PHYSICAL REVIEW E 69, 051201(2004

Frequency dependence and equilibration of the specific heat of glass-forming liquids
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We have performed molecular dynamics simulations on a glass-forming liquid consisting of a three-
dimensional binary mixture of soft spheres. We show that a peak in the specific heat versus temperature can
occur because a glassy system that shows no signs of aging progresses so slowly through the energy landscape
that the minimum sampling time needed to obtain accurate thermodynamic averages exceeds the observation
time. We develop a systematic technique to determine the equilibrium value of the specific heat and the
minimum sampling time. Below the temperature of the specific heat peak, the minimum sampling time is
orders of magnitude longer than therelaxation time. We find that an equilibrium system that is not under-
going structural relaxation or aging has a frequency dependent specific heat that rises as the frequency de-
creases. The rise occurs at frequencies corresponding to periods that are long enough for the system to sample
statistically independent energies. When the period is comparable to the minimum sampling time, the fre-
guency dependent specific heat reaches a plateau. As a result, the specific heat has a frequency dependence at
frequencies orders of magnitude lower than is implied by the inversdaxation time.
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[. INTRODUCTION system no longer ages and has reached basins with appropri-
o » ate energies, the system proceeds so slowly through the en-
As a glass-forming liquid is cooled, a glass transition oc-ergy landscape that the relaxation time is easily dwarfed
curs when the system falls out of equilibrium, i.e., when thepy the minimum sampling time which we define as the time
time scale for reaching equilibrium exceeds the observatiofo accumulate the large number of statistically independent
time [1]. This is often associated with frequency dependenineasurements needed to accurately determine a thermody-
measurements of quantities such as the specific[@¢and namic average. We find from molecular dynamics simula-
dielectric function[3] where characteristic frequencies sys-tions that a glass-forming liquid, that shows no signs of ag-
tematically decrease with decreasing temperature even wheng, can undergo a glass transition, as signaled by a peak in
the samples show no signs of aging. In this paper we showhe specific heaC, versus temperature, when the observa-
that this frequency dependence is associated with longon time drops below the minimum sampling time. The dis-
equilibration times. tribution of energies that a system samples in a basin of the
Like many complex systems, such as proteins and neur&@nergy Igndscape is a subset o_f the fgll distribution of ener-
networks, the dynamics of the glass transition is governed b@ies available to the system. Since this subset has a smaller
the potential energy landscape where each point correspondariance than the full distribution, the resulting specific heat,
to a particular configuration and energy of the sysférs. which is proportional to the variance (_)f the energy, will be
The energy landscape can be used to describe the three w allgr when calculated from short time spans than from
in which a system can fall out of equilibrium. First a system nlg tlThe spanks._r;l':heset?]mellllertvalues atccouné forGthga va}[Iues
can become trapped in a metastable minimum where it stay S oW the peax ity on e low temperaiure sice. 150ing to

for the duration of the observation time. Second a system Ca{bnger time spans eliminates the peak, though at tempera-

be in an energetically unlikely part of phase space and pro res below the peak temperatdig these time spans can be

d slowl X here | f ) b B Ic')rders of magnitude longer than previously recognized
ceed slowly to a region where its configurations obey a Ot'equilibration times such as therelaxation time, the energy
zmann distribution. As such a nonequilibrium system

, ' correlation time, and the aging time.
evolves toward more probable regions of phase space, it x- ggyera| groupg7,8] have claimed to find equilibrium
hibits aging which means its properties systematicall

Ypeaks in the specific heat in their simulations of glass form-
change with time and do not obey stationafi®y. The aging P ! pecit ! " simuiat 9

fime, after which aging stops, is equal to therelaxation ing liquids. However, their criterion for deciding if they had

. hich is the ch tic time for th ¢ .._equilibrium values of the specific heat were somewhat arbi-
.t'r.n.e which ISt ec aractistic ime for the system to forget Itstrary. They believed that their systems were in equilibrium
initial configuration.

because they had run longer than theelaxation time, but
The third way to fall out of equilibrium is to inadequately 1S y Y ger on 1 N

| libri ble. It is oft ) ey had no definitive way of testing this. In this paper we
sample an equilibrium ensemble. Itis often not appreciateqyosen; 5 systematic method to determine the equilibrium
just how long it actually can take to acquire enough values

dh his time is related to the f q q value of the specific heat. This technique tracks the value of
and how this time is related to the frequency dependence I, specific heat as a function of the measurement time span.

measured quantities. The point is that even after a glasswhen the specific heat stops increasing and saturates with

increasing time sparG,, has reached its equilibrium value.
We use this procedure to eliminate the peak in the specific
*Present address: Internap, Atlanta, GA 30309. heat that we found using parallel tempering simulations.
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One way to probe the time scales involved in glassy sysuse it to show that the specific heat peak is eliminated when
tems is via the frequency dependence of the specific heagquilibrium values are used. In Sec. Ill B 1 we give a func-
Experimental measurements on equilibrium systems find thatonal fit to the equilibrium specific heat. In Sec. Il B 2 we
as the frequency decreases, the real part of the specific hediscuss the energy correlation time and explain why the spe-
rises in a characteristic frequency range before reaching @fic heat increases with increasing time span until it reaches
plateau[2,3,9-13. The characteristic frequency decreases ags equilibrium value. In Sec. Il C we show that the fre-
the temperature decreases. These experiments have inspiiggency dependence of the specific heat mirrors the increase
a number of theoretical approachié$—29. Some have de- . the specific heat with time span. In Sec. Il D we show
rived an expression for the frequency dependent specific he@at the increase of the specific heat with time span occurs in
within an existing theoretical framewo.rk suph as generahze ystems which are not aging. We also show that even when
hydrodynamics{17,18,23, the fluctuation-dissipation theo- the root mean square displacement is comparable to the size

