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Effect of increasing disorder on the critical behavior of a Coulomb system
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We have performed a Monte Carlo study of a classical three-dimensional Coulomb system in which we
systematically increase the positional disorder. We start from a completely ordered system and gradually
transition to a Coulomb glass. The phase transition as a function of temperature is second order for all values
of disorder. We use finite size scaling to determine the transition tempefigf@ared the critical exponent We
find that T decreases and thatincreases with increasing disorder. We also observe changes in the specific
heat, the single-particle density of states, and the staggered occupation as a function of disorder and

temperature.
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l. INTRODUCTION oretical investigationg®23 As in the case of electrons, this

Electrons with long-range Coulomb interactions display a5YSt€m is somewhat simplified by discretizing the system

rich and complex behavior. In doped semiconductors an@"d ©nly allowing the charges to sit on specified sites. For
disordered metals, electrons are in the presence of quenchif!iC fluids this is known as the lattice-restricted primitive

1-23 .
disorder, and the competition between Coulomb interaction&0deF'~* (LRPM), where there are equal numbers of posi-

and disorder produces a Coulomb glass, which is an amofive and negative ions with the same diameter sitting on lat-

phous insulator. A great deal of effort has been expended ifice sites. In the LRPM there is no quenched disorder. There

studying various thermodynamic properties of Coulomb@'€ POSitive sites, negative sites, and neutral siegspty
glasses such as the specific heathe presence of a Cou- Sit€9 corresponding to an Ising spin-1 model with Coulomb
lomb glass phase transition in which the electrons are frozeﬁ}teract;]ons. The phase diagram in the l('jens:tty-temperr]atlrj]re
into a highly disordered arrangeméritand the Coulomb Plane has a second-order transition line from a high-

gap®1° Coulomb interactions between localized electronsl€MpPerature paramagnetic phase to a low-temperature anti-

result in the so-called Coulomb gap in the singIe-particlefe”omagnetic phas®:23 This transition is in the Ising uni-

density of states that is centered at the Fermi energy. Simy.ersality class with critical exponemt=0.63. At even lower
lations have found a Coulomb gap in the density oftemperatures there is a first-order phase transition in which

stateS11-15and experimental evidence for a Coulomb gapthe system undergoes a phase _sepz_iration into a high-density

has been seen in tunneling measurem&its. ordered phase and a low-density disordered phase. If there
Many of the theoretical studies of Coulomb glasses hav@rehno ne'l;tral sitegonic denS|typ=1), which clor:]espo#ds .

been as a function of temperature. In this paper we will study® the antiferromagnetic spin-1/2 Ising model, then there is

what happens as we vary the amount of disorder as well d Ist the second-order transition from the high-tempe(ature
the temperature. We will start with an ordered system an isordered phase to the low-temperature ordered antiferro-

study the effect of gradually introducing disorder into aMagnetic phase in three dimensions. For the purposes of this
three-dimensional system of electrons with long-range Cou@rticle we are interested in this case where there are no neu-
lomb interactions. The system is discrete in the sense that tHE2! sites. Every positively charged site has a positive ion or
electrons sit on half of the available sites. In the ordered cas@issing electron, and every negatively charged site has a
the sites form a cubic lattice. The disorder is introduced innegative ion or an electron. The fact that the ionic system has
the positions of the sites and their deviation from the posi@ second-order phase transition to an ordered antiferroelec-
tions in a cubic lattice. For all values of disorder, the systendric arrangement of ior$23means that we expect the analo-
undergoes a second-order phase transition as the temperatg@us transition to occur for the case where the electrons can
is lowered. We will study the effects on the thermodynamicssit on alternate lattice sites with no quenched disorder.
of this phase transition as a function of disorder. Comparing the ordered and disordered extremes reveals
Discretizing our Coulomb system means that it corre-similarities and differences. Both systems undergo a phase
sponds to an Ising system with long-range interactions. A sitéransition when the temperature is lowered. In the ordered
occupied with an electron corresponds to spin up and acase, the transition is to an ordered arrangement of electrons
empty site corresponds to spin down. This is a very generadccupying every other site, whereas in the disordered case
model, and as a result relevant work has been done in othéne electrons are frozen into the highly disordered arrange-
fields motivated by somewhat different physical systems. Irment of a Coulomb glassBoth systems at low temperatures
particular, there is the Ising model with long-range interac-have a gap in their single-particle density of states.
tions. Also the ordered case is related to work that has been As we mentioned earlier, systems with either positively
done on ionic fluids near criticality. It is worth briefly re- charged sitegmissing electronor negatively charged sites
viewing the work that has been done in those fields. (electron presenmtcan be mapped onto Ising spin-1/2 sys-
In the case of translational invariance, ionic fluids neartems. A great deal of work has been done on Ising models
criticality have been a subject of both experimental and thewith long-range interactions. The ferromagnetic or attractive
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Ising model with power law interactions that fall off asr¥/ disorder is present in the form of random on-site energies.
without quenched disorder has been stutfiédlas a function For an ordered system, the on-site enedgyis a constant.

