 B—&110°MD steps (6 runs)
0.03 | 6—03x 10 *MD steps (5 runs]
0.6 - =
% 2 o002
0.4 r ®
0.01 |
0.2 +
0.0 ! ! - 0o 4 o's ols 1 1|2 14
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FIG. 16. Generalized linear compressibility as a function of den-d FIQ.le. Linealr genelrakliged t():_ompres_sibility ?;12 fun(_:tilon fOf
sity for a binary mixture of 512 particles at=1. The different ensity for a monolayer slab in a binary mixture o particles for

values ofn correspond to different values of the wave veckor dlf{%Eelwlt(%/alu%s&fltgﬁe '\n/?gasurlng_rt;]m% The measuring t(ljmes arﬁ 2
=27n/L. The measurement time is &MD steps in all cases. x10°, ,an steps. The data were averaged over the

ogloa=1.4. The data were averaged over six runs. The Susceptpumber of runs indicated in the legend. The susceptibility was cal-

bility was calculated from the cosine of the particles’ positions us-,CUIatEd using Eqd15) and(16). Other parameters are the same as

ing Egs.(15) and(17). Other parameters are the same as in Fig. 12N Fig. 8.
average numbeN of particles in each slab equal to the total 5. x) from absolute value of positions versus density
number of particles in the system divided by the number of in a slab geometry

layers, i.e.N=8%8=64. Such a slab geometry mimicks ex-  Since experiments on colloidal suspensions usually vary
periments on colloidal suspensions of binary mixtures inthe density rather than the temperature, we have done simu-
which the focal plane of the camera can essentially see onlitions where we set the temperatire 1 and vary the den-
one monolayer of polystyrene ball38]. In Fig. 17 we show sjty. Again we divide our system dfi=83=512 particles
the generalized linear compressibility for a slab for two dif-jnto eight slabs and measugg in one of those slabs. The
ferent measuring times. Again we see that the drop is sharpggsults are shown in Fig. 18. As one can see from the figure,
as the measurement time becomes longer. Thus allowing f% drops as the density is increased and the drop becomes
qualitative behavior of; at the glass transition. Comparing Figs. 15, 16, and 18, we see that the drop occurs at the same
Figs. 8 and 17, we see that the temperature of the drop fQfensity (p~0.8) as in the bulk.
the slab and the bulk agree. We also notice that the drop is
sharper for the bulk where presumably the greater number of ) ) .
particles results in better statistical averaging. B. Nonlinear generalized compressibility
We now turn to the case of the nonlinear generalized com-
0.04 ' ' pressibility x,; given by Eq.(15). We are motivated by the
case of spin glasses where the nonlinear magnetic compress-
ibility diverges at the spin glass transition while the linear
compressibility only has a cug89,40. There have been a
few studies of nonlinear response functions in structural
glasseqd17,41], but these have not found any divergences.
Our results are consistent with this conclusion. In particular,
we find that the nonlinear generalized compressibility is zero
above and below the glass transition temperature, though it
does show a glitch at the glass transition temperature. There
is no systematic increase with system size, indicating the
- . absence of a divergence at temperatures above the glass tran-
0 05 1 2 sition. This does not rule out a divergence below the glass
Temperature transition temperature where our system has fallen out of
FIG. 17. Linear generalized compressibility as a function ofeq,u'“b”um' It also does not rule out a thermodynamlq tran-
temperature for a monolayer slab in a binary mixture of 512 parSition that does not couple to the local density. Becayses
ticles for different values of the measuring time. The measuringSensitive to the tails of the distribution of;, one must be
times are 4 10° and 16 MD steps. The data were averaged over Careful to obtain a good ensemble average in the liquid
the number of runs indicated in the legend. The susceptibility wagbove the glass transition temperature. We have done this by
calculated using Eqg15) and(16). Other parameters are the same doing 16 or 32 runs, each involving 200 000 time steps, with
as in Fig. 8. different initial conditions, stringing them together as though

