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We have performed molecular dynamics simulations on a glass-forming liquid consisting of a three-
dimensional binary mixture of soft spheres. We show that a peak in the specific heat versus temperature can
occur because a glassy system that shows no signs of aging progresses so slowly through the energy landscape
that the minimum sampling time needed to obtain accurate thermodynamic averages exceeds the observation
time. We develop a systematic technique to determine the equilibrium value of the specific heat and the
minimum sampling time. Below the temperature of the specific heat peak, the minimum sampling time is
orders of magnitude longer than thea relaxation time. We find that an equilibrium system that is not under-
going structural relaxation or aging has a frequency dependent specific heat that rises as the frequency de-
creases. The rise occurs at frequencies corresponding to periods that are long enough for the system to sample
statistically independent energies. When the period is comparable to the minimum sampling time, the fre-
quency dependent specific heat reaches a plateau. As a result, the specific heat has a frequency dependence at
frequencies orders of magnitude lower than is implied by the inversea relaxation time.
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I. INTRODUCTION

As a glass-forming liquid is cooled, a glass transition oc-
curs when the system falls out of equilibrium, i.e., when the
time scale for reaching equilibrium exceeds the observation
time [1]. This is often associated with frequency dependent
measurements of quantities such as the specific heat[2] and
dielectric function[3] where characteristic frequencies sys-
tematically decrease with decreasing temperature even when
the samples show no signs of aging. In this paper we show
that this frequency dependence is associated with long
equilibration times.

Like many complex systems, such as proteins and neural
networks, the dynamics of the glass transition is governed by
the potential energy landscape where each point corresponds
to a particular configuration and energy of the system[4,5].
The energy landscape can be used to describe the three ways
in which a system can fall out of equilibrium. First a system
can become trapped in a metastable minimum where it stays
for the duration of the observation time. Second a system can
be in an energetically unlikely part of phase space and pro-
ceed slowly to a region where its configurations obey a Bolt-
zmann distribution. As such a nonequilibrium system
evolves toward more probable regions of phase space, it ex-
hibits aging which means its properties systematically
change with time and do not obey stationarity[6]. The aging
time, after which aging stops, is equal to thea relaxation
time which is the charactistic time for the system to forget its
initial configuration.

The third way to fall out of equilibrium is to inadequately
sample an equilibrium ensemble. It is often not appreciated
just how long it actually can take to acquire enough values,
and how this time is related to the frequency dependence in
measured quantities. The point is that even after a glassy

system no longer ages and has reached basins with appropri-
ate energies, the system proceeds so slowly through the en-
ergy landscape that thea relaxation time is easily dwarfed
by the minimum sampling time which we define as the time
to accumulate the large number of statistically independent
measurements needed to accurately determine a thermody-
namic average. We find from molecular dynamics simula-
tions that a glass-forming liquid, that shows no signs of ag-
ing, can undergo a glass transition, as signaled by a peak in
the specific heatCV versus temperature, when the observa-
tion time drops below the minimum sampling time. The dis-
tribution of energies that a system samples in a basin of the
energy landscape is a subset of the full distribution of ener-
gies available to the system. Since this subset has a smaller
variance than the full distribution, the resulting specific heat,
which is proportional to the variance of the energy, will be
smaller when calculated from short time spans than from
long time spans. These smaller values account for the values
below the peak inCV on the low temperature side. Going to
longer time spans eliminates the peak, though at tempera-
tures below the peak temperatureTp, these time spans can be
orders of magnitude longer than previously recognized
equilibration times such as thea relaxation time, the energy
correlation time, and the aging time.

