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Structural probe of a glass-forming liquid: Generalized compressibility

HervéM. Carruzzo* and Clare C. Yu
Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697

~Received 15 December 2001; revised manuscript received 29 March 2002; published 26 August 2002!

We introduce a structural quantity to probe the glass transition. This quantity is a linear generalized com-
pressibility which depends solely on the positions of the particles. We have performed a molecular dynamics
simulation on a glass-forming liquid consisting of a two-component mixture of soft spheres in three dimen-
sions. As the temperature is lowered~or as the density is increased!, the generalized compressibility drops
sharply at the glass transition, with the drop becoming more and more abrupt as the measurement time
increases. At our longest measurement times, the drop occurs approximately at the mode coupling temperature
TC . The drop in the linear generalized compressibility occurs at the same temperature as the peak in the
specific heat. By examining the inherent structure energy as a function of temperature, we find that our results
are consistent with the kinetic view of the glass transition in which the system falls out of equilibrium. We find
no size dependence and no evidence for a second order phase transition, though this does not exclude the
possibility of a phase transition below the observed glass transition temperature. We discuss the relation
between the linear generalized compressibility and the ordinary isothermal compressibility, as well as the static
structure factor.
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I. INTRODUCTION

The glass transition is still not well understood desp
extensive study. There have been two main theoretical
proaches to the problem: dynamic and thermodynam
Theories in the first category view the glass transition a
kinetic phenomenon characterized by a growing relaxa
time and viscosity@1–5#. When the relaxation time exceed
the measurement time, particle motion appears to be arre
resulting in the glass transition. One of the most promin
theories espousing this view is the mode coupling theory
which ideally the relaxation time diverges at a temperat
TC above the experimental glass transition temperature@3#.
Interesting and fruitful concepts such as dynamic inhomo
neities@4,6,7# and the influence of the energy landscape
relaxation processes@8,9# have resulted from this approac
The thermodynamic viewpoint attributes the glass transit
to an underlying phase transition hidden from direct exp
mental observation by extremely long relaxation tim
@1,2,10–12#. In most scenarios there is an underlying seco
order phase transition associated with a growing correla
length which produces diverging relaxation times as well
diverging static susceptiblities@13–18#. More recently,
Mezard and Parisi@12,19# have argued that the underlyin
transition is actually a random first order transition signa
by a jump discontinuity in the specific heat.

Experimentally, the glass transition is characterized
both kinetic and thermodynamic features. For example
the supercooled liquid, kinetic quantities such as the visc
ity and relaxation time grow rapidly as the temperature
lowered. When the system falls out of equilibrium below
certain temperature, thermodynamic quantities exhibit f
tures reflecting the glass transition. For example, as the
tem is cooled the specific heat has a steplike form and

*Present address: Internap, Seattle, WA 98101.
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dielectric constant exhibits a peak at a frequency depen
temperature.

In an effort to better characterize the glass transition,
introduce a structural probe which we call a generaliz
compressibility@20#. Unlike the specific heat which monitor
energy fluctuations, this linear compressibility is a functi
of the microscopic structure of the system: it depends so
on the positions of the particles and not on their previo
history. Since we do not need to compare the system’s s
at different times, it is not a dynamic or kinetic quantit
Rather it is a thermodynamic quantity in the sense that i
purely a function of the microstate of the system dictated
its location in phase space. The generalized compressib
is easy to compute numerically, and it is simpler than
dielectric constant which involves both the translation a
orientation of electric dipoles. In addition, it does not suff
from finite size effects that can often plague measureme
of the ordinary compressibility deduced from simulation
The generalized compressibility can be calculated in eit
the canonical or grand canonical ensembles. In particula
is well defined for a system with fixed volumeV and particle
numberN in contrast to the ordinary compressibility which
defined for a system that has fluctuations inN or V. The
generalized compressibility should be directly measura
experimentally in colloidal suspensions of polystyre
spheres@21# and possibly in other systems as well. In th
paper we present measurements of this quantity in a mol
lar dynamics simulation of a two-component system of s
spheres. We find that the linear generalized compressib
drops sharply as the temperature decreases below the
transition temperatureTg . The drop becomes more and mo
abrupt as the measurement time increases. This is consi
with the structural arrest associated with a kinetic transit
in which the system falls out of equilibrium. Similar resul
are seen as the density is increased at fixed temperature

The paper is organized as follows. Section II describes
molecular dynamics simulations. Section III describes h
©2002 The American Physical Society04-1



al
hi
th

om
Th

ec
es

s
fo
e
at
IX
ul
re

n

s

s
,

te

co

ub

si
po
tu

in
ac
r
w

es

e
on
e
th
e

m.

fix
n-
sity.
s a
(

-

e is
at
ion-

in
is

les
cle

a
er-
ass

of
all
the
for

les,

di-

he

he
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the relaxation times and mode couplingTC are determined.
These are useful for setting the time and temperature sc
Section IV describes our specific heat measurements w
show a peak at the glass transition. Section V derives
expressions for the linear and nonlinear generalized c
pressibilities, and shows our results for these quantities.
linear generalized compressibility shows an abrupt drop
the same temperature and density as the peak in the sp
heat. Section VI compares the ordinary isothermal compr
ibility with our linear generalized compressibility and show
the advantages of the latter. Section VII gives our results
the diffusion constant. Section VIII explains the relation b
tween the linear generalized compressibility and the st
structure factor. Finally, we summarize our results in Sec.
A brief description of some of these results as well as res
for a single component fluid that forms a crystal was
ported earlier@22#.

II. MOLECULAR DYNAMICS SIMULATION

We have performed a molecular dynamics simulation o
glass-forming liquid@23,24# consisting of a 50:50 binary
mixture of soft spheres in three dimensions. The two type
spheres, labeledA and B, differ only in their sizes. The in-
teraction between two particles a distancer apart is given by
Vab(r )5e@(sab /r )121Xab(r )#, where the interaction
length sab5(sa1sb)/2 with sB /sA51.4 (a,b5A,B).
For numerical efficiency, we set the cutoff functionXab(r )
5r /sab2l with l513/1212/13. The interaction is cutoff at
the minimum of the potentialVab(r ). Energy and length are
measured in units ofe andsA , respectively. Temperature i
given in units ofe/kB wherekB is the Boltzmann’s constant
and time is in units ofsAAm/e wherem, the mass of the
particles, is set to unity. The equations of motion were in
grated using the leapfrog method@25# with a time step of
0.005. During each run, the average densityro5N/L3 was
fixed, and the temperature was kept constant using a
straint algorithm@25#. The volumeV5L3. N5NA1NB is
the total number of particles. The system occupies a c
with dimensions (6L/2, 6L/2, 6L/2) and periodic bound-
ary conditions.

We have done sweeps of both temperature and den
We fix the parameters so that crystallization is avoided u
cooling or when the density is increased. For the tempera
sweeps, we fix the density atro50.6. ForsB /sA51.4, this
corresponds to a packing fraction of 1.04. Having a pack
fraction larger than 1 means that each particle was inter
ing with other particles most, if not all, of the time. Ou
measuring procedure is the following. For runs where
cool the system, we start each run at a high temperatureT
51.5) and lower the temperature in steps ofDT50.05. At
each temperature we equilibrate for 104 molecular dynamics
steps~MD steps! and then measure the quantities of inter
for Nt additional MD steps whereNt5105, 23105, 106,
33106, or 107. All the particles move at each MD step. Th
results are then averaged over up to 40 different initial c
ditions ~different initial positions and velocities of th
spheres!. We have done some runs in which we heat
system of particles by starting at our lowest temperaturT
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50.1 with a configuration obtained by cooling the syste
We then increased the temperature in steps ofDT50.05. As
before, we equilibrate at each temperature for 104 time steps
and then measure quantities for an additional 106 time steps.