0.03

001 r o 6—o 2 x 10° md steps (32 runs)
: =—=a 10° md steps (10 runs)
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0.006 , : system. In most of our calculations we fix the volume, num-
ber of particles, and density, so that there are no such fluc-
0.004 o—o216 patticles ] tuations and the system has=0. However, in the grand
=—=a 512 particles canonical ensembler is given by
0.002 | ©—= 1000 particles
. 1 (NB(NY?
n KT_ [} (21)
0t pOkBT <N>
0,00 where p,=(N)/V. To relate k1 to the linear generalized
e compressibilityy,, we choose a uniform potentia(r)=1.
— 3 F —
0,004 , , Thenp,=[d°rp(r)=N and
0 0.5 1 1.5
Temperature 1

KT= g T Xl (22
FIG. 19. Nonlinear generalized compressibility as a function of Po¥e

temperature for binary mixtures. The data for 216 particles are from In orinciol n n al ia- from the k limi

3.2x10° MD steps obtained by stringing together 16 runs, each of P C_p €, one can aiso gbtamT om thek—0 t

which involved 2<1C° MD steps. The data for 512 and 1000 par- Of the static structure factd®(k) = (1/N)(pip i) wherepi

ticles are from 6.4 10° MD steps obtained by stringing together =E{\':1exp(—il2~|?i) is the Fourier transform of the local den-

32 runs of 2¢10° MD steps.p,=0.6 andog/oa=1.4. sity p(r). The limit of S(k) for k—0 in an isotropic and

they were one long run and then taking the appropriate avf_lomogeneous system [i27]

erages. In some sense this approach mixes molecular dynam-
ics and Monte Carlo; the simulation follows the equations of S(0)= 1+p0j (9(r)—1)d3r = pokgTkr, (23
motion for a given amount of time and then “jumps” to

another configuration which again evolves according to th§yhereg(r) is the radial distribution function. Note that in a
molecular dynamics equations until the next jump. We callsystem with fixed volume and particle number, the normal-
this approach “global averaging.” It produces a better en-jzation ofg(r) leads toS(k— 0)=0. This is consistent with
semble average dfp)® which enters intoy, in Eq. (13).  the fact that such a system has=0. Equation(23) yields a
The resultingyn, is shown in Fig. 19 which was calculated nonzero value foi; in a system which has fluctuations in
from the absolute values of the particles’ positions using Edsyolume, particle number, or density. Even in such a com-
(15 and(16). N . pressible system taking the—0 limit of S(k) can suffer

Xni also took longer to equilibrate thagp . By plotting  from finite size effectd42] because the farthest apart that
Xni Versus run time, we found that one had to run at leat 10any two particles can be along any given coordinate axis is
time steps af=1 beforey, appeared to saturatsee Fig. | /2 when there are periodic boundary conditions. So at wave
20). vectorsk with components smaller thanmL, S(k) can

have spurious result§For example, in our simulations we
VI. ORDINARY ISOTHERMAL COMPRESSIBILITY found that this manifests itself as a slight upturnSfk) at

. . - smallk.] It is possible to extrapolate to distances larger than
The ordinary isothermal compressibilikg can be related . : .
. ) ) L/2 using various approachg42]. We chose not to use this
to the fluctuations in the number, volume, or density of the ; ) _
approach to calculate; since we work in a system with

0.002 : : fixed N and V. We should note, however, that simulations
— 216paricies [43] working in theNVT ensemble with fixedN, V, andT,
----- 512 particles have successfully used E(3) to find the isothermal com-

0.001 : pressibility. We can resolve this with the fact tHs(tk— 0)

AN =0 in the NVT ensemble by noting that for values kf
T 0000 M | >47/L, S(k) should give the same value in theVT en-
' : semble as in the grand canonical ensemble. Soif large
‘ L enough, fittingS(k) to the smallk form S(k)=S(k—0)
-0.001 | AN . +AK?, whereA is a constant, should yield the correct value
of kt as long ak>4/L.
Rather than using Ed23), we calculatede; by monitor-
0 500000 1000000 1500000 ing a small subvolume inside of our system and keeping
Time [MD steps] track of the fluctuations in the number of particles in the
FIG. 20. Nonlinear generalized compressibility as a function Ofsubvolume. Le_t,‘JS define a dimensionless ordinary isother-
time for binary mixtures of 216 and 512 particlesTat 1. The data Mal compressibilitKy by
shown for each system size are for a single run and a running

average is kepty, is calculated using Eq915 and (16). p,
:06 andO’B/(TA: 1.4.