Several groups[7,8] have claimed to find equilibrium
peaks in the specific heat in their simulations of glass form-
ing liquids. However, their criterion for deciding if they had
equilibrium values of the specific heat were somewhat arbi-
trary. They believed that their systems were in equilibrium
because they had run longer than thea relaxation time, but
they had no definitive way of testing this. In this paper we
present a systematic method to determine the equilibrium
value of the specific heat. This technique tracks the value of
the specific heat as a function of the measurement time span.
When the specific heat stops increasing and saturates with
increasing time span,CV has reached its equilibrium value.
We use this procedure to eliminate the peak in the specific
heat that we found using parallel tempering simulations.*Present address: Internap, Atlanta, GA 30309.
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One way to probe the time scales involved in glassy sys-
tems is via the frequency dependence of the specific heat.
Experimental measurements on equilibrium systems find that
as the frequency decreases, the real part of the specific heat
rises in a characteristic frequency range before reaching a
plateau[2,3,9–15]. The characteristic frequency decreases as
the temperature decreases. These experiments have inspired
a number of theoretical approaches[16–25]. Some have de-
rived an expression for the frequency dependent specific heat
within an existing theoretical framework such as generalized
hydrodynamics[17,18,23], the fluctuation-dissipation theo-
rem [22], projection operator formalism[25], or generalized
constitutive equations[21]. Simulations have been able to
reproduce the same qualitative features that are seen experi-
mentally [19,25]. Some papers attribute the increase in the
specific heat at low frequencies(as the frequency decreases)
to the structural relaxation of the supercooled liquid since
both the characteristic frequency and the relaxation time in-
crease with decreasing temperature[18,23]. Scheidleret al.
[25] note from their simulations that the specific heat in-
crease occurs at frequencies which have periods correspond-
ing to the time scales of the structural relaxation. Others have
proposed that the measurement technique forces the system
out of equilibrium when the structural relaxation time is
longer than the inverse frequency of the applied heat current
oscillations [16]. We show from our simulations that in a
system that is no longer aging, structural relaxation is not
directly responsible for the specific heat behavior at low fre-
quencies because the system is already in equilibrium and
does not need to relax to an equilibrium configuration.
Rather the increase of the frequency dependent specific heat
with decreasing frequency mirrors the increase of the specific
heat with time span because longer time spans correspond to
longer periods and lower frequencies. During a period the
system is exploring the energy landscape. The longer the
period, the more statistically independent energies it can
sample. When the period is long enough for the system to
sample statistically independent energies, the specific heat
rises. We find that the energy correlation time, which is com-
parable to thea relaxation time, determines the characteristic
frequency range where the specific heat rises. The fact that
the minimum sampling time exceeds thea relaxation time
and the energy correlation time by orders of magnitude im-
plies that the specific heat should increase down to frequen-
cies much lower than the inversea relaxation time. This is
indeed the case, and we find that the frequency dependent
specific heat saturates at a frequency corresponding to the
inverse of the minimum sampling time.

The paper is organized as follows. In Sec. II we describe
the details of our molecular dynamics simulations including
parallel tempering and single temperature runs. We also de-
scribe our calculation of thea relaxation time. In Sec. III A
we show that parallel tempering calculations produce a peak
in the specific heat versus temperature. In Sec. III A 1 we
show by plotting the inherent structure energies versus tem-
perature that the specific heat peak is not the result of getting
stuck in a basin of the energy landscape. We present in Sec.
III B a systematic method to determine the equilibrium value
of the specific heat. This technique tracks the value of the
specific heat as a function of the measurement time span. We

use it to show that the specific heat peak is eliminated when
equilibrium values are used. In Sec. III B 1 we give a func-
tional fit to the equilibrium specific heat. In Sec. III B 2 we
discuss the energy correlation time and explain why the spe-
cific heat increases with increasing time span until it reaches
its equilibrium value. In Sec. III C we show that the fre-
quency dependence of the specific heat mirrors the increase
of the specific heat with time span. In Sec. III D we show
that the increase of the specific heat with time span occurs in
systems which are not aging. We also show that even when
the root mean square displacement is comparable to the size
of the system, the system still has not sampled enough con-
figurations to obtain its thermodynamic value. In Sec. IV we
present our explanation of the frequency dependent specific
heat and discuss our results.

II. MOLECULAR DYNAMICS SIMULATION

We have performed a molecular dynamics simulation on a
three-dimensional glass forming liquid[26,27] consisting of
a 50:50 mixture of two sizes of soft spheres, labeledA andB.
The interaction between two particles a distancer apart is
given byVabsrd=efssab / rd12+Xabsrdg where the interaction
length sab=ssa+sbd /2, and the ratio of the diameters
sB/sA=1.4sa ,b=A,Bd. The cutoff functionXabsrd=r /sab

−l with l=13/1212/13. The interaction is cutoff at the mini-
mum of the potentialVabsrd where the potential and its first
derivative Vab8 srd with respect tor are equal to zero. This
cutoff ensures thatVabsrd and Vab8 srd go smoothly to zero.
Energy and length are measured in units ofe andsA, respec-
tively. Temperature is in units ofe /kB, and time is in units of
sA

Îm/e where the unit of massm is the mass of the particles
smA=mB=md. We will refer to these units as MD(molecular
dynamics) units. During each run the densityr0=N/L3=0.6
was fixed.N=NA+NB is the total number of particles. The
system occupies a cube of volumeL3 with periodic boundary
conditions. According to the ideal mode coupling theory
[28], the relaxation time diverges at a temperatureTC. For
our systemTC=0.303[29].

The equations of motion were integrated using the leap-
frog method[30] with a time step of 0.005. We keep the
temperature constant using an algorithm[30] that introduces
a nonholonomic constraint into the equations of motion in
order to fix the kinetic energy[31,32], rather than fixing the
total energy. The justification for this is based on a formula-
tion of mechanics known as Gauss’ principle of least con-

straint [33], which states thatoimisrẄi −FW i /mid2 is minimized
by the constrained motion. The constraint means that the
motion is non-Newtonian, but this is fine since we are con-
cerned with thermodynamics rather than dynamics. We re-
quire that the temperature remain fixed to an accuracy of 5
310−4. We monitored the temperature and found that the
temperature constraint algorithm worked so well that once
the temperature was set, the program rarely had to rescale the
velocities in order to adjust the temperature. Since tempera-
ture rather than energy is kept constant, it can be shown that
we are working in the canonical ensemble[34].