We have also done some density sweeps in which we
the temperature (T51.0) and systematically change the de
sity. The glass transition occurs as we increase the den
Colloidal experiments often study the glass transition a
function of density. We start each run at a low densityr
50.4) and increase the density in steps ofDr50.025. At
each density we equilibrate for 104 MD steps and then mea
sure the quantities of interest forNt additional MD steps.

The glass transition occurs either as the temperatur
lowered or as the density is raised. It is worth noting th
temperature and density can be combined into a dimens
less parameterG @26#,

G5rse f f
3 /T1/4, se f f

3 5(
ab

nanbsab
3 , ~1!

wherese f f represents an effective diameter for particles
the mixture. The concentration of each type of particle
given by nA5NA /N and nB512nA . For our simulations
nA5nB50.5. G is the relevant parameter when the partic
spend most of their time sampling a nonzero interparti
potential, i.e., forr21/3,se f f . ThusG is particularly useful
for interparticle interactions which fall off with distance as
power law and do not have a cutoff beyond which the int
action is zero. When cooling from the liquid phase, the gl
transition is known to occur aroundG51.45 @26#.

We have looked for phase separation of the two types
spheres by examining the distribution of large and sm
spheres in the neighborhood of large spheres and in
neighborhood of small spheres. We see no evidence
phase separation at either high (T51.5) or low (T50.15)
temperatures at a density ofr50.6.

III. RELAXATION TIMES AND MODE COUPLING TC

As points of reference for the time and temperature sca
it is useful to find the mode couplingTC and thea relaxation
times. We can find the relaxation times using the interme
ate scattering functionF(kW ,t) which is a useful probe of the
structural relaxation. It is the spatial Fourier transform of t
van Hove correlation functionG(rW,t) and the inverse time
transform of the dynamic structure factorS(kW ,v). There are
two different types of intermediate scattering function: t
self ~incoherent! intermediate scattering functionFs(kW ,t) and
the full ~coherent! intermediate scattering functionF(kW ,t).

In a computer simulation, the self~incoherent! part of the
partial intermediate scattering functionFs,a(kW ,t) can be cal-
culated directly using@27#

Fs,a~kW ,t !5
1

Na
K (

i 51

Na

eikW•[ rW i (t)2rW i (0)]L , ~2!
4-2
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where the subscripta refers to the particle type,A or B. rW i(t)
is the position of particlei at time t, and^•••& refers to an
average over different configurations. The wave vectokW

52pqW /L whereqW is a vector of integers. For an isotrop
systemFs,a(kW ,t) depends only on the magnitudek5ukW u. We
will choosek5kmax wherekmax is the position of the first
maximum of the partial static structure factorSa(k). In Fig.
1 we show the self intermediate scattering functionFs,B(k,t)
versus time at temperatures below the caging tempera
(T'0.4). The caging temperature is the highest tempera
at which a plateau is present in the intermediate scatte
function versus time. The plateau represents the tempo
localization of a particle by a cage of other particles s
rounding it.

Mode coupling theory is applicable in the temperatu
range below the caging temperature and somewhat abov
mode couplingTC . We define the relaxation timets by
Fs(k,ts)51/e. We determine the relaxation times for th
seven highest temperatures shown in Fig. 1 and then fit

FIG. 1. The self-intermediate scattering function vs time fo
system with 512 particles andro50.6. The time is given in units o
molecular dynamics~MD! time steps. From left to right, the curve
are for temperatures T50.381 679, 0.373 134, 0.364 964
0.357 143, 0.349 65, 0.342 466, 0.335 57, 0.328 947, 0.321
0.302 114 8, and 0.289 855, respectively. 256 typeB particles were
used and the wave vectork52p38.3666/L, which is the location
of the first peak in the structure factor for typeB particles,L58.
For each curve the system was initialized from a configuration
that temperature obtained from parallel tempering which is
scribed in the Appendix. Then the simulation was run only at t
temperature. The temperatures were chosen so that the paralle
pering acceptance rates were high. The curves at the seven hi
temperatures were equilibrated for 13106 MD time steps before
recording the configurations used to calculateFs(k,t). Each curve
of the seven highest temperature curves is averaged over 24
except for T50.373 134 which is averaged over 54 runs. T
curves for T50.328 947 and 0.321 543 were equilibrated for
3106 MD time steps before recording the configurations used
calculateFs(k,t). These two curves were averaged over 11 ru
The curve forT50.302 114 8 was averaged over 22 runs and w
equilibrated for 10 000 MD time steps before recording the confi
rations used to calculateFs(k,t). The curve forT50.289 855 was
averaged over 36 runs and equilibrated for 503106 MD time steps
before recording configurations used to calculateFs(k,t).
02120
re
re
g
ry
-

the

he

temperature dependence ofts(T) to the mode coupling form
ts(T);(T2TC)2g to find TC . For the self part of the inter-
mediate scattering function, the actual value ofts increases
as the magnitude of the wave vector decreases@28#. How-
ever, the value ofTC is independent ofk. ts(T) versus tem-
perature and the mode coupling fit are shown in Fig. 2.
find the best fit with the mode coupling temperatureTC
50.303 which corresponds toG51.46. Note thatTC is de-
termined from measurements made at temperatures w
the system is equilibrated. Also shown in Fig. 2 is the fit
the Vogel-Fulcher formts(T)5A exp@B/(T2TVF)# with TVF
50.21 which corresponds toG51.60. In doing the Vogel-
Fulcher fit, we were able to use a much broader range
temperatures sinceTVF is much lower than the mode cou
pling TC .

The full intermediate scattering functionF(kW ,t) is given
by @27#

Fa~kW ,t !5
1

Na
^rkW ,a~ t !r2kW ,a~0!&, ~3!

where the Fourier transform of the densityrkW(t)
5( i 51

N e2 ikW•rW i (t). The subscripta refers to the particle type
A or B. The longesta relaxation time can be determine
from the full intermediate scattering function evaluated ak
5kmax @29#. We setkmax52p38.3666/L (L58) which is
the location of the first peak in the structure factor for typeB
particles. We define thea relaxation timet as the time
where Fa(kmax,t) decays to 1/e. At a temperatureT
50.289 585 8 which is just below the mode couplingTC , we
find thatFB(k,t) has fallen to 1/e at t5(1.060.1)3106 MD
time steps for a system with 512 particles of which half a
typeB. This gives us a time scale by which to compare oth
times such as our run times. This value oft shows no signs

3,
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s
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FIG. 2. Relaxation timests vs temperature. The solid line is th
mode coupling fit to the formts5A(T2TC)2g with TC50.303,
g51.735, andA547.6. The dashed line is the fit to the Voge
Fulcher formts(T)5A exp@B/(T2TVF)# with TVF50.21, A533.3,
andB50.803.
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HERVÉ M. CARRUZZO AND CLARE C. YU PHYSICAL REVIEW E66, 021204 ~2002!
of aging@30,31# and stays about the same even after 108 time
steps. At higher temperatures this relaxation time is m
shorter.