-0.002

1

ZWKT: (24)

KT
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g G—o02x 102 MDsteps (16 runs) [
3—8 3 x 10" MDst 5 Q
9 X steps (5 runs) O o01r G—© N=64, 3x 10°MDsteps (10 runs) T
3 0.05 = E—aN=216, 3 x 10° MD steps (5 runs)
(i &D —o N=512, 3 x 10°MDsteps (5 runs)
A—A N=1000, 3 x 10°MD steps (7 runs)
0 . .
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Temperature 0"sl'emperature 1
FIG. 21. Dimensionless ordinary isothermal compressibKity FIG. 22. Dimensionless ordinary isothermal compressibiity
as a function of temperature for a subset of a system of 512 paisq 5 function of temperature for systems with a totaNef64, 216,
ticles for different values of the measuring time. On average, thé;5 ang 1000 particles. The isothermal compressibility was ob-
subset had 128 particles in it. The measuring times afd@ and  (5ineq by monitoring a subvolume that had on average 25% of the
?’3><_106 MI_D steps. The data were avz_eraged over the npr_n_ber of 'UNJarticles in it. Notice the size dependence at high temperatures. The
indicated in the legend. The dimensionless compressibility was Ca'r'neasuring time is & 10° MD steps. The data were averaged over
culated using Eq(25). Other parameters are the same as in Fig. 84ne nymber of runs indicated in the legend. The dimensionless com-
pressibility was calculated using E@5). Other parameters are the
where same as in Fig. 8.
2 2
K :w (25  advantages of the linear generalized compressibility is the
T - R .
(N) absence of these finite size effects. In fact, the linear gener-
alized compressibility shows no size dependence at tempera-

In order to calculateKy, we have monitored a subvolume res above the observed glass transitieee Fig. 10
that had on average 25% of the total number of particles.

Essentially we drew an imaginary boundary in the middle of
our system that enclosed 25% of the total volume and VII. DIFFUSION CONSTANT
counted the number of particles in this subvolume as a func- the giffusion of the particles reflects the kinetics of the

tion of time. By monitoring the fluctuations in the number of system and becomes very small below the glass transition

particles in this subvolume, we could calcul&te. The re-  temperature. We calculate the diffusion constanising the
sults for a subvolume which had on average 128 particles oUtinstein relation

of a total of 512 particles are shown in Fig. 21 whé&reis

plotted versus temperature. We see that it has the same basic 1 [N
shape as the linear generalized compressibililty with a drop D= lim—— [r(H)—r,(0)2), (26)
at the same temperature gs As with x,, the drop becomes 16N\ =1

sharper with increasing measuring time.

While K+ shows behavior similar to the linear generalized\yherer, are true displacements of thth particle. Since we
compressibilityy, as a function of temperature for a given are using periodic boundary conditions, if the particle has

size, it is unlikey, in that it suffers from finite size effects. crossed the box several times, then this must be included in
We have demonstrated this by making measurements on syg-