We have done three types of runs in our molecular dy-
namics simulations: cooling, parallel tempering, and single
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temperature runs. First we describe our cooling runs. We
cool the system from a high temperaturesT=1.5d by lower-
ing the temperature in steps ofDT=0.05. At each tempera-
ture we equilibrate for 104 time steps and then measure the
quantities of interest for 107 additional steps. The results are
then averaged over different runs.

At the glass transition the system falls out of equilibrium
and becomes trapped in a basin of the energy landscape. In
order to try to avoid this, we have used parallel tempering
together with molecular dynamics. We implement parallel
tempering (PT) [29,35] by running molecular dynamics
simulations in parallel at chosen temperatures using the tem-
perature constraint algorithm[30] to keep the temperature of
each simulation constant. At 100 time step intervals we at-
tempt to switch the configurations of two neighboring tem-
peratures using a Metropolis test which ensures that the en-
ergies of the configurations sampled at any given
temperature have a Boltzmann distribution. Letb1 andb2 be
two neighboring inverse temperatures, and letU1 andU2 be
the corresponding potential energies of the configurations at
these temperatures at a time step just before the possible
swap. If D=sb1−b2dsU2−U1d, then the switch is accepted
with probability unity if Dø0 and with probability exps
−Dd if D.0. The acceptance ratio is between 30% and 75%.
NearTp, the acceptance ratio was above 60%. After a swap is
accepted, the velocities of the particles in each configuration
are rescaled to suit their new temperature. Each configuration
then continues to evolve using molecular dynamics for an-
other 100 time steps. Switching configurations allows a
given simulation to do a random walk in temperature space
in which it visits both low temperatures and high tempera-
tures. This helps to prevent it from becoming trapped in a
valley of the energy landscape at low temperatures. Typically
we equilibrate for 23106 time steps and then do measure-
ments for an additionals4–10d3106 MD steps. We average
over different runs which have different initial positions and
velocities of the particles at each temperature.

We have also done some long runs at a single temperature
by starting from a configuration generated by parallel tem-
pering, equilibrating for up to 53107 time steps, and then
making measurements for 108 time steps. The usefulness of
these runs will become clear later.

To set the time scale, we have calculated thea relaxation
time using the full intermediate scattering function

FBBskW ,td=s1/NBdkrkWstdr−kWs0dl for theB particles whereNB is

the number ofB particles andrkWstd=oi=1
NBexpf−ikW ·rWistdg is the

Fourier transform of the density at timet. k. . .l denotes the
thermal average. Since the system is isotropic, we choose the
wave vectors whose magnitude equalskmax which is the
wave vector of the maximum in the partial static structure
factor SBBskd for the B particles, becauseFBBsk,td relaxes
slowest atkmax [36]. The relaxation timet is defined by
Fsk,td /Fsk,t=0d=1/e [37,38]. We have averaged
Fsk,td /Fsk,t=0d over 40 runs after waiting times of 5
3107, 108, and 1.53108 time steps for a system with 512
particles atT=0.289 855 which is slightly belowTp andTC
[29]. We find that thea relaxation timet=s1.0±0.1d3106

MD time steps. This gives us a time scale by which to com-
pare other times such as our run times. This value oft shows

no signs of aging[6] in the sense that there is no systematic
variation with waiting time. The fluctuations int for the
three different waiting times is indicated by the cited stan-
dard deviation. At higher temperatures this relaxation time is
much shorter[29].

III. RESULTS

A. Specific heat

We calculate the specific heatCV per particle at constant
volumeV in two ways. The first uses the fluctuations in the
potential energyU per particle:CV=s3kB/2d+NkBb2skUl2

−kUl2d where the first term is the kinetic energy. The second
way uses CV=s3kB/2d+dkUl /dT<s3kB/2d+skUsTi+1dl
−kUsTidld / sTi+1−Tid where we approximate the derivative
with a finite difference between neighboring temperatures.
The results are shown in Fig. 1. Note that there is a sharp
asymmetric peak centered atTp=0.305±0.003. The low tem-
perature side of the peak drops steeply. The curves for 216
and 512 particles coincide, indicating that there is no size
dependence. The discrete points are calculated from the en-
ergy fluctuations. The solid line is calculated from the de-
rivative of the energy. The fact that the two coincide indi-
cates that the system was equilibrated in all the basins of the

FIG. 1. Specific heat vs temperature. Shown is the specific heat
calculated from fluctuations for systems withN=216 (s, averaged
over six runs) and with N=512 for measurements covering 4
3106 time steps(,, averaged over nine runs) and 107 time steps
(h, averaged over three runs) done with parallel tempering. Typical
equilibration times were 23106 time steps. The solid line is the
specific heat calculated from the derivative of the energy from the
43106 time step parallel tempering runs withN=512. Also shown
is the specific heat calculated from the energy fluctuations for a
system withN=512 (L, averaged over six runs) that was cooled
conventionally with 107 time steps per temperature. Theb corre-
spond to concatenating between 13 and 40 single temperature runs;
each run had 108 time steps with 512 particles that were initiated
from parallel tempering configurations and equilibrated for up to
53107 time steps. Inset: Average inherent structure energy per par-
ticle vs. temperature for 512 particles obtained from parallel tem-
pering, cooling, and single temperature runs. The symbols denote
the same cases as in the main figure. The arrow points to the inflec-
tion point that coincides withTp. keISl is measured in MD units.
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energy landscape that were visited. For comparison we also
show the result of cooling through the transitionsLd. The
peak inCV found by cooling coincides with the peak found
in parallel tempering.