The runs used to determine the intermediate scatte
function were done in a slightly different way from the oth
measurements. These runs were performed at a given
perature and density forNt MD time steps with no change in
temperature or density. The runs were started from a confi
ration that had been equilibrated at that temperature and
sity using parallel tempering. The parallel tempering te
nique is described in the Appendix.

IV. SPECIFIC HEAT

The specific heat is a thermodynamic quantity which u
dergoes a change signaling the glass transition. In exp
mental systems under constant pressure, the specific hea
hibits a smooth step down as the temperature is lowe
through the glass transition. In our simulations, which
done at constant volume, the specific heat has a peak a
glass transition. It is a useful check of our calculation to s
if the peak occurs at the same temperature~or density! as the
drop in the linear generalized compressibility. There are t
ways to compute the specific heatCV per particle at a con-
stant volumeV. The first is by taking a derivative of th
average energŷE& per particle with respect to temperatur
CV5d^E&/dT. Since we study the system at discrete te
peratures, we approximate the derivative by a finite diff
ence,

CV~Tn!5
^E~Tn!&2^E~Tn21!&

Tn2Tn21
, ~4!

whereTn.Tn21 for all integersn. The second way to cal
culate the specific heat is from the fluctuations,

NkBb2~^EP
2 &2^EP&2!, ~5!

wherekB is Boltzmann’s constant,b is the inverse tempera
ture, andEP is the potential energy per particle. In our thr
dimensional simulations the kinetic energy per particle
given by 3kBT/2, so it is the fluctuations in the potentia
energyEP per particle which determine the temperature d
pendence of the specific heat. Thus

CV5
3

2
kB1NkBb2~^EP

2 &2^EP&2!. ~6!

In equilibrium, these two ways of calculating the speci
heat should agree. So we compare the results of calcula
CV both ways as a check on our calculation and to make s
the system has equilibrated in all the basins that were vis
in the energy landscape.

A. Specific heat versus temperature

The specific heat at constant volume exhibits a peak at
glass transition as shown in Fig. 3. The data in this figure
for 512 particles and were averaged over six runs with
measurement time of 33106 MD steps. Notice that there i
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good agreement between calculating the specific heat by
ing a derivative of the energy with respect to temperat
@see Eq.~4!# and by using fluctuations@see Eq.~6!#. This
implies that the system has equilibrated within the basins
it visits in the energy landscape. We find similar agreem
for other run times. At low temperatures the specific h
goes to 3kB , as expected for classical oscillators, while
high temperaturesCV approaches 3kB/2, which corresponds
to an ideal gas. The peak in the specific heat occurs aT
'0.3 which corresponds toG'1.46. The temperature of th
peak coincides with the mode couplingTC50.303 that we
deduced from the intermediate scattering function da
Longer run times lead to a sharper peak in the specific h
as can be seen in Fig. 4 which shows the specific heat for
particles for several different measuring times. The pe
would presumably be sharper if we had used a finer temp
ture scale. At high temperatures the agreement between
different times is very good. Perera and Harrowell@32# have

FIG. 3. Specific heat at constant volume as a function of te
perature for binary mixture of 512 particles with a measuring ti
of 33106 MD steps averaged over six runs.ro50.6 andsB /sA

51.4. The specific heat is calculated from energy fluctuations
by taking the derivative of the energy with respect to temperatu

FIG. 4. Specific heat at constant volume as a function of te
perature for a binary mixture of 512 particles with measuring tim
of 105, 23105, 106, 33106, and 107 MD time steps. The numbe
of runs averaged over is indicated in the legend. The specific he
calculated from energy fluctuations.ro50.6 andsB /sA51.4.
4-4
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STRUCTURAL PROBE OF A GLASS-FORMING . . . PHYSICAL REVIEW E66, 021204 ~2002!
found a specific heat peak in a two dimensional binary m
ture of soft spheres. They argue that their peak is an equ
rium feature. However, in our case, at temperatures be
the peak, the system has fallen out of equilibrium and
become trapped in a basin in the energy landscape. We
see this later by examining the energy of the inherent st
tures~potential energy minima! as a function of temperature
Thus the fact that the peak in the specific heat occurs a
very close to the mode couplingTC is a result of the relax-
ation times~see Fig. 2! becoming comparable to and excee
ing the simulation run times as the temperature drops be
TC . When this happens, the system falls out of equilibriu
and undergoes a kinetic glass transition.

The specific heatCP of experimental systems at consta
pressure exhibits a downward step at the glass transition
ing cooling and a peak at slightly higher temperatures u
heating@33#. As can be seen in Fig. 5, in our warming u
simulations, which are done at constant volume, the spe
heat peak sharpens and moves toward higher tempera
compared to the cooling runs. This is consistent with wha
seen in experiments. The hysteresis is consistent with
system falling out of equilibrium and getting stuck in a bas
of the energy landscape.

As we mentioned in the Introduction, some have su
gested that the glass transition has an underlying secon
der phase transition@13–18#. Unlike typical second orde
phase transitions, there is no experimental evidence tha
specific heat diverges at the glass transition. This is con
tent with our simulations. In simulations one looks for
divergence by examining whether the quantity increases
tematically with system size. In Fig. 6 we plotCV for sys-
tems with 64, 216, 512, and 1000 particles. As one can
the specific heat does not exhibit any size dependence. H
ever, we cannot rule out the possibility that a thermodyna
phase transition occurs at temperatures below where we
out of equilibrium. Indeed theories which postulate a therm
dynamic transition put the transition temperature well bel
the mode couplingTC .

FIG. 5. Specific heat at constant volume during heating
cooling a binary mixture of 512 particles with a measuring time
106 MD time steps averaged over ten runs.ro50.6 andsB /sA

51.4.
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B. Specific heat versus density

In Fig. 7 we show the specific heat as a function of de
sity. As the density increases, the specific heat rises to a p
at ro

peak50.8. This corresponds toG51.44 which is in good
agreement with theG value of 1.46 that we found for the
specific heat peak when we varied the temperature. Goin
higher densities corresponds to going to lower temperatu
At densities higher than 0.8, the system falls out of equil
rium.

V. GENERALIZED COMPRESSIBILITIES

As we mentioned in the Introduction, the generaliz
compressibilities are thermodynamic probes that are a fu
tion of the microscopic structure of the system. They a
solely a function of the positions of the particles and do n
depend on their histories. So one could take snapshots o
configurations of the particles at different instances, scram

d
f

FIG. 6. Specific heat during cooling for binary mixtures of 6
216, 512, and 1000 particles. The measuring time was 33106 MD
time steps. The specific heat was calculated from fluctuations
averaged over the number of runs indicated in the legend. Note
lack of size dependence.ro50.6 andsB /sA51.4.

FIG. 7. Specific heat vs density for a binary mixture of 5
particles withT51. The measuring times were 23105, 106, and
33106 MD time steps. The specific heat was calculated from flu
tuations and averaged over the number of runs indicated in
legend.ro50.6 andsB /sA51.4.
4-5
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the order of the snapshots, and still be able to calculate
generalized compressibilities. Averaging over these sn
shots corresponds to ensemble averaging. In this sens
generalized compressibilities are thermodynamic quant
which can be calculated solely from the microstates of
system and do not depend on the system’s dynamics o
netics.