rem [22], projection operator formalisii25], or generalized : )
constitutive equation$21]. Simulations have been able to Qf the system, the system still has not sampled enough con

reproduce the same qualitative fea_tures that'are seen expeﬁjgggggtogirtoegblt::]ggjr:h;r?]zd]}; gauméﬁgalg:' (Ierr]mjseenct. slvevgﬁic
mentally [19,25. Some papers attribute the increase in theﬁ d di P | q y dep P
specific heat at low frequencigas the frequency decreages N€at and discuss our resufts.
to the structural relaxation of the supercooled liquid since
both the characteristic frequency and the relaxation time in-
crease with decreasing temperat{it8,23. Scheidleret al. We have performed a molecular dynamics simulation on a
[25] note from their simulations that the specific heat in-ihree-dimensional glass forming liquj@6,27 consisting of
crease occurs at frequencies which have periods correspongtg-50 mixture of two sizes of soft spheres, labalezhdB.
ing to the time scales of the structural relaxation. Others havg e interaction between two particles a distancapart is
proposed that the measurement technique forc_es th_e sygtegrn,en byvaﬁ(r)z6[(Ua,8/r)12+xa[3(r)] where the interaction
out of equilibrium when the structural relaxation time is length 4= (0, +4)/2, and the ratio of the diameters
longer than the inverse frequency of the applied heat current _q o ' ; —
oscillations[16]. We show from our simulations that in a C8 7A~ 4@ B=A,B). The cutoff functionXs(r)=r/oa,
[16] =\ with A=13/12%13 The interaction is cutoff at the mini-

system that is no longer aging, structural relaxation is no}num of the potential/,,,(r) where the potential and its first

directly responsible for the specific heat behavior at low fre-, ~."" . , . .
guencies because the system is already in equilibrium an%erlvatlvevaﬁ(r) with respect tor are equal to zero. This

does not need to relax to an equilibrium configuration.CUtOff ensures tha¥,,(r) and V,(r) go smoothly to zero.
Rather the increase of the frequency dependent specific heG'€r9y @nd length are measured in unitg aind o, respec-
with decreasing frequency mirrors the increase of the specifitVelY- Temperature is in units af/kg, and time is in units of
heat with time span because longer time spans correspond fa\™/ € where the unit of massiis the mass of the particles
longer periods and lower frequencies. During a period thé Ma=mMg=m). We will refer to these units as MDnoIgcuIar
system is exploring the energy landscape. The longer thdynamicg units. During each run the densipy=N/L"=0.6
period, the more statistically independent energies it ca¥/as fixed.N=N,+Ng is the total number of particles. The
sample. When the period is long enough for the system t§YStém occupies a cube of VO'Qm%W'th periodic boundary
sample statistically independent energies, the specific hegpnditions. According to the ideal mode coupling theory
rises. We find that the energy correlation time, which is com{28], the relaxation time diverges at a temperatilige For
parable to thex relaxation time, determines the characteristicOUr Systemrc=0.303[29]. _ _
frequency range where the specific heat rises. The fact that The equations of motion were integrated using the leap-
the minimum sampling time exceeds therelaxation time 109 method[30] with a time step of 0.005. We keep the
and the energy correlation time by orders of magnitude jm{€mperature constant using an algoritf#] that introduces
plies that the specific heat should increase down to frequerf Nonholonomic constraint into the equations of motion in
cies much lower than the inverserelaxation time. This is order to fix the klr_letlt_?_energiBl,Sa_, rgther than fixing the
indeed the case, and we find that the frequency dependeF_ﬂtal energy. Th_e justification for this is l_Jas_ed on a formula-
specific heat saturates at a frequency corresponding to tfn of mechanics known as Gauss’ principle of least con-
inverse of the minimum sampling time. straint[33], which states thak;m,(f;—F;/m)? is minimized
The paper is organized as follows. In Sec. Il we describéby the constrained motion. The constraint means that the
the details of our molecular dynamics simulations includingmotion is non-Newtonian, but this is fine since we are con-
parallel tempering and single temperature runs. We also deserned with thermodynamics rather than dynamics. We re-
scribe our calculation of the relaxation time. In Sec. [l A quire that the temperature remain fixed to an accuracy of 5
we show that parallel tempering calculations produce a peak 10*. We monitored the temperature and found that the
in the specific heat versus temperature. In Sec. Ill A1 waemperature constraint algorithm worked so well that once
show by plotting the inherent structure energies versus tenthe temperature was set, the program rarely had to rescale the
perature that the specific heat peak is not the result of gettingelocities in order to adjust the temperature. Since tempera-
stuck in a basin of the energy landscape. We present in Seture rather than energy is kept constant, it can be shown that
[l B a systematic method to determine the equilibrium valuewe are working in the canonical ensemips#].
of the specific heat. This technique tracks the value of the We have done three types of runs in our molecular dy-
specific heat as a function of the measurement time span. Weamics simulations: cooling, parallel tempering, and single