tems with a total of 64, 216, 512, and 1000 particles. The'
measurements were made by counting the number of par-
ticles in a subvolume that was 25% of the total volume. Such
a small subvolume has a large surface to volume ratio which As the system is cooled through the glass transition, the
produces large finite size effects. To understand this, we notgiffusion constant calculated using E@®6) becomes very
that in such a small subvolume, a significant number of themall. This is shown in Fig. 23 where the diffusion constant
particles are very close to the boundary of the subvolumefor 512 particles is plotted on a logarithmic scale. The diffu-
Fluctuations in the positions of these particles moves them igion constant varies smoothly over the entire temperature
and out of the subvolume, producing large fluctuations in theange. The curves corresponding to different cooling rates
number of particles in the subvolume. The smaller the sysbegin to separate as the system falls out of equilibrium at the
tem, the bigger this effect is. This produces large finite sizgjlass transition temperature where the specific heat peaks
effects inKt even at high temperatures where the systemand where the linear generalized compressibility drops
easily equilibrates. This can be seen in Fig. 22. One can sesbruptly. Figure 23 also shows the diffusion constant for bi-
that K1 decreases with increasing system size at high temrary mixtures of several different sizes. Notice that there is
peratures above the drop in the compressibility. One of th@o apparent size effect.

A. Diffusion constant versus temperature
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O

10 tion as the temperature or density is varied. As we shall see,
our calculation agrees with this.
By definition, the static structure factcﬁ(ﬁ) =(1/N)
E 10 X{prp—x)- To relateS(k) to y, , we first note thag(k) is the
@ 10 steps, N=512 (40 runs) Founer trgnsfon:n of the sEat|c denS|t¥;gens;|ty autocorrela-
3 10* Hfggossfepz “;721(%32 ru;ns) tion function G(r), i.e., S(k)= fexp(ik-r)G(r)d®, where
o—= steps, N= runs) A > - >, >
5 <4—<13x10° steps, N=216 (5 runs) G(r)=(1/N)f<p(l’ ’+r)p(r’)>d3r’. In the supercooled
@ A—A3X10° steps, m=512 (? runs)) liquid above the glass transition, the system has translational
= D——> 3x10° steps, N=1000 (7runs; H : :
= 10° 107 steps, N=512 (6 runs) invariance, and we can write
s s 1 . .
" (p(Np(r"))=ga(r—r"), (27)
10 : : v
0.0 0.5 1.0 1.5
Temperature

whereV is volume andg is a function of the differencer

FIG. 23. Diffusion constant as a function of temperature for a—r'). In this caseG(r)=g(r)/N. In y, we meet
binary mixture of particles plotted on a logarithmic scale. Measure-

ment times for 512 particles are3®x 10°, 10°, 3x 10°, and 10 ) 3 3t ar a2 N

MD steps. Measurement time for 216, 512, and 1000 particles is <P</>>: d>rdr" @(r)p(r"){(p(r)p(r')). (28
3%x10° MD steps. Number of runs averaged over is given in the

legend.p,=0.6 andog/op=1.4. If there is translational invariance,

B. Diffusion constant versus density s 1 T T PE N AN
. . . (p3)=1; | drd®r ¢(Np(r)g(r—r")
In Fig. 24 we show the diffusion constant as a function of
density. We see that the diffusion decreases smoothly as the 10 dk
density p increases. The curves corresponding to different — J ¢(IZ)¢(—IZ)g(—I2)
. . " 3
measurement times begin to separate at the glass transition VI (2m)
density where the specific heat peaks and where the linear
generalized compressibility drops abruptly. f dk
=Po

(2m)®

| p(K)|2S(K), (29)
VIIl. RELATION BETWEEN x; AND S(k)

When the system has translational invariance, we can revhere¢(k) is the Fourier transform ap(r). Converting the
late the linear generalized compressibiligy to the static integralVfd*k/(2m)* to a sum=; and using Eq(15), we
structure factoS(k) which is measured in experiments such obtain
as neutron scatterin@(k) is also used as an input for mode
coupling theorieg3] and it is generally assumed th&¢k) 6
does not show any essential variations near the glass transi- XI—N

N - .
ﬁz [| A(K)|2S(K) 1= (py)? |- (30)
k

1o ' ' ' As an example, let us choosg(r)=coskxX) with the
©—02 x 10° MD steps (32 runs) ple, Sﬁ( ) Q(x)