We now derive expressions for the linear and nonlin
generalized compressibility. To probe the density fluct
tions, we follow the approach of linear response theory a
consider applying an external potential (DP/ro)f(rW) which
couples to the local densityr(rW)5( i 51

N d(rW2rW i) where rW i

denotes the position of thei th particle. ro is the average
density.DP has units of pressure and sets the magnitude
the perturbation.f(rW) is a dimensionless function of positio
that must be compatible with the periodic boundary con
tions imposed on the system, i.e., it must be continu
across the boundaries, but is otherwise arbitrary. This add
the HamiltonianH of the system a term

U5
DP

ro
E

V
d3rf~rW !r~rW !5

DP

ro
(

i
f~rW i ![

DP

ro
rf , ~7!

where we have definedrf5*Vd3rf(rW)r(rW)5( if(rW i). rf

is the inner product off andr(rW), and we can regard it as
projection of the density onto a basis functionf(r ), i.e.,
rf5^ruf&. It weights the density fluctuations according
their spatial position. The application of the external pote
tial will induce an average changedrf in rf ,

drf5^rf&U2^rf&U50 , ~8!

where the thermal average^rf&U is given by

^rf&U5
1

Z
Tr@e2b(H1U)rf#. ~9!

The partition functionZ5Tre2b(H1U) and b is the inverse
temperature. For small values ofDP, this change can be
calculated using perturbation theory@34#. Up to third order
in DP, we find

drf52
bDP

ro
^rf

2 &c1
b2DP2

2ro
2 ^rf

3 &c2
b3DP3

6ro
3 ^rf

4 &c ,

~10!

where the cumulant averages are

^rf
2 &c5^rf

2 &2^rf&2, ~11!

^rf
3 &c5^rf

3 &23^rf&^rf
2 &12^rf&3, ~12!

^rf
4 &c5^rf

4 &24^rf&^rf
3 &23^rf

2 &2112̂ rf&2^rf
2 &

26^rf&4, ~13!

with the thermal averagêrf
n &5^rf

n &U50. The third order
cumulant, Eq.~12!, is zero in the liquid phase because f
every configuration there exists an equivalent configura
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with the opposite sign of (rf2^rf&) and so we will not
consider this term any further. We can recast Eq.~10! as a
power series in the perturbationDP,

drf

N
52

1

6rokBT
x lDP1

1

6~rokBT!3 xnl~DP!3, ~14!

where

x l5
6

N
^~rf!2&c , xnl52

1

N
^~rf!4&c . ~15!

In this paper we will focus our attention on the linear (x l)
and nonlinear (xnl) dimensionless generalized compressib
ties defined by the above expressions.

We now discuss the choice of the functionf. We consider
applying the potential along the directionm of one of the
coordinate axes so thatf(rW)5f(r m). A natural candidate for
f(r m) is cos(kmrm) ~no implied sum over repeated indice!
with km52pn/L, wheren51,2, . . . . Inthis case,rf is the
kth mode of the cosine transform of the density. We will al
consider the simpler functionf(r m)5ur mu/L. The absolute
value corresponds to the case where all the particles fe
force along themth direction pointing towards the origin. I
gives results very similar tof(r m)5cos(kmrm) for small k at
a fraction of the computational cost.~No sum over repeated
indices.! So our results in this paper correspond to two cas

rf5(
i

ur i
mu/L, ~16!

which is rather like a center of mass, and

rf5(
i

cos~kmr i
m!. ~17!

Since the system is isotropic, we compute the compressi
ties for each direction and then average over the directionm.

In most of our calculations we work in the canonical e
semble where we fix the volumeV, the numberN of par-
ticles, and the densityro . However, it is straightforward to
generalize our results to the grand canonical ensemble w
the number of particles is not fixed. We simply replace t
thermal average defined in Eq.~9! by

^rf&U5
1

Z (
N

emNTr@e2b(HN1UN)rf#, ~18!

where m is the chemical potential,HN is the Hamiltonian
with N particles,UN is given by Eq.~7! for a system withN
particles, andZ is the grand canonical partition functio
given by

Z5(
N

emNTr@e2b(HN1UN)#. ~19!

The generalized compressibilities can be defined using E
~11! through ~15! with the thermal averageŝ rf

n &
5^rf

n &U50 defined in the grand canonical ensemble.
4-6
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STRUCTURAL PROBE OF A GLASS-FORMING . . . PHYSICAL REVIEW E66, 021204 ~2002!
A. Results for linear generalized compressibility

We now turn to our results for the binary glass-formi
liquid.

1. x l from absolute value of positions versus temperature

We will first discuss the linear generalized compressibi
calculated from the absolute values of the particle positi
using Eqs.~15! and ~16!. Figure 8 shows the linear genera
ized compressibility as a function of temperature for diffe
ent run times. The compressibility at high temperatures
independent ofT. In the vicinity of the glass transitionx l
drops. Notice that as the measuring timetM increases~and
hence as the cooling rate decreases!, the temperature of the
drop decreases and becomes more abrupt. The meas
time can be thought of as the number of snapshots at a s
temperature that we use to calculate the compressibility.
linear compressibility is proportional to the width of the di
tribution of rf , so the drop inx l corresponds to the sudde
narrowing of the distributionP(rf). If we regardrf as a
generalized center of mass, then the drop inx l signals the
sudden arrest in the fluctuations of the generalized cente
mass. In other words, at the glass transition the motion of
particles is largely frozen and hence, the generalized ce
of mass does not move around much. This is consistent
recent observations of the colloidal glass transition in wh
the size of the clusters of ‘‘fast’’ particles drops dramatica
at the glass transition@21#.

Notice that at longer measuring times, the temperat
Tdrop at which the generalized linear compressibility drops
roughly at the mode coupling temperatureTC50.303. Let us
defineTdrop as the temperature at whichx l has dropped half-
way down. For 106 MD steps,Tdrop'0.33; for 33106 MD
steps,Tdrop'0.30; and for 107 MD steps,Tdrop'0.27. Thus
we are able to stay in equilibrium down to the mode coupl
temperature for our longer runs. This is what we would e
pect when we compare these run times, which are lon

FIG. 8. Linear generalized compressibility as a function of te
perature for different measuring timestM : 105 (n, 40 runs!, 2
3105 (s, 32 runs!, 106 (h, 10 runs!, 33106 (L, 6 runs!, and 107

(*, 6 runs! MD steps. The system size is 512 particles.ro50.6 and
sB /sA51.4. x l is calculated using the absolute value of the p
ticles’ positions. Inset,T.To subset of the same data scaled
described in text.
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than 13106 time steps, to thea relaxation timet which is
about 13106 time steps atT50.29 which is just belowTC .
Thus the fact that the drop in the linear generalized co
pressibility occurs at or very close to the mode couplingTC

is a result of the relaxation times~see Fig. 2! becoming com-
parable to and exceeding the simulation run times as
temperature drops belowTC . When this happens, the syste
falls out of equilibrium and undergoes a kinetic glass tran
tion.