Il. MOLECULAR DYNAMICS SIMULATION
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temperature runs. First we describe our cooling runs. We 45 126
cool the system from a high temperatifie=1.5) by lower- '

ing the temperature in steps AfT=0.05. At each tempera- < A 124
ture we equilibrate for 10time steps and then measure the 4 < pt22

quantities of interest for T0additional steps. The results are
then averaged over different runs. —
At the glass transition the system falls out of equilibrium .35 |

>

o

0.5 1 15
T [MDunits]

and becomes trapped in a basin of the energy landscape. In
order to try to avoid this, we have used parallel tempering
together with molecular dynamics. We implement parallel 3L oo
tempering (PT) [29,35 by running molecular dynamics
simulations in parallel at chosen temperatures using the tem-

perature constraint algorithf80] to keep the temperature of 25 .
each simulation constant. At 100 time step intervals we at- 0 0.5 1 15
tempt to switch the configurations of two neighboring tem- Temperature [MDunits]

peratures using a Metropolis test which ensures that the en- . , o
ergies of the configurations sampled at any given FIG. 1. Specific heat vs temperature. Shown is the specific heat

temperature have a Boltzmann distribution. |Bgtand 3, be calculated from fluctuations for systems with=216 (O, averaged
two neighboring inverse temperatures, andUgtand U, be over s_ix rung and with N=512 for _measurements _covering 4
the corresponding potential energies of the configurations af 1% time steps(V, averaged over nine runand 10 time steps
these temperatures at a time step just before the possibie averaged over three rursone with parallel tempering. Typical
swap. If A=(B;-B,)(U,-U,), then the switch is accepted equilibration times were  10° time steps. The solid line is the

with probability unity if A<0 and with probability exp specific heat calculated from the derivative of the energy from the

4% 1P time step parallel tempering runs witi=512. Also shown

—-A) if A>0. The acceptance ratio is between 30% and 75%|s the specific heat calculated from the energy fluctuations for a

NearT,, the acceptance ratio was above 60%. After a swap i§ystem withN=512 (¢, averaged over six runghat was cooled
accepted, the velocities of the particles in each conflguratloeonvemiona”y with 18 time steps per temperature. TH€ corre-
are rescaled to suit their new temperature. Each configuratioghond to concatenating between 13 and 40 single temperature runs:
then continues to evolve using molecular dynamics for aneach run had ftime steps with 512 particles that were initiated
other 100 time steps. Switching configurations allows afrom parallel tempering configurations and equilibrated for up to
given simulation to do a random walk in temperature space x 107 time steps. Inset: Average inherent structure energy per par-
in which it visits both low temperatures and high tempera-ticle vs. temperature for 512 particles obtained from parallel tem-
tures. This helps to prevent it from becoming trapped in gering, cooling, and single temperature runs. The symbols denote
valley of the energy landscape at low temperatures. Typicallyhe same cases as in the main figure. The arrow points to the inflec-
we equilibrate for < 10° time steps and then do measure- tion point that coincides witfT,,. (gs) is measured in MD units.
ments for an additional4—10x10° MD steps. We average
over different runs which have different initial positions and no signs of aging6] in the sense that there is no systematic
velocities of the particles at each temperature. variation with waiting time. The fluctuations im for the

We have also done some long runs at a single temperatutaree different waiting times is indicated by the cited stan-
by starting from a configuration generated by parallel tem-dard deviation. At higher temperatures this relaxation time is
pering, equilibrating for up to %10’ time steps, and then much shortef29].
making measurements for &@me steps. The usefulness of
these runs will become clear later.

To set the time scale, we have calculated ¢helaxation Il RESULTS
time using the full intermediate scattering function A. Specific heat
Fea(k,t)=(1/Ng){p(t)p-,(0)) for the B particles wherdNg is We calculate the specific he@Y, per particle at constant

the number oB particles and),;(t)=2i“i31ex;{—ilz-ﬁ(t)] isthe  volumeV in two ways. The first uses the fluctuations in the
Fourier transform of the density at time(...) denotes the potential energyU per particle: C,=(3Kg/2) + NkgB2((U)?
thermal average. Since the system is isotropic, we choose the{U)?) where the first term is the kinetic energy. The second
wave vectors whose magnitude equéls, which is the way wuses Cy=(3kg/2)+d(U)/dT=(3kg/2)+((U(Ti+1))
wave vector of the maximum in the partial static structure—(U(T;)))/(T;,;—T;) where we approximate the derivative
factor S3g(k) for the B particles, becaus€gg(k,t) relaxes with a finite difference between neighboring temperatures.
slowest atkya, [36]. The relaxation timer is defined by The results are shown in Fig. 1. Note that there is a sharp
F(k,7/F(k,t=0)=1/e [37,3§. We have averaged asymmetric peak centeredBj=0.305+0.003. The low tem-
F(k,t)/F(k,t=0) over 40 runs after waiting times of 5 perature side of the peak drops steeply. The curves for 216
X 107, 1%, and 1.5< 10° time steps for a system with 512 and 512 particles coincide, indicating that there is no size
particles afT=0.289 855 which is slightly below, andTc ~ dependence. The discrete points are calculated from the en-
[29]. We find that thex relaxation timer=(1.0+0.) X 1P  ergy fluctuations. The solid line is calculated from the de-
MD time steps. This gives us a time scale by which to com-ivative of the energy. The fact that the two coincide indi-
pare other times such as our run times. This valuesifows  cates that the system was equilibrated in all the basins of the
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energy landscape that were visited. For comparison we also 5.0 NS = ' '
show the result of cooling through the transitiof). The _ ' W
peak inC,, found by cooling coincides with the peak found X

in parallel tempering. — 45 ‘O>34 w m W WM | 1

X

= o O [O 3N ))