1. Inherent structure energies

We do not believe that the parallel tempering peak in the
specific heat is due to the system becoming trapped in a
metastable minimum in the energy landscape for the follow-
ing reason. The configurations corresponding to the minima
of the energy landscape are called inherent structures[39].
We sampled the configurations that were visited during the
parallel tempering runs and found the corresponding inherent
structure energyeIS per particle by minimizing the potential
energy locally using the method of conjugate gradients[40].
In the inset of Fig. 1 we plot the average inherent structure
energies versus the temperature of the configuration that was
originally saved. At high temperaturessT*0.5d keISl does
not vary much with temperature. As the temperature de-
creases below 0.5,keISl decreases rather steeply[5]. The
temperature of the inflection point of this decrease coincides
with the temperatureTp of the peak in the specific heat. We
also showkeISl for a system of 512 particles that was cooled
from T=1.5. At low temperatureskeISl is rather independent
of temperature for the cooled system, indicating that the sys-
tem is trapped in an energy basin. Such a flattening off with
decreasing temperature is not observed when parallel tem-
pering is used, indicating that the system is able to continue
visiting deeper basins.

B. Specific heat dependence on measurement time span

The plot of keISl versusT indicates that the system does
not appear to be trapped in a valley of the energy landscape
at T&Tp. However, the peak in the specific heat is not an
equilibrium feature. Rather it is the result of not sampling
enough of phase space belowTp. None of the runs we have
shown atT,Tp have reached the minimum sampling time.
In order to obtain an accurate thermodynamic average, we
have developed a method which we now describe. We did
single temperature runs in which we took a configuration of
512 particles generated by parallel tempering atT
=0.289 855, equilibrated for 53107 time steps, and then ran
for an additional 108 time steps during which we recorded
the energy at every time step. Then we did block averaging
in which we divided our 13108 time steps into equal seg-
ments, each of lengthDtb, and calculated the specific heat
from energy fluctuations for each segment[41]. The block
averaged specific heat versus time for two different time
spansDtb is shown in the inset of Fig. 2. Note that for any
given time span, there is no sign of systematic aging. How-
ever, the specific heat averaged over time increases withDtb.

The specific heat, averaged over time spans of a given
size and over different runs, versus time span sizeDtb at
several temperatures is shown in Fig. 2 by the solid lines. To
obtain time spans that are longer than any given run, we
concatenated the energies from the runs done at a given tem-
perature to make one huge run, and then did block averaging

on the huge run. We call this global averaging. The results
are shown as open symbols in Fig. 2. There is good agree-
ment between the solid lines and open symbols. Note that the
specific heat initially increases with time span but then levels
off when the time span is long enough to exceed the mini-
mum sampling time. This time increases with decreasing
temperature. Thus atT=0.289 855,Tp, the specific heat
continues to increase with time span up toDtb=23108 time
steps which is 200 times longer than thea relaxation timet.
Equilibrated values ofCV nearTp are plotted in Fig. 1 and 3
and lie above the peak inCV found with parallel tempering.
Thus the specific heat peak found with parallel tempering is
the result of not sampling enough of phase space atT,Tp to
obtain the true thermodynamic value of the specific heat
CV

true. The exploration of the energy distribution belowTp is
slow even with parallel tempering because the probability of
sampling large increases inU are exponentially small.

1. Temperature dependence of the specific heat

As Fig. 3 shows, the equilibrium specific heat continues
to rise with decreasing temperature down toT=0.2898. In
the temperature range shown, the specific heat can be fitted
to the form CV=A1T

B1+A2T
B2, where A1=2.845kB, B1=

−0.20986, A2=3.477310−4kB, and B2=−5.804. The first
term dominates at high temperatures(T.0.57) where
CV,hiT,T−0.21. In this temperature range the specific heat for
the binary mixture coincides with that of the single compo-
nent fluid that hass=sA, a density of 1.1 and crystallizes at
a melting temperatureTm=0.57. At lower temperatures the
specific heat rises steeply and the second term that goes as
,T−5.8 comes into play. SinceCV/T=dS/dTuV, the steep rise