The behavior exhibited byx l can be quantified using a
scaling ansatz:x l(tM ,T)5g@m5tM /t(T)#, where the char-
acteristic time has the Volgel-Fulcher formt(T)5exp@A/(T
2To)#. The inset of Fig. 8 shows that the data collapse o
a single curve withA50.75, To50.15. ~The data could not
be fitted usingt(T)5A(T2To)g as suggested by simpl
mode coupling theories@3#.! Notice thatTo lies below the
Vogel-Fulcher temperatureTVF50.21 and the MCT critical
temperatureTC50.303 deduced by fitting the temperatu
dependence of the relaxation times. This scaling sugg
that x l becomes a step function for infinitetM and that the
drop in the compressibility would become a discontinuity
infinitely long times. This abrupt drop is consistent with
sudden arrest of the motion of the particles in the liqu
which is the kinetic view of the glass transition. The abru
drop also appears to be in agreement with Mezard and P
si’s proposal that the glass transition is a first order ph
transition with a jump in the specific heat@12,19#. Indeed the
temperature at whichx l drops agrees with the temperature
the peak in the specific heat shown in Fig. 4. The spec
heat provides an independent check of the glass trans
temperature. However, the drop inx l and the specific hea
peak are due to the system falling out of equilibrium, a
therefore we cannot really tell if there is an underlying tr
thermodynamic transition.

One way to see that the system is falling out of equil
rium is to plot the inherent structure energy per parti
@9,35,36#. An inherent structure is a particular system co
figuration whose energy corresponds to the minimum o
basin in the energy landscape. The energy landscape
3N11 dimensional surface defined by the potential ene
of the system which is a function of the particles’ coord
nates. During each run we sampled the configurations fo
at each temperature. Each configuration lies somewhere
basin and we used the method of conjugate gradients@37# to
find the inherent structure energy of that basin. The resu
shown in Fig. 9 where we plot the average inherent struct
energies versus the temperature of the configuration that
originally saved. At high temperatures the inherent struct
energyeIS per particle is flat as a function of temperature. A
the system is cooled,eIS decreases rather steeply@9#. The
inherent structure energy flattens off at low temperatu
where the system has fallen out of equilibrium and has
come stuck in one basin. For each measuring time the t
perature below which the generalized linear compressib
drops corresponds to the temperature below which the in
ent structure energy flattens off at low temperatures. Thus
temperature of the drop inx l and the peak in the specific he
corresponds to the temperature below which the system

-

-
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HERVÉ M. CARRUZZO AND CLARE C. YU PHYSICAL REVIEW E66, 021204 ~2002!
out of equilibrium and ceases to explore deeper basins o
energy landscape.

The behavior of the linear generalized compressibi
seen in Fig. 8 is similar to that seen in measurements of
real part of the frequency dependent dielectric funct
«8(v) @18#. In that case as the frequency decreased, the t
perature of the peak in«8(v) decreased and the drop
«8(v) below the peak became more abrupt. By extrapolat
their data to v50, Menon and Nagel@18# argued that
«8(v50) should diverge at the glass transition, signaling
second order phase transition. We have looked for evide
of this divergence by examining samples of different sizes
see if the linear generalized compressibility increased s
tematically with system size. As shown in Fig. 10 we find
size dependence and no indication of a diverging linear g
eralized compressibility. However, as we mentioned ear
this does not preclude the possibility that a thermodyna
phase transition occurs belowTdrop . It simply means that if
there is a growing correlation length, it is smaller than t
size of our system atT.Tdrop . Another possible reason fo
the absence of size dependence may be that if there i
underlying thermodynamic phase transition, then its or

FIG. 9. Inherent structure energy per particle as a function
temperature for a system of 512 particles at different measu
times. Other parameters are the same as in Fig. 8.

FIG. 10. Linear compressibility as a function of temperature
different system sizes: 216, 512, and 1000 particles. The measu
time was 33106 MD steps in all cases. Other parameters are
same as in Fig. 8.
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parameter may not couple to the local densityr(rW).
So far we have shown the results of cooling the system

order to look for hysteretic behavior we have done runs
which we heat a system of 512 particles by starting at
lowest temperatureT50.1 with a configuration obtained b
cooling the system. We then increased the temperatur
steps ofDT50.05. As before, we equilibrate at each tem
perature for 104 time steps and then measure quantities
an additional 106 time steps. Our results are shown in Fi
11. Notice the slight hysteresis with the rise inx l upon
warming being at a slightly higher temperature than the d
in x l upon cooling. This hysteresis is consistent with t
kinetic arrest of motion and with the hysteresis found for t
specific heat in Fig. 5.

2. x l from cosine of positions versus temperature

We now consider calculating the linear generalized co
pressibility from the cosine transform of the density usi
Eqs.~15! and ~17!. So if we apply a cosine potential along
say them5x direction, then

rf5(
i

cos~kxxi !, ~20!

where the wave vectorkx52pn/L with n51,2, . . . . The
wave vectors are compatible with the periodic boundary c
ditions of our simulations. Since the system is isotropic,
averagex l over thex, y, andz directions. The resulting linea
generalized compressibility is qualitatively similar in its tem
perature dependence to the linear compressibility calcula
using the absolute values of the particles’ positions@Eq.
~16!#. Figure 12 shows the linear generalized compressibi
versus temperature for various values of the wave vec
The data is for a binary mixture of 512 particles with a me
suring time of 106 MD steps and averaged over ten run
Just as for the absolute value case, we find that as we
crease the measuring time, the drop in the linear general
compressibility calculated using cosine becomes sharpe

f
g

r
ng
e

FIG. 11. Linear generalized compressibility as a function
temperature for a binary mixture of 512 particles upon cooling a
heating. The measuring time was 106 MD steps in both cases. Th
data were averaged over ten runs. Other parameters are the sa
in Fig. 8.
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STRUCTURAL PROBE OF A GLASS-FORMING . . . PHYSICAL REVIEW E66, 021204 ~2002!
the glass transition. This is shown in Fig. 13 which showsx l
as a function of temperature for measuring times of
3105, 106, and 33106 MD steps with k52p/L, i.e., n
51. Figure 14 shows the linear generalized susceptib
versus the wave vectork in units of 2p/L for various tem-
peratures. Note that the dependence is nonmonotonic.

3. x l versus density

In Fig. 15 we plot the generalized linear compressibil
versus density calculated from the absolute value of the
sitions of the particles. In Fig. 16 we plot the generaliz
linear compressibility versus density calculated from the
sine of the particles’ positions. In both cases we see thax l
drops with increasing density. The drop becomes m
abrupt as the measuring time increases. This drop is sim

FIG. 12. Linear generalized compressibility as a function
temperature for a binary mixture of 512 particles for different v
ues of the wave vectork52pn/L. The measuring time was
106 MD steps in all cases. The data were averaged over ten r
The susceptibility was calculated using Eqs.~15! and ~17!. Other
parameters are the same as in Fig. 8.

FIG. 13. Linear generalized compressibility as a function
temperature for a binary mixture of 512 particles for different v
ues of the measuring time. The measuring times are 23105, 106,
and 33106 MD steps. The data were averaged over the numbe
runs indicated in the legend. The susceptibility was calculated u
Eqs. ~15! and ~17!. The wave vectork52p/L, i.e., n51. Other
parameters are the same as in Fig. 12.
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to what we see when we cool the system at fixed density.
density (r'0.8,G'1.44) at which the drop occurs agree
with the density at which there is a peak in the specific h
as shown in Fig. 7.