. © 32
0 8
1. Inherent structure energies o a0l time [1é,md steps] S |
We do not believe that the parallel tempering peak in the & I A

specific heat is due to the system becoming trapped in a ‘qé_ A A AA
metastable minimum in the energy landscape for the follow- N 35k _

© T=0.2898 (23 runs)
0 T=0.308 (13 runs)
A T=0.342 (10 runs)

ing reason. The configurations corresponding to the minima
of the energy landscape are called inherent structi88js

We sampled the configurations that were visited during the 3.0 L s u - L i
parallel tempering runs and found the corresponding inherent 10 10° 10 10 10 10
structure energ,s per particle by minimizing the potential time span At, [md steps]

energy locally using the method of conjugate gradi¢A6s. - .
In the inset of Fig. 1 we plot the average inherent structure G- 2- Block averaged specific heat vs time spdp for 512
energies versus the temperature of the configuration that W:ﬁ’@rt'des atT=0.289 855, 0.308 642, and 0.342 4658. Solid lines

g . are the result of block averaging each run and then averaging over
originally saved. At high temperaturd§=0.9 (g does the number of runs shown. Open symbols are the result of stringing

not vary much with temperature. As the temperature defng together and then block averaging. The shape of the symbols
creases below 0.5g decreases rather steel§]. The  jgicates the temperature as given in the legend. Inset: Block aver-
temperature of the inflection point of this decrease coincidegged specific heat vs time for 512 particlesTat0.289 855. The
with the temperaturd, of the peak in the specific heat. We lower curve corresponds tat,=1(° MD steps, and the upper to
also show(gg) for a system of 512 particles that was cooled At,=4x 10° MD steps. The time is the timén units of 10 MD
from T=1.5. At low temperature&,s) is rather independent steps in the middle of each block. The data &t0.289 855 is
of temperature for the cooled system, indicating that the sys.averaged over 23 runs. Parameters for both figures are the same as
tem is trapped in an energy basin. Such a flattening off witi" Fi9- 1.
decreasing temperature is not observed when parallel tem-
pering is used, indicating that the system is able to continuen the huge run. We call this global averaging. The results
visiting deeper basins. are shown as open symbols in Fig. 2. There is good agree-
ment between the solid lines and open symbols. Note that the
- _ specific heat initially increases with time span but then levels
B. Specific heat dependence on measurement time span off when the time span is long enough to exceed the mini-
The plot of(gg) versusT indicates that the system does mum sampling time. This time increases with decreasing
not appear to be trapped in a valley of the energy landscag@€mperature. Thus af=0.289 855<T,, the specific heat
at T<T,. However, the peak in the specific heat is not ancontinues to increase with time span upy=2>x10° time
equilibrium feature. Rather it is the result of not samplingSteps which is 200 times longer than theelaxation timer.
enough of phase space beldy. None of the runs we have Equilibrated values o€, nearT, are plotted in Fig. 1 and 3
shown atT <T, have reached the minimum sampling time. @nd lie above the peak i@, found with parallel tempering.
In order to obtain an accurate thermodynamic average, wéhus the specific heat peak found with parallel tempering is
have developed a method which we now describe. We diéhe result of not sampling enough of phase spade<af, to
single temperature runs in which we took a configuration ofobtain the true thermodynamic value of the specific heat
512 particles generated by parallel tempering Tt CV"“ The exploration of the energy distribution beldy is
=0.289 855, equilibrated for:8 10" time steps, and then ran Slow even with parallel tempering because the probability of
for an additional 18 time steps during which we recorded sampling large increases W are exponentially small.
the energy at every time step. Then we did block averaging
in which we divided our X 10 time steps into equal seg-
ments, each of lengtiAt,, and calculated the specific heat As Fig. 3 shows, the equilibrium specific heat continues
from energy fluctuations for each segmé¢#t]. The block to rise with decreasing temperature downTie0.2898. In
averaged specific heat versus time for two different timethe temperature range shown, the specific heat can be fitted
spansAt, is shown in the inset of Fig. 2. Note that for any to the form Cy=A;TB1+A, T2, where A;=2.84%;, B;=
given time span, there is no sign of systematic aging. How—0.20986, A,=3.477x 10%kg, and B,=-5.804. The first
ever, the specific heat averaged over time increasesMith term dominates at high temperaturé$>0.57) where
The specific heat, averaged over time spans of a giveﬂ:vyhiT~T‘°-21. In this temperature range the specific heat for
size and over different runs, versus time span sitgat the binary mixture coincides with that of the single compo-
several temperatures is shown in Fig. 2 by the solid lines. Tment fluid that hagr=0,, a density of 1.1 and crystallizes at
obtain time spans that are longer than any given run, wa melting temperatur&,,=0.57. At lower temperatures the
concatenated the energies from the runs done at a given terspecific heat rises steeply and the second term that goes as
perature to make one huge run, and then did block averaging T-58 comes into play. Sinc€,/T=dS/dTy, the steep rise