of the dimensiord and the exponeng for =d. However, One could imagine gradually introducing disorder by allow-

in this paper we will focus on interacting electrons and so wang ¢; to be chosen from a distribution whose width gradu-

are interested in the antiferromagnetic Ising model. ally increases.

The presence of quenched disorder results in an Ising spin However, the presence of random on-site energies makes
glass. There has been a substantial amount of numerical efiumerical analysis difficult, since even in the high-
fort to understand the energy of domain wallsTat026-3%  temperature state the average occupation of a site is not zero.
The energy of the domain wall varies B& whereL is the  This makes the search for a phase transition difficult; there is
system size and the exponehts positive for systems with no obvious order parameter that becomes nonzero at the tran-
nonzero transition temperatures. Work on the Ising spin glassition. For our numerical analysis, it is more convenient to
with power law interactions has been summarized in aake the disorder to be entirely in the location of the sites.
couple of paperd®2*The system has a rich phase diagram inThis changes the symmetry of the Hamiltonian from having
the d- » plane, which can be found in Ref. 26, whetés the  on-site disorder to having disorder in the interaction between
dimension andy is the exponent of the power law interaction sites because the distance between sites varies. For many
1/r". The smaller they, the longer the range of the interac- quantities these two models give similar results. For ex-
tion. If the range is long enough or if the dimension is largeample, studies of the specific heat in Coulomb glasses have
enough, then there is a second-order phase transition with@mpared having disorder in the on-site energy to having a
transition temperatur&-> 0. The critical exponents are dif- completely random displacement of site$.They find that
ferent in the long-range and short-range regimes. The expdzoth models produce qualitatively similar results with some
nent # depends continuously on in the long-range region quantitative differences. However, the existence and nature
(6=d-7), and is independent ofp in the short-range of the phase transitions are different in the two modéfs.
regime?® This indicates that the critical exponents also de-In particular, there is always a phase transition no matter how
pend continuously ony in the long-range region, and are wide the distribution of the site placement is, whereas there
independent of; in the short-range reginté Katzgraber and is no phase transition if the width of the distribution of the
Young have done Monte Carlo simulations of an Ising spinon-site energyg, is larger than a critical valu&. Mobius®®
glass in one dimension with long-range interacti#i®. has argued that such a critical value must exist, even if it is
They chose a value for where the system has a second-vanishingly small, since there is a phase transition when
order spin glass transition, and they find that10/3. there is no disordé? while there is no clear evidence for a

In this paper we will be concerned with what happens totransition when there is substantial on-site disorder. This im-
thermodynamic quantities as we systematically introduceplies that long-range order is destroyed by both on-site dis-
disorder into a three-dimensional system of electrons witlorder and thermal fluctuations.
long-range Coulomb interactions. The disorder is introduced A number of previous simulations have used the form for
into the placement of sites where the electrons can sit. Ththe Hamiltonian with disorder in the placement of the
paper is organized as follows. In Sec. Il we present thesites?33641In the case of half filling there is a particle-hole
Hamiltonian and describe our Monte Carlo simulation. Insymmetry, and the phase transition is associated with the
Sec. lll we present the quantities that we measure. In Sec. Idevelopment of a nonzero Edwards-Anderson order
we present our results, and we give our conclusions in sec. \aaramete?. We therefore rewrite the Hamiltoniaiaking K