5 10° MD steps (6 runs) proviso thatk,# 0. (Whenk=0, y,=0 since the potential is
g 03 10 MDsteps (5 runs) uniform and there are no fluctuations allowed with fixgd

andV.) With this choice of¢(F), p = 2iC0skX). Then one

can show by explicitly calculating’(k) and by using Egs.
(29) and (30) that

‘-

=
=
L b

Diffusion Constant
=

=
s

- . 6
x|(k)=33(k)—N[Re<p|2>]2, (31)

g , , , , where translational invariance allows us to write
04 0.6 0.8 1 1.2 1.4
Density

10

S(k)=(2IN){p2)=(2/N cog K, X )cog kx:))].
FIG. 24. Logarithmic plot of the diffusion constant as a function ()= )(p(/)) ( )in [{costhoxy) cosky l)>]

of density for a binary mixture of 512 particles Bt=1. The mea- (32
surement times are >210°, 10°, and 3x10° MD steps.og/oa

=1.4. The data were averaged over the number of runs indicated iNote that the value ok that we use to probe the glass tran-
the legend. sition is typically of orderk, =2#/L which is much smaller
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055 | 0.03
0.45 |
0.35 |
0.02 +
0.25 |
X
0.15 |
G—=© 216 particles (Global)
005 | 0.01 | B—a 512 particles (Global)
©—— 1000 particles {Global)
-0.05 ¢ O[Sk, ®—216 particles (16 runs)
— [<p(k)>],,, =—= 512 particles (32 runs)
-015 | —ay, *— 1000 particles (32 runs)
Xlglobdl 0 o ) .
-0.25 ! ! 0 0.5 1 1.5
0.0 05 1.0 15 y
Temperature Temperature
FIG. 25. Linear generalized compressibiligy, static structure FIG. 26. Linear generalized compressibility as a function of

factor[ S(k) lrun, [RE&pi)run, linear generalized compressibiligy tempgrature for binary mixtures of 216, .512, and 1000 partlcles.
averaged run by run, and the globally averaged linear generalizefhe filled symbols correspond to calculatiggfor each run with a
compressibilityxy?°*@' vs temperature for a binary mixture of 512 Measuring time of X10° MD steps and then averaging over the
particles. The measurement time wa$ MD steps for each tem- number of runs indicated in thg Iegend, while the open symbols
perature. The data were averaged over ten runs and kver correspon.d to global avgragemngmg a Il these runs together to
R . get one big “run” for a given system sizeSo the global average

=(27/L,0,0), k=(0.27/L,0), andk=(0,0,2m/L). po=0.6 and ¢, 51q particles uses 3210° MD steps while for 512 and 1000
ogloa=14. particles, 6.& 10° MD steps were usedy is calculated using Egs.
(15 and(16). p,=0.6 andog/oa=1.4.
than the value okpey at which the first peak ir§(k) ap-
pearsKyea— 27 op>k whereo, is the diameter of typé opal O ) )
spheres in the binary mixture. X = P Jun= ([{p ) Jrun)*}- (34)

We have numerically calculatdd(k) ], for our binary

mixture using Eq(32) with ¢(F)=coskﬂrﬂ). (No sum over Careful inspection of Eq$33) and(34) reveals that the dif-
repeated indicesu=x, y, orz) [ - - - |ryn is @n average over ference is in whether we square the thermal avexagg

all the runs and ovek being parallel tox, y, andz The result  and then average over runs to obtfifp 4)*]un in x;, Or

is shown in Fig. 25 and one can see th&tk)],,, does not ~average(p,) over runs and then square it to obtain

vary much through the glass transition which is consistenf[{p4)]run)? in xP'°*. If we now return to Fig. 25 and take

with what is assumed in mode coupling theory. The figurethe difference of S(k) ],y and (R€py)]run) %, We obtain the

also shows Re(py)]un Where (- --) is a thermal average global average

over a single run. If S(k) ],u, and [R&(py)];un do not vary 6

much through the glass transition, how can the difference global__ _2 2

between the two terms in E¢31) decrease and produce a X =380 Jun N([qum’“”) ' (35

drop in x,? To answer this, note that there are two inequiva- o o

lent ways in which one can calculajg. So far we have The result of both ty||oEsI of averaging is shown in .Flgs. 25