1. Temperature dependence of the specific heat
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4.5 - T 10" T T T

O Parallel Tempering Runs on binary fluid
< «4Single Temperature Runs on binary fluid
O'single component liquid
— Fit

Specific Heat [kg]
w
(3] &

w
T

Time [md steps]

25

10"

. <——< minimum sampling time
Temperature [md units] 5—6 o Relaxation Time
O—-=H Energy Correlation Time

2

FIG. 3. Equilibrium specific heat vs temperature. Shown is the

specific heat calculated from fluctuations for systems Wth512 100.28 0.30 0.32 0.34 0.36
(O, averaged over nine rupgor measurements coveringx410? Temperature [md units]

time steps done with parallel tempering. Typical equilibration times

were 2x 10° time steps. Thed come from global averaging as FIG. 4. Minimum sampling timeg relaxation timer, and the

shown in Fig. 2, i.e., from concatenating between 13 and 40 singlé€nergy correlation timer, which is half of the statistical ineffi-
temperature runs; each run had®ibne steps with 512 particles ciency as a function of temperature. Note that all have roughly the
that were initiated from parallel tempering configurations andsame temperature dependence. Note also thaind 7, are
equilibrated for up to X 10’ time steps. Parameters are the same agomparable.

in Fig. 1. Thed symbols represent the specific heat calculated from

the energy fluctuations of a single component fli=512, o product ofAt, and the ratio of the variance of the average

=0y, p=1.1) that crystallizes at a melting temperatufg=0.565.  p|ock energies to the variance of the energies:
The single component fluid specific heat was averaged over three

parallel tempering runs that were equilibrated fot 10° time steps Atboz(U)
and then run for an additional>210° time steps at each tempera- s= lim oz—b' (1
ture. The solid line is a fit to the forn@,=A,;TB1+A,TB2, where Aty—oe (L)

A1=2.845, B,=-0.200 86Ap=3.477x 10 %s, andB,=-5.804.  \yhere the variance of the energies  i92(U)

_ —15Aty, RTERY: i
in the specific heat means that the entropy versus temperé—(mfur‘) Etﬁin(ul(t) EVU") ,_1the variance of the average
ture has a steep positive slope. Since the crystalline entrogjlock energies iss*(Up)=n,'2p,(Up—Uy,)?, the average
has a shallowe_r slope, this is consistent with the _Kauzmangock energy isUb:(Atb)‘lztAz‘gU(t), the average energy is
paradox in which the_ low temperature extr_apolatlon of th?Urun:(Atrun)_lﬁtA:ti““U(t), and the number of blocksn,
entropy of the glass intersects the crystalline entropy. This . .
. 4 . . =At,,/At,. To find s, we calculate the ratio
raises the very interesting question of what happens to the — i ]
specific heat in the thermodynamic limit as the temperaturé\so(Up)/a*(U) for each run for various time spaniy,
falls. Does the specific heat continue to rise? Does it evenlnen for each time span we average the ratio over all the
tually go through a peak? Unfortunately the answers lie afuns at a given temperature. By plotting the ratio versts

temperatures where we cannot find the equilibrium value in #n & log-log plot, we can extrapola#t,) ™ to 0 to estimate

reasonable amount of time. s. We expects= 27, and we find thas/2 is comparable to
o o 7y and 7. s=2.4x 10°, 2.5x 1P, and 1.1x 10* time steps at
2. Energy correlaion time and energy distribution T=0.289 855, 0.308642, and 0.342466, respectively. Figure

Note thatC*® is proportional to the variance?, of the 4 shows that ther relaxation time and the energy correlation
potential energy distributioR(U), i.e., Cl*e= Noﬁ/(kBTz). If time 7,=s/2 are quite comparable at various temperatures.
o? is finite and if n sample values ofJ are statistically These values ofy and 7, imply that the energies are corre-
independent and identically distributed, then basic statistickated over quite a number of time steps, and that the number
dictates that the measure2|, which is proportional to the n of statistically independent values is substantially smaller
sample variancé&’ of U, has an expectation value ¢€,)  than the total number of energies.
=CUIV%(1-1/n) [41]. The numbem of statistically indepen- We find that(C,) is a good fit to(Cy)=C{*(1~1/n) only
dent potential energies is given by:At,/ 7, wherer, is the ~ When (Cy) is within 5% to 10% ofC{"®. At shorter time
energy correlation time. Fitting the data that is within 5% tospans and lower temperatures Fig. 2 shows gt
10% of CI*®in Fig. 2 to(C\)=Cy"%(1-1/n) yields 7,~3 ~In(At,). This occurs because the system does not uni-
X 10°, 1x 105, and 5< 10° time steps atT=0.2898551, formly sampleP(U) during these shorter time spans. As the
0.308 642, and 0.342 466, respectively. These values agystem travels through the energy landscape, it samples the
comparable to ther relaxation timesr of 1X 10°, 6 10, energies of each basin that it visits. As shown in Fig. 5, we
and 2x 10* time steps, respectively. find that the distribution of energies sampled from the basins

They are also comparable to the correlation time given byisited during a shorter time span has a smaller variance than
the statistical inefficiencg [42]. sis the At,— o limit of the  the total distributionP(U). Furthermore, the centers of the
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5 T T T T T
. . . . . 2 o—e T=0.2898
o 1.66 =
> o 4
X 41 | 2
» 1.64 £
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= 1.62 ST @
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2 1.6 ¢YG T 3t
& : g
O 2r 1.58 ' L 1 ' . a)
5 0o 2 47 6 8 10 Y
NS Time [10° md steps] 5
(] 3
€ 17 1 g 2 5 5 = =)
g T 10° 107 107
2 o [1/ md time steps]
0 1 L 1 "
15 1.6 1.7 1.8 1.9 FIG. 6. Frequency dependent specific heat vs frequency for 512

particles atT=0.289 855, 0.308 642, and 0.342 4658. Parameters
are the same as in Fig. 2.