=1/2) to look like that of a spin glass,

Il. CALCULATION He }E ﬁ @
A. Hamiltonian 475 1
Let us start by considering the completely disordered_ _ . . . .
case, which is known as a Coulomb glass. The essentiﬁ_l(_l) will dpnote an occuplgdunogcupleqi site. )
physics of the Coulomb glass is the presence of both disorder W€ have simulated three-dimensional systems of linear

— —1 3 qjf H
and long-range Coulomb interactions between electrons. THi2€L=4, 6, and 8. We plachl=L" sites in the system. We
Hamiltonian often studied for the Coulomb glas3®%s have only considered the case of half filling in order to take
advantage of the spin-flip symmetry. For the ordered case the

> (n = K)(n: = K) sites form a cubic lattice. In the ground state, every other site
' (1) is occupied; the occupied sites form a face-centered-cubic
(fce) lattice. We can gradually introduce disorder by allowing
where we set the charge=1, n,=+1 is the number operator the deviation of a site from its position in a cubic lattice to be
for site i, ¢; is the on-site energ)r,ij=|ﬁ—Fj|, andK is a chosen from a Gaussian distribution with a standard devia-
compensating background charge making the whole systeion of . This gives the radial distance from the cubic lattice
charge neutral. Such a Hamiltonian describes a lightly dopedite. The angular coordinates of the site are chosen randomly
semiconductor, in which the impurity sites are far enoughusing a uniform distribution. The ordered case corresponds
apart that the overlap between sites can be neglected. In mdsto=0. 0=1 corresponds to the very disordered case with a
of the early work on the Coulomb glaés.g., Refs. 4, 6, and standard deviation equal to the cubic lattice constant/e
35), the sites are chosen to form a periodic lattice, and th&lso considered completely random arrangements of sites

H=2 niy +

i> Fij
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where thex, y, andz coordinates of each are chosen from atron is looked at sequentially and moved to one of the avail-
uniform distribution. We call this the “uniform random” able N/2+1 sites(its own site or one of the availabld/2
case. We find no qualitative difference and only a slightunoccupied sites chosen with a Boltzmann probability. If
guantitative difference between the uniform random case anthe site chosen is the electron’s original location, the poten-
theo=1 case in quantities such as the single-particle densitjial energies are unchanged; if the electron hops to a new
of states, the specific heat versus temperature, and Binderste, we update all the potential energies. If the electron
g. So we will not make much mention of the uniform random chooses its initial site, which it does with high probability at
case. low temperatures, we do not have to recompute the potential
We use infinite periodic boundary conditions in which the energies. This speeds up the simulation considerably, par-
simulation box is infinitely replicated in all directions to tially compensating for the much longer equilibration times
form a lattice. As a result, an electron on a given site interneeded at low temperatures. Our longest (ian L=4 atT
acts with other electrons and all their images via the Cou=0.01 ando=0.5) had 3x 10° Monte Carlo steps per elec-
lomb interaction. To handle this, we use an Ewald summatron. Depending on the system size and temperature, the
tion techniqué? that replaces the Hamiltonian in E@) with sample averages involved between 5 and 190 disorder con-

the following effective interaction between sites: figurations.
H= > —Q.qj ( ) 2 o, ©) IIl. MEASURED QUANTITIES
1<i<j=N L L

. . . . . . A. Binder’'s g and equilibration criteria
where L is the linear size of the simulation boX is the g q

number of sites, the charge=5/2, and the functionj(r) is The Edwards-Anderson order parameter alluded to above
given by guantifies the extent to whichzspins or site occupations are
20 frozen. It is defined ag=[(S)“]; we will denote thermal
w+lz Texp{Zmn F— aatll } averages by---) and disorder averages ky--]. Thermal
+1| 70 Al averages sum over fluctuations in the positions of the elec-
(4) trons weighted with the correct Boltzmann probability; dis-
order averages sum over different arrangements of the sites.
in which We can see from the definition af that if the spins are
X frozen, then the average orientation of a spin will have a
2 nonzero thermal average andwill be finite. This is whyq
erfax) =1 N e dt () can be thought of as the order parameter of the phase tran-
Yo sition.
We can generalize the Edwards-Anderson order parameter
to a finite time overlap in either of two way8The first way