4. x l from absolute value of positions versus temperature
in a slab geometry

So far we have considered systems with a fixed numbe
particles, but as we mentioned earlier in this section, we
generalize our results to the grand canonical ensemble w
the numberN of particles can vary. We have examined t
generalized linear compressibilityx l calculated from the ab-
solute value of the particle positions using Eqs.~15! and~16!
for a slab of our system. In other words we have divided
system of 83 particles into eight slabs of equal thickne
perpendicular to thex axis. The number of particles in an
given slab is not fixed. However, in Eq.~15! we set the

f
-

s.

f
-

f
g

FIG. 14. Linear generalized compressibility as a function
wave vector for a binary mixture of 512 particles for different va
ues of the temperature. The temperature is measured in MD u
The measuring time was 106 MD steps in all cases. The data we
averaged over ten runs. The susceptibility was calculated using
~15! and ~17!. Other parameters are the same as in Fig. 12.

FIG. 15. Generalized linear compressibility as a function of d
sity for a binary mixture of 512 particles atT51. The measuremen
times are 23105, 106, and 33106 MD steps.sB /sA51.4. The
data were averaged over the number of runs indicated in the leg
x l is calculated using the absolute value of the particles’ positio
4-9
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HERVÉ M. CARRUZZO AND CLARE C. YU PHYSICAL REVIEW E66, 021204 ~2002!
average numberN of particles in each slab equal to the tot
number of particles in the system divided by the number
layers, i.e.,N583/8564. Such a slab geometry mimicks e
periments on colloidal suspensions of binary mixtures
which the focal plane of the camera can essentially see
one monolayer of polystyrene balls@38#. In Fig. 17 we show
the generalized linear compressibility for a slab for two d
ferent measuring times. Again we see that the drop is sha
as the measurement time becomes longer. Thus allowing
fluctuations in the number of particles does not change
qualitative behavior ofx l at the glass transition. Comparin
Figs. 8 and 17, we see that the temperature of the drop
the slab and the bulk agree. We also notice that the dro
sharper for the bulk where presumably the greater numbe
particles results in better statistical averaging.

FIG. 16. Generalized linear compressibility as a function of d
sity for a binary mixture of 512 particles atT51. The different
values ofn correspond to different values of the wave vectork
52pn/L. The measurement time is 106 MD steps in all cases
sB /sA51.4. The data were averaged over six runs. The susce
bility was calculated from the cosine of the particles’ positions
ing Eqs.~15! and~17!. Other parameters are the same as in Fig.

FIG. 17. Linear generalized compressibility as a function
temperature for a monolayer slab in a binary mixture of 512 p
ticles for different values of the measuring time. The measur
times are 23105 and 106 MD steps. The data were averaged ov
the number of runs indicated in the legend. The susceptibility w
calculated using Eqs.~15! and~16!. Other parameters are the sam
as in Fig. 8.
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5. x l from absolute value of positions versus density
in a slab geometry

Since experiments on colloidal suspensions usually v
the density rather than the temperature, we have done s
lations where we set the temperatureT51 and vary the den-
sity. Again we divide our system ofN5835512 particles
into eight slabs and measurex l in one of those slabs. The
results are shown in Fig. 18. As one can see from the fig
x l drops as the density is increased and the drop beco
more abrupt as the measuring time lengthens. Compa
Figs. 15, 16, and 18, we see that the drop occurs at the s
density (r'0.8) as in the bulk.

B. Nonlinear generalized compressibility

We now turn to the case of the nonlinear generalized co
pressibility xnl given by Eq.~15!. We are motivated by the
case of spin glasses where the nonlinear magnetic comp
ibility diverges at the spin glass transition while the line
compressibility only has a cusp@39,40#. There have been a
few studies of nonlinear response functions in structu
glasses@17,41#, but these have not found any divergenc
Our results are consistent with this conclusion. In particu
we find that the nonlinear generalized compressibility is z
above and below the glass transition temperature, thoug
does show a glitch at the glass transition temperature. Th
is no systematic increase with system size, indicating
absence of a divergence at temperatures above the glass
sition. This does not rule out a divergence below the gl
transition temperature where our system has fallen ou
equilibrium. It also does not rule out a thermodynamic tra
sition that does not couple to the local density. Becausexnl is
sensitive to the tails of the distribution ofrf , one must be
careful to obtain a good ensemble average in the liq
above the glass transition temperature. We have done thi
doing 16 or 32 runs, each involving 200 000 time steps, w
different initial conditions, stringing them together as thou
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-
.

f
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s

FIG. 18. Linear generalized compressibility as a function
density for a monolayer slab in a binary mixture of 512 particles
different values of the measuring time. The measuring times a
3105, 106, and 33106 MD steps. The data were averaged over t
number of runs indicated in the legend. The susceptibility was
culated using Eqs.~15! and~16!. Other parameters are the same
in Fig. 8.
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STRUCTURAL PROBE OF A GLASS-FORMING . . . PHYSICAL REVIEW E66, 021204 ~2002!
they were one long run and then taking the appropriate
erages. In some sense this approach mixes molecular dy
ics and Monte Carlo; the simulation follows the equations
motion for a given amount of time and then ‘‘jumps’’ t
another configuration which again evolves according to
molecular dynamics equations until the next jump. We c
this approach ‘‘global averaging.’’ It produces a better e
semble average of̂rf

2 &2 which enters intoxnl in Eq. ~13!.
The resultingxnl is shown in Fig. 19 which was calculate
from the absolute values of the particles’ positions using E
~15! and ~16!.

xnl also took longer to equilibrate thanx l . By plotting
xnl versus run time, we found that one had to run at least6

time steps atT51 beforexnl appeared to saturate~see Fig.
20!.

VI. ORDINARY ISOTHERMAL COMPRESSIBILITY

The ordinary isothermal compressibilitykT can be related
to the fluctuations in the number, volume, or density of

FIG. 19. Nonlinear generalized compressibility as a function
temperature for binary mixtures. The data for 216 particles are f
3.23106 MD steps obtained by stringing together 16 runs, each
which involved 23105 MD steps. The data for 512 and 1000 pa
ticles are from 6.43106 MD steps obtained by stringing togethe
32 runs of 23105 MD steps.ro50.6 andsB /sA51.4.

FIG. 20. Nonlinear generalized compressibility as a function
time for binary mixtures of 216 and 512 particles atT51. The data
shown for each system size are for a single run and a run
average is kept.xnl is calculated using Eqs.~15! and ~16!. ro

50.6 andsB /sA51.4.
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system. In most of our calculations we fix the volume, nu
ber of particles, and density, so that there are no such fl
tuations and the system haskT50. However, in the grand
canonical ensemblekT is given by

kT5
1

rokBT

^N2&2^N&2

^N&
, ~21!

where ro5^N&/V. To relate kT to the linear generalized
compressibilityx l , we choose a uniform potentialf(rW)51.
Thenrf5*d3rr(rW)5N and

kT5
1

6rokBT
x l . ~22!