FIG. 5. Number of configurations vs the average energy per
particle acquired during one run of AMD steps of a system of

512 particles aff=0.289 855. The large curve centered at 1.62 isinto Cy(w) as can be seen by approximatiny(t) with
the histogram for the entire run. The small curve on the left centere v

at 1.60 represents the counts acquired betweerl@ and 5 %Xq_t/T) in the integral in !;q(Z). Figure 6 Sh°".VS that the
X 107 time steps; the small curve on the right centered at Lsgrgquency dependent specific héllw) versusw increases
represents the counts acquired betweenl®’ and 8x 10’ time W'th decreasing frequency and _then flattens Pff V‘_’hen th?
steps. Inset: Data from the same run. Circles represent the potentiBei0d becomes longer than the inverse sampling time. This
energy per particle averaged ovefliine steps vs time. The solid Can be seen more clearly in Fig. 7 where we plot both the
line is eg+3ksT/2 Vs time. The potential energy per particle is frequency dependent specific h€{w) versus the period as
measured in MD units. well as the specific heat versus the time span. Figure 7 shows
that Cy(w) continues to increase well beyond therelax-
smaller distributions do not necessarily coincide with thedtion time and eventually saturates when the period is com-
center of the total distribution. Rather the smaller distriby-Parable to the minimum sampling time.
tions are centered at the inherent structure energy plus the
energy of vibrations aroungg [43]. In support of this, we
show in the inset of Fig. 5 that the block averaged energy we now cite evidence that systems at temperatures just
versus time approximately coincides willys(t)+3ksT/2]  below T, have equilibrated in the sense of showing no signs
versus time. As more basins are visited, the sample averag# aging. First the inset of Fig. 2 shows the lack of aging in
(U) moves towards the average of the full distribution andthe specific heat versus time for a given value\tf. Second

the variance grows. This correspondsQg increasing with  is the absence of aging in the relaxation timer. As we
time span sinceCy is proportional to the variance of the

Average Potential Energy Per Particle [md units]

integral a nonzero lower limit which introduces oscillations

D. Absence of aging

potential energy distribution. 4.5
- 00 ®
C. Frequency dependent specific heat o ©
[ ]

The increase of the specific heat with time span is mir- 2o ’ |
rored in the frequency dependence of the specific heat be- E ’ . Fo a0 O
cause lower frequencies correspond to longer periods and @ | = A
longer time spans. To show this, we have calculated the real o
part of the frequency dependent specific heat which is given ‘G

D 35 4 |
by [19,22 &
- > O T=0.2898 (23 runs)
, : N . 0 T=0.308 (13
Clw) = (3kg/2) + d(t=0) — w J AdDsinwdt, (2) o A To0.9d5 1o )
0 .0
3.0 '5 IG I7 I8 I9 10
where  the 10 10 10 10 10 10

energy autocorrelation  functiongy(t)
:NkB,82<(U(t)—<U>)(U(O)—<U>>t0 and(.. .>t0 indicates an av-
erage over initial times. The subscrigtmeans that the vol- FIG. 7. Frequency dependent specific heat vs inverse frequency
ume is kept constant. Since the time to calculaiét) goes  or the period in MD time steps for 512 particles. Also shown for
with the number of energies squared, we used energies reemparison is the data from Fig. 2. The solid symbols with the
corded at intervals of 350 MD steps. The exclusion of shortlashed lines ar€,(w) at three different temperatures. The shape of
times reduces the value @f,(w) and gives the Fourier sine the symbols indicates the temperature as given in the legend.

time span At, [md steps]
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FIG. 8. Full intermediate scattering functiég(kmaxt) Vs time FIG. 9. Inherent structure energy per particle vs time for 512

for 512 particles of which 256 are type B particldgyq,= 27 particles aff=0.289 855 averaged over 40 single temperature runs.
X 8.3666L. The solid lines come from averagifgp(kmaxt) Over — Each run was started from a configuration generated from parallel
11 different runs, each of which was started frdm1.5, quenched tempering aff =0.289 855, equilibrated for §10’ time steps, and

to T=0.289 855, and then used to calculBig(Kyax t) after a wait-  then run for an additional % 10 time steps during which configu-

ing time of ty,. From left to right,t,,=0, 5x 10% 5x1C°, 1(°, 5  rations were periodically recorded. The energies of the inherent
X 10°, and 2.5< 10’ MD steps. The dashed lines correspond to av-structures associated with these recorded configurations are shown
eraging over 40 runs witty,=5x 107, 1(%, and 1.5< 1% time steps  here. The inherent structure energy per particle is measured in MD

during single temperature runs B+0.289 855. units.