FIG. 2. Block averaged specific heat vs time spanDtb for 512
particles atT=0.289 855, 0.308 642, and 0.342 4658. Solid lines
are the result of block averaging each run and then averaging over
the number of runs shown. Open symbols are the result of stringing
runs together and then block averaging. The shape of the symbols
indicates the temperature as given in the legend. Inset: Block aver-
aged specific heat vs time for 512 particles atT=0.289 855. The
lower curve corresponds toDtb=106 MD steps, and the upper to
Dtb=43106 MD steps. The time is the time(in units of 107 MD
steps) in the middle of each block. The data atT=0.289 855 is
averaged over 23 runs. Parameters for both figures are the same as
in Fig. 1.
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in the specific heat means that the entropy versus tempera-
ture has a steep positive slope. Since the crystalline entropy
has a shallower slope, this is consistent with the Kauzmann
paradox in which the low temperature extrapolation of the
entropy of the glass intersects the crystalline entropy. This
raises the very interesting question of what happens to the
specific heat in the thermodynamic limit as the temperature
falls. Does the specific heat continue to rise? Does it even-
tually go through a peak? Unfortunately the answers lie at
temperatures where we cannot find the equilibrium value in a
reasonable amount of time.

2. Energy correlation time and energy distribution

Note thatCV
true is proportional to the variancesU

2 of the
potential energy distributionPsUd, i.e.,CV

true=NsU
2 / skBT2d. If

sU
2 is finite and if n sample values ofU are statistically

independent and identically distributed, then basic statistics
dictates that the measuredCV, which is proportional to the
sample varianceSn

2 of U, has an expectation value ofkCVl
=CV

trues1−1/nd [41]. The numbern of statistically indepen-
dent potential energies is given byn=Dtb/tU wheretU is the
energy correlation time. Fitting the data that is within 5% to
10% of CV

true in Fig. 2 to kCVl=CV
trues1−1/nd yields tU<3

3106, 13105, and 53103 time steps atT=0.289 855 1,
0.308 642, and 0.342 466, respectively. These values are
comparable to thea relaxation timest of 13106, 63104,
and 23104 time steps, respectively.

They are also comparable to the correlation time given by
the statistical inefficiencys [42]. s is theDtb→` limit of the

product ofDtb and the ratio of the variance of the average
block energies to the variance of the energies:

s= lim
Dtb→`

Dtbs2sŪbd
s2sUd

, s1d

where the variance of the energies iss2sUd
=sDtrund−1ot=1

DtrunsUstd−Ūrund2, the variance of the average

block energies iss2sŪbd=nb
−1ob=1

nb sŪb−Ūrund2, the average

block energy isŪb=sDtbd−1ot=1
DtbUstd, the average energy is

Ūrun=sDtrund−1ot=1
DtrunUstd, and the number of blocksnb

=Dtrun/Dtb. To find s, we calculate the ratio

Dtbs2sŪbd /s2sUd for each run for various time spansDtb.
Then for each time span we average the ratio over all the
runs at a given temperature. By plotting the ratio versusDtb

−1

on a log–log plot, we can extrapolatesDtbd−1 to 0 to estimate
s. We expects<2tU, and we find thats/2 is comparable to
tU andt. s<2.43106, 2.53105, and 1.13104 time steps at
T=0.289 855, 0.308642, and 0.342466, respectively. Figure
4 shows that thea relaxation time and the energy correlation
time t«;s/2 are quite comparable at various temperatures.
These values oftU andt« imply that the energies are corre-
lated over quite a number of time steps, and that the number
n of statistically independent values is substantially smaller
than the total number of energies.

We find thatkCVl is a good fit tokCVl=CV
trues1−1/nd only

when kCVl is within 5% to 10% ofCV
true. At shorter time

spans and lower temperatures Fig. 2 shows thatCV
, lnsDtbd. This occurs because the system does not uni-
formly samplePsUd during these shorter time spans. As the
system travels through the energy landscape, it samples the
energies of each basin that it visits. As shown in Fig. 5, we
find that the distribution of energies sampled from the basins
visited during a shorter time span has a smaller variance than
the total distributionPsUd. Furthermore, the centers of the

FIG. 3. Equilibrium specific heat vs temperature. Shown is the
specific heat calculated from fluctuations for systems withN=512
(s, averaged over nine runs) for measurements covering 43106

time steps done with parallel tempering. Typical equilibration times
were 23106 time steps. Theb come from global averaging as
shown in Fig. 2, i.e., from concatenating between 13 and 40 single
temperature runs; each run had 108 time steps with 512 particles
that were initiated from parallel tempering configurations and
equilibrated for up to 53107 time steps. Parameters are the same as
in Fig. 1. Theh symbols represent the specific heat calculated from
the energy fluctuations of a single component fluid(N=512, s
=sA, r=1.1) that crystallizes at a melting temperatureTm=0.565.
The single component fluid specific heat was averaged over three
parallel tempering runs that were equilibrated for 13106 time steps
and then run for an additional 23106 time steps at each tempera-
ture. The solid line is a fit to the formCV=A1T

B1+A2T
B2, where

A1=2.845kB, B1=−0.209 86,A2=3.477310−4kB, andB2=−5.804.