In principle, one can also obtainkT from thek→0 limit
of the static structure factorS(kW )5(1/N)^rkWr2kW& whererkW

5( i 51
N exp(2ikW•rWi) is the Fourier transform of the local den

sity r(rW). The limit of S(kW ) for k→0 in an isotropic and
homogeneous system is@27#

S~0!511roE ~g~r !21!d3r 5rokBTkT , ~23!

whereg(r ) is the radial distribution function. Note that in
system with fixed volume and particle number, the norm
ization of g(r ) leads toS(k→0)50. This is consistent with
the fact that such a system haskT50. Equation~23! yields a
nonzero value forkT in a system which has fluctuations i
volume, particle number, or density. Even in such a co
pressible system taking thek→0 limit of S(k) can suffer
from finite size effects@42# because the farthest apart th
any two particles can be along any given coordinate axi
L/2 when there are periodic boundary conditions. So at w
vectors k with components smaller than 4p/L, S(k) can
have spurious results.@For example, in our simulations w
found that this manifests itself as a slight upturn inS(k) at
small k.# It is possible to extrapolate to distances larger th
L/2 using various approaches@42#. We chose not to use thi
approach to calculatekT since we work in a system with
fixed N and V. We should note, however, that simulation
@43# working in theNVT ensemble with fixedN, V, andT,
have successfully used Eq.~23! to find the isothermal com-
pressibility. We can resolve this with the fact thatS(k→0)
50 in the NVT ensemble by noting that for values ofk
.4p/L, S(k) should give the same value in theNVT en-
semble as in the grand canonical ensemble. So ifL is large
enough, fittingS(k) to the smallk form S(k)5S(k→0)
1Ak2, whereA is a constant, should yield the correct valu
of kT as long ask.4p/L.

Rather than using Eq.~23!, we calculatedkT by monitor-
ing a small subvolume inside of our system and keep
track of the fluctuations in the number of particles in t
subvolume. Let us define a dimensionless ordinary isoth
mal compressibilityKT by

kT5
1

rkBT
KT , ~24!
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HERVÉ M. CARRUZZO AND CLARE C. YU PHYSICAL REVIEW E66, 021204 ~2002!
where

KT5
^N2&2^N&2

^N&
. ~25!

In order to calculateKT , we have monitored a subvolum
that had on average 25% of the total number of partic
Essentially we drew an imaginary boundary in the middle
our system that enclosed 25% of the total volume a
counted the number of particles in this subvolume as a fu
tion of time. By monitoring the fluctuations in the number
particles in this subvolume, we could calculateKT . The re-
sults for a subvolume which had on average 128 particles
of a total of 512 particles are shown in Fig. 21 whereKT is
plotted versus temperature. We see that it has the same
shape as the linear generalized compressibililty with a d
at the same temperature asx l . As with x l , the drop becomes
sharper with increasing measuring time.

While KT shows behavior similar to the linear generaliz
compressibilityx l as a function of temperature for a give
size, it is unlikex l in that it suffers from finite size effects
We have demonstrated this by making measurements on
tems with a total of 64, 216, 512, and 1000 particles. T
measurements were made by counting the number of
ticles in a subvolume that was 25% of the total volume. Su
a small subvolume has a large surface to volume ratio wh
produces large finite size effects. To understand this, we
that in such a small subvolume, a significant number of
particles are very close to the boundary of the subvolu
Fluctuations in the positions of these particles moves them
and out of the subvolume, producing large fluctuations in
number of particles in the subvolume. The smaller the s
tem, the bigger this effect is. This produces large finite s
effects in KT even at high temperatures where the syst
easily equilibrates. This can be seen in Fig. 22. One can
that KT decreases with increasing system size at high t
peratures above the drop in the compressibility. One of

FIG. 21. Dimensionless ordinary isothermal compressibilityKT

as a function of temperature for a subset of a system of 512
ticles for different values of the measuring time. On average,
subset had 128 particles in it. The measuring times are 23105 and
33106 MD steps. The data were averaged over the number of r
indicated in the legend. The dimensionless compressibility was
culated using Eq.~25!. Other parameters are the same as in Fig
02120
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advantages of the linear generalized compressibility is
absence of these finite size effects. In fact, the linear ge
alized compressibility shows no size dependence at temp
tures above the observed glass transition~see Fig. 10!.

VII. DIFFUSION CONSTANT

The diffusion of the particles reflects the kinetics of t
system and becomes very small below the glass trans
temperature. We calculate the diffusion constantD using the
Einstein relation

D5 lim
t→`

1

6NtK (
i 51

N

@r i~ t !2r i~0!#2L , ~26!

wherer i are true displacements of thei th particle. Since we
are using periodic boundary conditions, if the particle h
crossed the box several times, then this must be include
r i .

A. Diffusion constant versus temperature

As the system is cooled through the glass transition,
diffusion constant calculated using Eq.~26! becomes very
small. This is shown in Fig. 23 where the diffusion consta
for 512 particles is plotted on a logarithmic scale. The diff
sion constant varies smoothly over the entire tempera
range. The curves corresponding to different cooling ra
begin to separate as the system falls out of equilibrium at
glass transition temperature where the specific heat pe
and where the linear generalized compressibility dro
abruptly. Figure 23 also shows the diffusion constant for
nary mixtures of several different sizes. Notice that there
no apparent size effect.

r-
e

s
l-
.

FIG. 22. Dimensionless ordinary isothermal compressibilityKT

as a function of temperature for systems with a total ofN564, 216,
512, and 1000 particles. The isothermal compressibility was
tained by monitoring a subvolume that had on average 25% of
particles in it. Notice the size dependence at high temperatures.
measuring time is 33106 MD steps. The data were averaged ov
the number of runs indicated in the legend. The dimensionless c
pressibility was calculated using Eq.~25!. Other parameters are th
same as in Fig. 8.
4-12
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B. Diffusion constant versus density

In Fig. 24 we show the diffusion constant as a function
density. We see that the diffusion decreases smoothly as
density r increases. The curves corresponding to differ
measurement times begin to separate at the glass trans
density where the specific heat peaks and where the li
generalized compressibility drops abruptly.

VIII. RELATION BETWEEN x l AND S„k…

When the system has translational invariance, we can
late the linear generalized compressibilityx l to the static
structure factorS(k) which is measured in experiments su
as neutron scattering.S(k) is also used as an input for mod
coupling theories@3# and it is generally assumed thatS(k)
does not show any essential variations near the glass tr

FIG. 23. Diffusion constant as a function of temperature fo
binary mixture of particles plotted on a logarithmic scale. Measu
ment times for 512 particles are 105, 23105, 106, 33106, and 107

MD steps. Measurement time for 216, 512, and 1000 particle
33106 MD steps. Number of runs averaged over is given in
legend.ro50.6 andsB /sA51.4.

FIG. 24. Logarithmic plot of the diffusion constant as a functi
of density for a binary mixture of 512 particles atT51. The mea-
surement times are 23105, 106, and 33106 MD steps.sB /sA

51.4. The data were averaged over the number of runs indicate
the legend.
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tion as the temperature or density is varied. As we shall s
our calculation agrees with this.

By definition, the static structure factorS(kW )5(1/N)
3^rkWr2kW&. To relateS(k) to x l , we first note thatS(k) is the
Fourier transform of the static density–density autocorre
tion function G(rW), i.e., S(kW )5*exp(2ikW•rW)G(rW)d3r, where
G(rW)5(1/N)*^r(rW 81rW)r(rW8)&d3r 8. In the supercooled
liquid above the glass transition, the system has translatio
invariance, and we can write

^r~rW !r~rW8!&5
1

V
g~rW2rW8!, ~27!

whereV is volume andg is a function of the difference (rW

2rW8). In this caseG(rW)5g(rW)/N. In x l we meet

^rf
2 &5E d3rd3r 8f~rW !f~rW8!^r~rW !r~rW8!&. ~28!

If there is translational invariance,

^rf
2 &5

1

VE d3rd3r 8f~rW !f~rW8!g~rW2rW8!