N
described earlier, we have calculatedising the full inter- (Ar3(t)) = AN D [rit) -1, (0012 ). (3)
mediate scattering functioRgg(k,t) for the B particles. The i=1

relaxation timer is defined byF(k,7)/F(k,t=0)=1/e. We  \ze found that{ Ar2(t))}2= 100, in each run examined after

have averaged (k,t)/F(k,t=0) over 40 runs after waiting 18 {ime steps aT=0.289 855. This is comparable to the box
timesty, of 5x 10, 10°, and 1.5<10° time steps for a Sys-  gjze | =9.485, for a system of 512 particles. So the system
tem with 512 particles af=0.289 855<T, [29]. We find  gpes not appear to be getting stuck in a metastable minimum
that the relaxation timer=(1.0+0.1 X 10° MD time steps.  of the energy landscape during the single temperature runs.
This value ofr shows no signs of aginf$] in the sense that Note that even though the root mean square displacement is
there is no systematic variation with waiting time. The lack comparable to the size of the system, the system still has not
of aging is to be expected since the aging time is equal to sampled enough configurations to obtain its thermodynamic
which is much less tham,. We have confirmed that the yajue. Thus those who do simulations should be careful
aging time is the same as the equilibrium value7oby  \yhen their criterion for equilibration is that the root mean

starting from 11 different equilibrium configurations &t  square displacement is a few particle diamefdd.
=1.5, quenching toT=0.289 855, and measuring after

waiting times ofty,=0, 5xX10% 5x10°, 1%, 5x 1°, and V. DISCUSSION
2.5X 10" MD steps. The results are shown in Fig. 8. For '
ty<<10° MD steps,r increases with, which indicates aging As we mentioned in the Introduction, experiments find
[6]. However, fort,,=10° MD steps, there is no aging and  that in equilibrium systems at low frequencies the real part of
equals its equilibrium value of $0MD steps. the frequency dependent specific heat rises and then saturates
Third we have looked for signs of aging in the inherentwith decreasing frequencj?2,3,9-13. There have been a
structure energy versus time in our single temperature moaumber of theoretical approaches to describe the frequency
lecular dynamics runs of #$0 time steps at T dependent specific hept6—25. Some have viewed the fre-
=0.289 855<T,,. During the run, configurations were re- quency dependent specific heat in the context of generalized
corded every so often. Averaging over 40 runs, we find nchydrodynamic equationfl7,18. Nielsen and Dyre derived
evidence that the inherent structure energy decreases systethe fluctuation-dissipation theorem for the frequency depen-
atically with time, though the noise in the data prevents uglent specific hegd22]. Some have suggested that slow struc-
from seeing changes smaller than 1%. This is shown in Figtural relaxation leads to slow thermal relaxation which re-
9. sults in a frequency dependent specific H&&823. Zwanzig
We have also examined the root mean square displaceelatedCy(w) to the frequency dependent longitudinal vis-
ment(Ar(t))’2in our long single temperature runs where cosity[20]. His work implies that in isobaric measurements a
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change in temperature produces a change in the density lead- 42 - - -
ing to a slow volume relaxation due to the high value of the &—=a 1,=4,825,379 md steps
viscosity [25]. Thus the frequency dependent viscosity pro- 6—o 1,=1x10° md steps
duces a frequency dependent specific l@&#to) at constant
pressure. Zwanzig assumes that the constant volume specific
heat is independent of frequency. However, our constant vol- — 3.8

40

ume simulations as well as those of othgt9,25 indicate =,
that there must be a different reason for the frequency depen-3
dence of the specific heat. Simon and McKerjfhé] sug- 553.6 - .

gested that the application of high frequency heat current
oscillations drives the system out of equilibrium by putting
the system in the vicinity of the frequency dependeégt B =y J.- ]
They argue that as a result the response is dominated by

structural recovery. However, we find a frequency dependent . . . .
specific heat for a system that is in equilibrium, and shows “10° 102 10* 10° 10° 10"
no signs of aging or structural relaxation. We did not allow 1/frequency = period [md steps]
temperature oscillations. Rather we kept the temperature

constant and used the energies of an equilibrium system to FIG. 10. Frequency dependent specific heat from &g.vs
calculateCy/(w). inverse frequency or the period in MD time stepg &t0.289 85. In

To understand why the specific heat has frequency depefrd: (4) we usedA=0.773g and Coq=4.136 748

dence at low frequencies, note that ”‘_9 Increase af‘d evem%!)tter fit by a stretched exponential function than by a simple
saturation of the zero frequency specific heat with '”Creas'”%xponential. The stretched exponential implies tBatw)

time span is mirrored by the rise and subsequent saturatiqgjj| rise over a larger range of frequencies than if the energy
of the frequency dependent specific heat with decreasing fresorreation function decayed as a simple exponential. From
quency. Longer time spans correspond to longer periods andlys. (2) and (4) we see that the rise occurs as the energies
lower frequencies. Just as long time spans are needed Kxcome uncorrelated. The time scale for this to occur is the
acquire a sufficient sampling of the energy to produce thenergy correlation time. Since the energy correlation time is
equilibrium value of the specific heat, the period must becomparable to ther relaxation time, this is consistent with

long enough for the energies to become uncorrelated in ordejther simulations that found the specific heat increasing with
for the frequency dependent specific heat to approach its zegecreasing frequency at frequencies corresponding to the
frequency equilibrium value. To show this, we can make anime scales of the structural relaxation. Our work shows that
estimate of the frequency dependent specific heat by roughltructural relaxation is not involved in the rise of the fre-