FIG. 4. Minimum sampling time,a relaxation timet, and the
energy correlation timet« which is half of the statistical ineffi-
ciency as a function of temperature. Note that all have roughly the
same temperature dependence. Note also thatt and t« are
comparable.
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smaller distributions do not necessarily coincide with the
center of the total distribution. Rather the smaller distribu-
tions are centered at the inherent structure energy plus the
energy of vibrations aroundeIS [43]. In support of this, we
show in the inset of Fig. 5 that the block averaged energy
versus time approximately coincides withfeISstd+3kBT/2g
versus time. As more basins are visited, the sample average
kUl moves towards the average of the full distribution and
the variance grows. This corresponds toCV increasing with
time span sinceCV is proportional to the variance of the
potential energy distribution.

C. Frequency dependent specific heat

The increase of the specific heat with time span is mir-
rored in the frequency dependence of the specific heat be-
cause lower frequencies correspond to longer periods and
longer time spans. To show this, we have calculated the real
part of the frequency dependent specific heat which is given
by [19,22]

CV8svd = s3kB/2d + fVst = 0d − vE
0

`

fVstdsinsvtddt, s2d

where the energy autocorrelation functionfVstd
=NkBb2ksUstd−kUldsUs0d−kUllt0

andk. . .lt0
indicates an av-

erage over initial times. The subscriptV means that the vol-
ume is kept constant. Since the time to calculatefVstd goes
with the number of energies squared, we used energies re-
corded at intervals of 350 MD steps. The exclusion of short
times reduces the value ofCVsvd and gives the Fourier sine

integral a nonzero lower limit which introduces oscillations
into CVsvd as can be seen by approximatingfVstd with
exps−t /td in the integral in Eq.(2). Figure 6 shows that the
frequency dependent specific heatCVsvd versusv increases
with decreasing frequency and then flattens off when the
period becomes longer than the inverse sampling time. This
can be seen more clearly in Fig. 7 where we plot both the
frequency dependent specific heatCVsvd versus the period as
well as the specific heat versus the time span. Figure 7 shows
that CVsvd continues to increase well beyond thea relax-
ation time and eventually saturates when the period is com-
parable to the minimum sampling time.

D. Absence of aging

We now cite evidence that systems at temperatures just
below Tp have equilibrated in the sense of showing no signs
of aging. First the inset of Fig. 2 shows the lack of aging in
the specific heat versus time for a given value ofDtb. Second
is the absence of aging in thea relaxation timet. As we

FIG. 5. Number of configurations vs the average energy per
particle acquired during one run of 108 MD steps of a system of
512 particles atT=0.289 855. The large curve centered at 1.62 is
the histogram for the entire run. The small curve on the left centered
at 1.60 represents the counts acquired between 43107 and 5
3107 time steps; the small curve on the right centered at 1.63
represents the counts acquired between 73107 and 83107 time
steps. Inset: Data from the same run. Circles represent the potential
energy per particle averaged over 106 time steps vs time. The solid
line is eIS+3kBT/2 vs time. The potential energy per particle is
measured in MD units.

FIG. 6. Frequency dependent specific heat vs frequency for 512
particles atT=0.289 855, 0.308 642, and 0.342 4658. Parameters
are the same as in Fig. 2.

FIG. 7. Frequency dependent specific heat vs inverse frequency
or the period in MD time steps for 512 particles. Also shown for
comparison is the data from Fig. 2. The solid symbols with the
dashed lines areCVsvd at three different temperatures. The shape of
the symbols indicates the temperature as given in the legend.
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described earlier, we have calculatedt using the full inter-

mediate scattering functionFBBskW ,td for the B particles. The
relaxation timet is defined byFsk,td /Fsk,t=0d=1/e. We
have averagedFsk,td /Fsk,t=0d over 40 runs after waiting
times tW of 53107, 108, and 1.53108 time steps for a sys-
tem with 512 particles atT=0.289 855,Tp [29]. We find
that thea relaxation timet=s1.0±0.1d3106 MD time steps.
This value oft shows no signs of aging[6] in the sense that
there is no systematic variation with waiting time. The lack
of aging is to be expected since the aging time is equal tot
which is much less thantW. We have confirmed that the
aging time is the same as the equilibrium value oft by
starting from 11 different equilibrium configurations atT
=1.5, quenching toT=0.289 855, and measuringt after
waiting times of tW=0, 53104, 53105, 106, 53106, and
2.53107 MD steps. The results are shown in Fig. 8. For
tW,106 MD steps,t increases withtW which indicates aging
[6]. However, fortWù106 MD steps, there is no aging andt
equals its equilibrium value of 106 MD steps.

Third we have looked for signs of aging in the inherent
structure energy versus time in our single temperature mo-
lecular dynamics runs of 108 time steps at T
=0.289 855,Tp. During the run, configurations were re-
corded every so often. Averaging over 40 runs, we find no
evidence that the inherent structure energy decreases system-
atically with time, though the noise in the data prevents us
from seeing changes smaller than 1%. This is shown in Fig.
9.