v =2

aZ

is the complementary error function and

-3 [erfc(a|n|) 1 _ﬂ2n2/a2:| _2a ©) computes the overlap between two replicas:
I BT Va' .
Note that a:(t) = N; sYs?, (8)
AzliTo{ F)_ﬁ} (7) " where the superscripts refer to different replicas. The two

replicas are identical in their disorder, i.e., the placement of
The sum ovem in Eq. (6) is a sum over all simple-cubic the sites, but differ in the initial positions of the electrons.
lattice points with integer coordinatés=(I,m,n). These are The other way uses the same replica at two different times:
the coordinates of the images of the simulation box. The

arametew is a convergence factor that is adjusted to maxi- 1
%ize the rate of converggence of the sum. WeJ have omitted a a7 =<2 YOV t+ 7
positive term in the Hamiltoniai3) that is proportional to
the square of the net dipole moment of the configuratfon.
This omission is equivalent to the boundary condition in
which the infinite sphere of our system and its images ar
surrounded by a perfect conducting medium. We have doné'
some runs with the dipole term and find no qualitative dif-
ference and only a slight quantitative difference compared t
the case with no dipole term. So in this paper we will presen
the result of simulation runs that omit the dipole term.

9

If the time differencer is sufficiently large that the electron
configurations att and t+r are essentially uncorrelated,
(t,7) will give the same result as the replica overlap.

We use the moments of the overlap to define Bindgr’s
hich is a parameter that is related to the phase transition.
(ﬁirst we defineg(7) by*344

[{a*(n)]
B. Monte Carlo simulation 9(n = §<3 - [<q2(7.)>]2> ’ (10)

We have used a Monte Carlo heat bath algorithm. We
keep a table of the potential energy at each site. Each eleg¢here
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1 27
(9'(n) = ;E q'(v). (11
t=7

We will use g; (g,) to denote the result of using; (q,).
Binder’s g is given by

g=limg(7), (12
which we will approximate by
g~9(7) (13)

for some measurement timearge enough that the configu-

rations are essentially uncorrelated so thatnd g, agree.

We have used this fact to monitor equilibration by simulating
two replicas that have the same placement of sites but differ-

ent spin configuration® Typically g,(t) increases with time

PHYSICAL REVIEW B 70, 214203(2004

cific heat calculated by the finite difference method will un-
derestimateC,,, which is actually the slope of the tangent to
the energy curve. Similarly, if the slope & versusT is
decreasing as the temperature increases, the finite-difference
method will overestimat€,,.

C. Staggered occupation

Since an unoccupied site on a cubic lattice corresponds to
a down Ising spin and an occupied site to an up Ising spin,
the fcc crystalline phase corresponds to a maximum in the
magnitude of the staggered occupatibh. The staggered
occupation is defined By

1 o
M= 12 (- DS (17)

to the equilibrium value, whereag(t) decreases to the equi- wherei, j,k are the integer coordinates of the sites in a cubic
librium value. The two methods agree when the system hakttice in units of the lattice constaat So a site coordinate
reached equilibrium. Our criterion for equilibration was that(x,y,2)=(ia, ja,ka). Since disorder is introduced through a
the values ofy, andg; agreed to within 0.1. We only present distribution in the position of the sites with respect to the
results for systems that meet this criterion. We should caueubic lattice sites, we can still use E{.7) to calculate the
tion that this criterion can be met even though the systenstaggered occupation in the presence of disorder by regard-

may still be slowly aging.

ing i, j, andk as coordinates of the center of the unit cell

Binder’sg provides a way to monitor the phase transition.where the site is located. It is useful to plot the staggered
At high temperatures, the distribution gftends to a Gauss- occupation distributioP(Mg) versusMg in order to see the
ian so thaty— 0, whereas the order parameter, and heyce extent of the “crystalline” order. In order to compare differ-
become nonzero as the temperature approaches the phase system sizes, we normalize the staggered occupation to
transition temperatur@c. If we make the assumption of one range from -1 to +1, and the area under the curve is nor-
parameter scaling, then the only relevant length is the corremalized to 1.