calculatedy, for each run and then averaged over the differ-and 26. Notice thak?*** does not exhibit a drop with de-

ent runs. This approach is what we used in Figs. 8—11 an@reasing temperature whijg does. To understand why there

results in a sharp drop in the linear generalized compressibiis no drop iny?"**®, note that by combining several different

ity at the glass transition. Let us call this a run-by-run aver-runs, very different configurations are sampled which pro-

age for which we can write duces much larger fluctuations in the generalized center of

mass at low temperatures comparedgtoAs a resulg "%

6 which is a measure of the size of these fluctuations, does not

X|=N[<p(2ﬁ>—<p¢>2]run. (33 have an abrupt drop.

. . L IX. SUMMARY
The drop iny, comes about because the width of the distri-

bution of Rep,) becomes much smaller below the transi- To summarize, we have introduced a quantity called the
tion. At low temperatures, structural arrest hinders the explogeneralized compressibility which depends solely on the po-
ration of phase space and reduces the fluctuations ip e(  sitions of the particles and not on their histories. The gener-
The other way to calculate the generalized linear comalized compressibility can easily be calculated in the canoni-
pressibility is with global averaging in which we string to- cal(e.g.,NVT) and grand canonical ensembles. In particular,
gether a series of separate runs, treat it as one giant run, aitds well defined in a system which has particle number and
then do the averaging required to calculate the generalizegblume fixed. In addition, it does not suffer from the finite
linear compressibilityy9'°°', size effects often encountered in calculating the ordinary
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compressibility. The linear generalized compressibility dropghe temperatures at which we wish to have measurements
abruptly at the observed glass transition due to the kinetienade. We then run molecular dynamics simulations in par-
arrest of motion. This makes it an good quantity to calculateallel at these temperatures using a temperature constraint al-
or measure in order to find the observed glass transition asgorithm[25] to keep the temperature of each simulation con-
function of density or temperature. The generalized comstant. At 100 time step intervals we attempt to switch the
pressibility can be experimentally measured in several waysonfigurations of two neighboring temperatures using a Me-
It can be directly measured in colloidal experiments whichyropolis test which ensures that the energies of the configu-
monitor the positions of the particles. Measurements of theations sampled at any given temperature have a Boltzmann
width of the_distribution ofpg_, the spa_tial Fourier trgnsform distribution. Letd,; and 8, be two neighboring inverse tem-
of the density, would also yield the linear generalized cOMeratyres, and ld, andU, be the corresponding potential
pressibility. energies of the configurations at these temperatures at a time
step just before the possible swap. Af=(8;—8,)(U,
ACKNOWLEDGMENTS —U,), then the switch is accepted with probability unity if

We thank Sharon Glotzer, Walter Kob, Andrea Liu, and2 <0 and with probability expfA) if A>0. The tempera-
Francesco Sciortino for helpful discussions. This work wadUres are chosen so that the acceptance ratio is between 30%

supported in part by DOE Grant No. DE-FGO03-00ER458432Nd 75%. At the temperatures in the vicinity of the mode
as well as by CULAR funds provided by the University of coupling T, the acceptance ratio was typically above 75%

California for the conduct of discretionary research by Losfor L=6 and above 60% fdr =8. After a swap is accepted,
Alamos National Laboratory. the velocities of the particles in each configuration are

rescaled to suit their new temperature. Each configuration is
then evolved using molecular dynamics for another 100 time
steps. Switching configurations allows a given simulation to
In calculating the intermediate scattering function at ado a random walk in temperature space in which it visits
given temperature, we initialized the run using a configuraboth low temperatures and high temperatures. This helps to
tion at that temperature generated by parallel tempering. Iprevent a simulation from becoming trapped in a valley of
this appendix we briefly describe the parallel temperingthe energy landscape at low temperatures. Typically we
method. equilibrate for 2< 10° time steps and then do measurements
We implement parallel temperingt4—47 by choosing for an additional 4 10° time steps.

APPENDIX: PARALLEL TEMPERING
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