We have also examined the root mean square displace-
ment kDr2stdl1/2 in our long single temperature runs where

kDr2stdl = s1/NdKo
i=1

N

fr istd − r is0dg2L . s3d

We found thatkDr2stdl1/2*10sA in each run examined after
108 time steps atT=0.289 855. This is comparable to the box
sizeL=9.48sA for a system of 512 particles. So the system
does not appear to be getting stuck in a metastable minimum
of the energy landscape during the single temperature runs.
Note that even though the root mean square displacement is
comparable to the size of the system, the system still has not
sampled enough configurations to obtain its thermodynamic
value. Thus those who do simulations should be careful
when their criterion for equilibration is that the root mean
square displacement is a few particle diameters[44].

IV. DISCUSSION

As we mentioned in the Introduction, experiments find
that in equilibrium systems at low frequencies the real part of
the frequency dependent specific heat rises and then saturates
with decreasing frequency[2,3,9–15]. There have been a
number of theoretical approaches to describe the frequency
dependent specific heat[16–25]. Some have viewed the fre-
quency dependent specific heat in the context of generalized
hydrodynamic equations[17,18]. Nielsen and Dyre derived
the fluctuation-dissipation theorem for the frequency depen-
dent specific heat[22]. Some have suggested that slow struc-
tural relaxation leads to slow thermal relaxation which re-
sults in a frequency dependent specific heat[18,23]. Zwanzig
relatedCpsvd to the frequency dependent longitudinal vis-
cosity[20]. His work implies that in isobaric measurements a

FIG. 8. Full intermediate scattering functionFBBskmax,td vs time
for 512 particles of which 256 are type B particles.kmax=2p
38.3666/L. The solid lines come from averagingFBBskmax,td over
11 different runs, each of which was started fromT=1.5, quenched
to T=0.289 855, and then used to calculateFBBskmax,td after a wait-
ing time of tW. From left to right,tW=0, 53104, 53105, 106, 5
3106, and 2.53107 MD steps. The dashed lines correspond to av-
eraging over 40 runs withtW=53107, 108, and 1.53108 time steps
during single temperature runs atT=0.289 855.

FIG. 9. Inherent structure energy per particle vs time for 512
particles atT=0.289 855 averaged over 40 single temperature runs.
Each run was started from a configuration generated from parallel
tempering atT=0.289 855, equilibrated for 53107 time steps, and
then run for an additional 13108 time steps during which configu-
rations were periodically recorded. The energies of the inherent
structures associated with these recorded configurations are shown
here. The inherent structure energy per particle is measured in MD
units.
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change in temperature produces a change in the density lead-
ing to a slow volume relaxation due to the high value of the
viscosity [25]. Thus the frequency dependent viscosity pro-
duces a frequency dependent specific heatCpsvd at constant
pressure. Zwanzig assumes that the constant volume specific
heat is independent of frequency. However, our constant vol-
ume simulations as well as those of others[19,25] indicate
that there must be a different reason for the frequency depen-
dence of the specific heat. Simon and McKenna[16] sug-
gested that the application of high frequency heat current
oscillations drives the system out of equilibrium by putting
the system in the vicinity of the frequency dependentTg.
They argue that as a result the response is dominated by
structural recovery. However, we find a frequency dependent
specific heat for a system that is in equilibrium, and shows
no signs of aging or structural relaxation. We did not allow
temperature oscillations. Rather we kept the temperature
constant and used the energies of an equilibrium system to
calculateCVsvd.

To understand why the specific heat has frequency depen-
dence at low frequencies, note that the increase and eventual
saturation of the zero frequency specific heat with increasing
time span is mirrored by the rise and subsequent saturation
of the frequency dependent specific heat with decreasing fre-
quency. Longer time spans correspond to longer periods and
lower frequencies. Just as long time spans are needed to
acquire a sufficient sampling of the energy to produce the
equilibrium value of the specific heat, the period must be
long enough for the energies to become uncorrelated in order
for the frequency dependent specific heat to approach its zero
frequency equilibrium value. To show this, we can make an
estimate of the frequency dependent specific heat by roughly
approximating the energy autocorrelation function in Eq.(2)
with fVstd=A exps−t /tLd [45]. Doing the integral in Eq.(2)
produces a Lorentzian:

CV8svd = Ceq− A
v2tL

2

1 + v2tL
2 . s4d

We will refer to this as the Debye model of the frequency
dependent specific heat. Using a simple exponential to fit the
energy autocorrelation function produced by averaging over
23 runs atT=0.289 85 with intervals of 350 MD steps re-
sults in a rather poor fit, but produces the valuestL
=4 825 379 time steps andA=0.773kB. The result of using
these values in Eq.(4) is shown in Fig. 10 as well as the
result of settingtL equal to thea relaxation timetL=t
=106 MD steps. Note that the frequency dependent specific
heat starts to rise when the period is comparable totL, the
energy correlation time. In other words in this simple model
the frequency dependent specific heat starts to increase when
the period is long enough for the energies to become uncor-
related and for the system to begin to sample independent
energies.