lation lengthé~ (T-T¢)™", wherev is the critical exponent

associated witl¥. So all lengths, includingd., can be scaled
by &. Sinceg is dimensionless, we expect that it should sat-

isfy a scaling form®44
gL T)=g(L"(T-To)). (14)

Thus at the critical temperaturg(L,Tc) should have the
same value independent of the system &iZas long ad. is
sufficiently large for finite size scaling to appi#+*

B. Specific heat
There are two ways to calculate the specific HegtT).

The first way uses the variance of the energy fluctuations:

1
NkgT?

whereE is the average energy per electrdhis the number

Cvz

[(E?) - (E)?], (15

of electrons, andg is Boltzmann’s constant. The other way

D. Single-particle density of states

We have calculated the single-particle density of states
N(E) at various temperaturebl(E) is the distribution of po-
tential energies at single sites due to interactions with all the
other sites. In other words, we can write the Hamiltonian in
the form of an Ising model:

H=- S 3s5=3ES, 18)
ij i

wherekE; is the single-site energy or “local field” and is given
by
1
Ei:_az J”% (19)
j

N(E) is the thermally averaged and disorder-averaged distri-
bution of E;.

to calculate the specific heat is to take the derivative of the

energy with respect to temperature. We can approximate the

derivative by a finite temperature difference

B _ [(E(Ti )] - [{E(Ti))]
ar |t (T —T) .

Cu(T) = (16)

IV. RESULTS
A. Second-order melting transition in the ordered casdg o-=0)

We consider the case where the translational degrees of
freedom are discrete and the electrons can only sit on desig-
nated sites. This is equivalent to a long-range Ising model in

We found that the specific heat calculated in these two waythree dimensions. If the sites are ordered and are lattice sites,

agreed quite well. Notice however, that if the slope Eof

it is also equivalent to the LRPM in the completely filled

versusT is increasing as temperature increases, then the spease(ionic densityp=1).2> We find that discretization pro-
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10Q 1.0 T T T
% o L=4 — T=1.0
oL=6 81 —— T=0.500
g L) —_
9 =] 9 6l — T=0.140
0.0 2 ® g 0.0 . —— T=0.130
b %ﬁg P — T=0.128
(b) = 4l — T=0.125
_0.5 s . . . : _05 o — T=0.120
008 012 016 02-2 -1 0 1 2
Temperature L (T-T,)
2 L
FIG. 1. (@ g,(L,T) vs T for o=0. [g(L,T) vs T is virtually
identical] The data forL=4 are averaged over 190 runss6 is
averaged over 67 runs, ahd 8 is averaged over 45 runs. The solid 03 05 0 0.5 1
lines are guides to the eydéb) g(L,T) for o=0 scaled using M

§(LY"(T-Te)) with Tc=0.128+0.001 and'=0.55+0.1.
FIG. 2. The distributiorP(Mg) of the staggered occupatidvig

duces a second-order phase transition regardless of ther L=8 ato=0 at various temperatures. The central pea_k is highest
amount of positional disorder. In this section we present eviat T=1 and gradually decreases hslecreases. The two side peaks
dence that the ordered case wit0 undergoes a second- begin to appear in the V|C|mty Ofc and become more pronounced
order crystallization transition to an fcc lattice as the tem-2ST drops belowTc. There is no temperature where three peaks are
perature is lowered. This result is consistent with the Seconq:esent, indicating that the transition is not first order. The data were
order transition found by Mébius and Ro@from numeri- 1€ "esult of averaging over 35 runs.

cal simulations of a half-filled system on a cubic lattice with

Coulomb interactions. It is also consistent with the seconds . - . .
order transition in the LRPM model for the fully occupied become narrower and higher with increasing system size. On

case(p=1) 2345 the other hand, if the system is cooled through a second-
n IF—')l_g 1 we showg versus the temperatufeat L=4, 6 order transition, the high-temperature central peaR(il,)
and 8. The point where these curves cross yields a transiti s replaced by two peaks symmetrically placed abdy&0.