approximating the energy autocorrelation function in &).  quency dependent specific heat in an equilibrium system.
with ¢(t)=A exp(-t/ 7)) [45]. Doing the integral in EQq(2)  Rather the rise is the result of the system sampling uncorre-

produces a Lorentzian: lated statistically independent energy fluctuations. The time
scales required for sampling independent energies increase
2.2 ; ! . )
Cl(®) = Cog— A wTT 4) with decreasing temperature due to the slow microscopic dy-
v TP namics that also govern the structural relaxation of a glass

forming liquid.
We will refer to this as the Debye model of the frequency The frequency dependent specific heat saturates when the
dependent specific heat. Using a simple exponential to fit thperiod is long enough for the system to sample enough en-
energy autocorrelation function produced by averaging oveergies to obtain an accurate value for the equilibrium zero
23 runs atT=0.289 85 with intervals of 350 MD steps re- frequency specific heat, i.e., when the period reaches the
sults in a rather poor fit, but produces the valugs minimum sampling time. This can be seen in Fig. 7 where
=4 825 379 time steps anll=0.77Xg. The result of using we compare the frequency specific heat versus period to the
these values in Eg4) is shown in Fig. 10 as well as the specific heat versus time span. Both reach a plateau at about
result of settingr, equal to thea relaxation timer =7  the same time, and this time is the minimum sampling time.
=10f MD steps. Note that the frequency dependent specifi®eturning to our simple example of the Debye model, we
heat starts to rise when the period is comparable fdhe can see from Fig. 10 that the minimum sampling time is
energy correlation time. In other words in this simple modelalmost two orders of magnitude larger thap. For 7
the frequency dependent specific heat starts to increase wher 825 379 the minimum sampling time is about 2.5
the period is long enough for the energies to become uncor< 10° MD steps, and forr, =10° MD steps, the minimum
related and for the system to begin to sample independestampling time is about 8 10’ MD steps. The fact that Eq.
energies. (4) only involves 7, and yet produces a much longer mini-

In our simulations, comparing our energy correlationmum sampling time shows that the minimum sampling time
times to Fig. 6 indicates that as the frequency decreases, tli® not a new time scale but just a reflection of the energy
rise in the frequency dependent specific heat begins at fresorrelation time, or equivalently, the relaxation timer.
gquencies higher than the inverse energy correlation time. Furthermore, both the minimum sampling time arfthve
This is not surprising since the energy correlation function issoughly the same temperature dependence. This is shown in
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Fig. 4. The points for the minimum sampling time are rathernetic susceptibility from magnetization fluctuations, the di-
rough because there is no unambiguous way to define thelectric constant from electric polarization fluctuations, and
minimum sampling time. So we simply defined it to be thethe conductivity from current fluctuations. In all these cases
earliest time where the value of the specific heat reached thiae thermodynamic average requires adequate sampling. Ex-
equilibrium value and estimated it from the plots of the speperimental measurements on glassy systems that show no
cific heat versus time span. The fact that the minimum samsigns of aging may also find that the results depend on the
pling time andr have roughly the same temperature depentime span over which the measurements were made. If this is
dence is consistent with the minimum sampling time being ghe case, the distribution of values will change with the
reflection ofr. According to the time-temperature superposi-amount of sampling time.
tion principle of mode coupling theory, any definition of the ~ One should realize that different quantities can have dif-
relaxation time in the vicinity off that measures the time ferent minimum sampling times even with fixed macroscopic
scale of thex relaxation is predicted to show the same tem-parameters such & N, V, etc. We have seen that the time
perature dependenga7]. needed to determine the relaxation time can be orders of
Our work is a cautionary tale for those who perform nu-magnitude smaller than the time needed to find the equilib-
merical simulations on slowly relaxing systems. It indicatesrium specific heat at <T,. One way to understand this is to
that to obtain accurate thermodynamic averages, one musonsider the distribution of potential energies of the system.
not only check that the system shows no signs of aging, butinding the average energy will take less sampling than find-
one must also check that the quantity to be measured hagg higher moments of the distribution such as the second
sampled enough of phase space to obtain a large number gfoment which is reflected in the specific heat.
statistically independent values. This sampling time can be To summarize, experimental measurements on systems
orders of magnitude longer than previously recognized timéhat are not aging have found that the specific heat is fre-
scales such as the aging time and sheelaxation time. Our  quency dependerj2]. Our work shows that this frequency
method of calculating the specific heat as a function of thelependence arises from the long equilibration times needed
measurement time span is a systematic way of determiningp sample statistically independent energies, and that the spe-
the equilibrium value. This method can be adapted for use igific heat becomes independent of frequency once the period
measuring other thermodynamic quantities. We believe it i€xceeds the minimum sampling time.
an improvement over the sometimes arbitrary definitions of
equilibration that have been invoked in doing numerical
simulations. We thank Francesco Sciortino, Bulbul Chakraborty, Jon
Our approach for systematically calculating the equilib-Wellner, Greg McKenna and Sue Coppersmith for helpful
rium value of the specific heat is applicable for determiningdiscussions. This work was supported by U.S. Department of
other thermodynamic quantities such as calculating the mage=nergy Grant No. DE-FG03-00ER45843.
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