In our simulations, comparing our energy correlation
times to Fig. 6 indicates that as the frequency decreases, the
rise in the frequency dependent specific heat begins at fre-
quencies higher than the inverse energy correlation time.
This is not surprising since the energy correlation function is

better fit by a stretched exponential function than by a simple
exponential. The stretched exponential implies thatCVsvd
will rise over a larger range of frequencies than if the energy
correlation function decayed as a simple exponential. From
Eqs. (2) and (4) we see that the rise occurs as the energies
become uncorrelated. The time scale for this to occur is the
energy correlation time. Since the energy correlation time is
comparable to thea relaxation time, this is consistent with
other simulations that found the specific heat increasing with
decreasing frequency at frequencies corresponding to the
time scales of the structural relaxation. Our work shows that
structural relaxation is not involved in the rise of the fre-
quency dependent specific heat in an equilibrium system.
Rather the rise is the result of the system sampling uncorre-
lated statistically independent energy fluctuations. The time
scales required for sampling independent energies increase
with decreasing temperature due to the slow microscopic dy-
namics that also govern the structural relaxation of a glass
forming liquid.

The frequency dependent specific heat saturates when the
period is long enough for the system to sample enough en-
ergies to obtain an accurate value for the equilibrium zero
frequency specific heat, i.e., when the period reaches the
minimum sampling time. This can be seen in Fig. 7 where
we compare the frequency specific heat versus period to the
specific heat versus time span. Both reach a plateau at about
the same time, and this time is the minimum sampling time.
Returning to our simple example of the Debye model, we
can see from Fig. 10 that the minimum sampling time is
almost two orders of magnitude larger thantL. For tL
=4 825 379 the minimum sampling time is about 2.5
3108 MD steps, and fortL=106 MD steps, the minimum
sampling time is about 53107 MD steps. The fact that Eq.
(4) only involvestL and yet produces a much longer mini-
mum sampling time shows that the minimum sampling time
is not a new time scale but just a reflection of the energy
correlation time, or equivalently, thea relaxation timet.

Furthermore, both the minimum sampling time andt have
roughly the same temperature dependence. This is shown in

FIG. 10. Frequency dependent specific heat from Eq.(4) vs
inverse frequency or the period in MD time steps atT=0.289 85. In
Eq. (4) we usedA=0.773kB andCeq=4.136 743kB.
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Fig. 4. The points for the minimum sampling time are rather
rough because there is no unambiguous way to define the
minimum sampling time. So we simply defined it to be the
earliest time where the value of the specific heat reached the
equilibrium value and estimated it from the plots of the spe-
cific heat versus time span. The fact that the minimum sam-
pling time andt have roughly the same temperature depen-
dence is consistent with the minimum sampling time being a
reflection oft. According to the time-temperature superposi-
tion principle of mode coupling theory, any definition of the
relaxation time in the vicinity ofTC that measures the time
scale of thea relaxation is predicted to show the same tem-
perature dependence[37].

Our work is a cautionary tale for those who perform nu-
merical simulations on slowly relaxing systems. It indicates
that to obtain accurate thermodynamic averages, one must
not only check that the system shows no signs of aging, but
one must also check that the quantity to be measured has
sampled enough of phase space to obtain a large number of
statistically independent values. This sampling time can be
orders of magnitude longer than previously recognized time
scales such as the aging time and thea relaxation time. Our
method of calculating the specific heat as a function of the
measurement time span is a systematic way of determining
the equilibrium value. This method can be adapted for use in
measuring other thermodynamic quantities. We believe it is
an improvement over the sometimes arbitrary definitions of
equilibration that have been invoked in doing numerical
simulations.

Our approach for systematically calculating the equilib-
rium value of the specific heat is applicable for determining
other thermodynamic quantities such as calculating the mag-

netic susceptibility from magnetization fluctuations, the di-
electric constant from electric polarization fluctuations, and
the conductivity from current fluctuations. In all these cases
the thermodynamic average requires adequate sampling. Ex-
perimental measurements on glassy systems that show no
signs of aging may also find that the results depend on the
time span over which the measurements were made. If this is
the case, the distribution of values will change with the
amount of sampling time.

One should realize that different quantities can have dif-
ferent minimum sampling times even with fixed macroscopic
parameters such asT, N, V, etc. We have seen that the time
needed to determine the relaxation time can be orders of
magnitude smaller than the time needed to find the equilib-
rium specific heat atT,Tp. One way to understand this is to
consider the distribution of potential energies of the system.
Finding the average energy will take less sampling than find-
ing higher moments of the distribution such as the second
moment which is reflected in the specific heat.

To summarize, experimental measurements on systems
that are not aging have found that the specific heat is fre-
quency dependent[2]. Our work shows that this frequency
dependence arises from the long equilibration times needed
to sample statistically independent energies, and that the spe-
cific heat becomes independent of frequency once the period
exceeds the minimum sampling time.
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