5
1

VE d3k

~2p!3
f~kW !f~2kW !g~2kW !

5roE d3k

~2p!3
uf~kW !u2S~kW !, ~29!

wheref(kW ) is the Fourier transform off(rW). Converting the
integral V*d3k/(2p)3 to a sum(kW and using Eq.~15!, we
obtain

x l5
6

N F N

V2 (
kW

@ uf~kW !u2S~kW !#2^rf&2G . ~30!

As an example, let us choosef(rW)5cos(kxx) with the
proviso thatkxÞ0. ~WhenkW50, x l50 since the potential is
uniform and there are no fluctuations allowed with fixedN

andV.! With this choice off(rW), rf5( icos(kxxi). Then one
can show by explicitly calculatingf(kW ) and by using Eqs.
~29! and ~30! that

x l~kW !53S~kW !2
6

N
@Rê rkW&#2, ~31!

where translational invariance allows us to write

S~kW !5~2/N!^rf
2 &5~2/N!(

i j
@^cos~kxxi !cos~kxxj !&#.

~32!

Note that the value ofk that we use to probe the glass tra
sition is typically of orderkL[2p/L which is much smaller

-

is

in
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than the value ofkpeak at which the first peak inS(k) ap-
pears.kpeak;2p/sA@kL wheresA is the diameter of typeA
spheres in the binary mixture.

We have numerically calculated@S(k)# run for our binary
mixture using Eq.~32! with f(rW)5cos(kmrm). ~No sum over
repeated indices.m5x, y, or z.! @•••# run is an average ove
all the runs and overkW being parallel tox, y, andz. The result
is shown in Fig. 25 and one can see that@S(k)# run does not
vary much through the glass transition which is consist
with what is assumed in mode coupling theory. The figu
also shows@Rê rk&# run where ^•••& is a thermal average
over a single run. If@S(k)# run and @Rê rk&# run do not vary
much through the glass transition, how can the differe
between the two terms in Eq.~31! decrease and produce
drop inx l? To answer this, note that there are two inequi
lent ways in which one can calculatex l . So far we have
calculatedx l for each run and then averaged over the diff
ent runs. This approach is what we used in Figs. 8–11
results in a sharp drop in the linear generalized compress
ity at the glass transition. Let us call this a run-by-run av
age for which we can write

x l5
6

N
@^rf

2 &2^rf&2# run. ~33!

The drop inx l comes about because the width of the dis
bution of Re(rf) becomes much smaller below the tran
tion. At low temperatures, structural arrest hinders the exp
ration of phase space and reduces the fluctuations in Re(rf).

The other way to calculate the generalized linear co
pressibility is with global averaging in which we string to
gether a series of separate runs, treat it as one giant run
then do the averaging required to calculate the general
linear compressibilityx l

global.

FIG. 25. Linear generalized compressibilityx l , static structure
factor @S(k)# run, @Rê rk&# run, linear generalized compressibilityx l

averaged run by run, and the globally averaged linear genera
compressibilityx l

global vs temperature for a binary mixture of 51
particles. The measurement time was 106 MD steps for each tem-

perature. The data were averaged over ten runs and ovkW

5(2p/L,0,0), kW5(0,2p/L,0), and kW5(0,0,2p/L). ro50.6 and
sB /sA51.4.
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x l
global5

6

N
$@^rf

2 &# run2~@^rf&# run!
2%. ~34!

Careful inspection of Eqs.~33! and~34! reveals that the dif-
ference is in whether we square the thermal average^rf&
and then average over runs to obtain@^rf&2# run in x l , or
average ^rf& over runs and then square it to obta
(@^rf&# run)

2 in x l
global. If we now return to Fig. 25 and take

the difference of@S(k)# run and (@Rê rk&# run)
2, we obtain the

global average

x l
global53@S~k!# run2

6

N
~@Rê rk&# run!

2. ~35!

The result of both types of averaging is shown in Figs.
and 26. Notice thatx l

global does not exhibit a drop with de
creasing temperature whilex l does. To understand why ther
is no drop inx l

global, note that by combining several differen
runs, very different configurations are sampled which p
duces much larger fluctuations in the generalized cente
mass at low temperatures compared tox l . As a resultx l

global,
which is a measure of the size of these fluctuations, does
have an abrupt drop.

IX. SUMMARY

To summarize, we have introduced a quantity called
generalized compressibility which depends solely on the
sitions of the particles and not on their histories. The gen
alized compressibility can easily be calculated in the cano
cal ~e.g.,NVT) and grand canonical ensembles. In particu
it is well defined in a system which has particle number a
volume fixed. In addition, it does not suffer from the fini
size effects often encountered in calculating the ordin

ed

FIG. 26. Linear generalized compressibility as a function
temperature for binary mixtures of 216, 512, and 1000 partic
The filled symbols correspond to calculatingx l for each run with a
measuring time of 23105 MD steps and then averaging over th
number of runs indicated in the legend, while the open symb
correspond to global averages~stringing all these runs together t
get one big ‘‘run’’ for a given system size!. So the global average
for 216 particles uses 3.23106 MD steps while for 512 and 1000
particles, 6.43106 MD steps were used.x l is calculated using Eqs
~15! and ~16!. ro50.6 andsB /sA51.4.
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compressibility. The linear generalized compressibility dro
abruptly at the observed glass transition due to the kin
arrest of motion. This makes it an good quantity to calcul
or measure in order to find the observed glass transition
function of density or temperature. The generalized co
pressibility can be experimentally measured in several wa
It can be directly measured in colloidal experiments wh
monitor the positions of the particles. Measurements of
width of the distribution ofrkW , the spatial Fourier transform
of the density, would also yield the linear generalized co
pressibility.
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APPENDIX: PARALLEL TEMPERING

In calculating the intermediate scattering function a
given temperature, we initialized the run using a configu
tion at that temperature generated by parallel tempering
this appendix we briefly describe the parallel temper
method.

We implement parallel tempering@44–47# by choosing
n,
n

v

n

02120
s
ic
e
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e
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s
3

s

-
In
g

the temperatures at which we wish to have measurem
made. We then run molecular dynamics simulations in p
allel at these temperatures using a temperature constrain
gorithm @25# to keep the temperature of each simulation co
stant. At 100 time step intervals we attempt to switch t
configurations of two neighboring temperatures using a M
tropolis test which ensures that the energies of the confi
rations sampled at any given temperature have a Boltzm
distribution. Letb1 andb2 be two neighboring inverse tem
peratures, and letU1 andU2 be the corresponding potentia
energies of the configurations at these temperatures at a
step just before the possible swap. IfD5(b12b2)(U2
2U1), then the switch is accepted with probability unity
D<0 and with probability exp(2D) if D.0. The tempera-
tures are chosen so that the acceptance ratio is between
and 75%. At the temperatures in the vicinity of the mo
couplingTC , the acceptance ratio was typically above 75
for L56 and above 60% forL58. After a swap is accepted
the velocities of the particles in each configuration a
rescaled to suit their new temperature. Each configuratio
then evolved using molecular dynamics for another 100 ti
steps. Switching configurations allows a given simulation
do a random walk in temperature space in which it vis
both low temperatures and high temperatures. This help
prevent a simulation from becoming trapped in a valley
the energy landscape at low temperatures. Typically
equilibrate for 23106 time steps and then do measureme
for an additional 43106 time steps.
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