temperature off c-=0.127. Notice that above the transitign *fhese peaks do not become sharper with increasing system

: : : : . size, but the width of the distribution is expected to decrease
dips down and acquires negative values. This behavior ha\ﬁith increasing system size 4s#'”, where3 and v are the

been seen in the case of a three-state ferromagnetic Potts.. ) T8 g
model in three dimensions that undergoes a first-order phastt_%eﬁ;l(;ai\lﬂexponents defined bs~|T-Tcl” and &~(T
transition?® However, in that case the value gfat the mini- S L

mum scaled ag(T,,;,)~-L9 whereas in our casg(T,,) Figure 2 shows the distributioR(Mg) of the staggered

appears to saturate at large The negative values af can occupation at various temperatures. Notice that in the vicin-
result if the distributionP(q) is non-Gaussian with finite ity of the melting temperature there are only two symmetri-

Weight s D corresporcing o long e occupaions of %, 306 DE2KS, Thie mles it he narsion e  secona
some sites. A very simplé-function distribution that illus- P :

trates this is Msmax Where P(Mg) has a maximum, decreases with in-
creasing system size @t and varies adlgyq~ L %% This
is also consistent with a second-order transition. In the vicin-
}5(q+ ag), ity of the phase transition wherg(M) has two peaks, we
can define the widthMgiq, Of the distribution as the non-
(200 zero value oMg whereP(Mg i) = P(Ms=0). We find atTc
that Mg g is linear in L and can be fitted to the form
where o is a parameter with values between 0 and 1, andVg,iq,=A-mL, whereA andm are constants that are tem-
ay is a constant. For 2/8 op<1, this distribution yields perature dependent. Ak=0.128, which is close td, A
g<o0. =1.1, andm=0.027. Notice thaM,,iq, does not appear to
We initially thought that the transition might be first order. follow the form Mg iqn~L"#'", but we would need more
One of the signatures of a first-order melting transition is thehan three values df to accurately determine if there is a
coexistence of the liquid and crystalline phases at the meltindiscrepancy with the scaling form.
temperature. We looked for evidence of coexistence by ex- First-order phase transitions are often characterized by
amining the distributiorP(M) of the staggered occupation. hysteresis upon heating and cooling. We have looked for
Coexistence would produce three peak®{M) versusMg: hysteresis by cooling and then heating the system, and ex-
a central peak and two side peaks symmetrically placed witmining the resulting curves af versusT as well as the
respect toM=0. The central peak corresponds to the high-specific heatC,, versusT. We find no hysteresis, which is
temperature liquid phase and the side peaks correspond torther evidence against a first order phase transition. To
the fcc crystalline phase. Furthermore, at the transition temsummarize, the ordered cage=0) undergoes a second-
perature for a first-order transition, the three peaks wouldrder phase transition as a function of temperature.

1_010

P(q)=a05(q)+[ 5 ]5(q—ao)+{l_a°
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1.0 oEEr—T—T—— 1.0
08 | 1t % °'I:=‘6" Jos
OL=
0.8 | 06 f 1t 3 oL=g 108
9 04 \ 1t o4 G,
— [3—©L=4 (45runs) § 4] 6=0.3
- 0.2 B—HL=6 (30 runs) 4 L o ) {02
o) 04 —©L=8 (15 runs) (d)
i 00t (a) o | @@w {00
- -
\@-1 -0.2 L L L L L 1 L L L L _%2
10 ———— ————— 1.
0r 08| By ool | I % oL=4 Josg
X L=8 (20 runs) olL=6
g 0.6t S oleg 1086 g
" o4t & a4 7'
04 L L L ) o 0=0_4
0 0.05 0.1 0.15 0.2 o2l L (e) % 1as
Temperature
0.0 t L. Bw8 .8 o000
FIG. 3. g/(L=8,T) vs T for ¢=0 (45 runy, ¢=0.1 (10 rung, 08 oot ———— 0.8
0=0.2 (5 rung, ¢=0.3 (15 rung, ¢=0.4 (115 rung, ¢=0.5 (45 % E—EIL;6(173runs: g oL=4
rung, ando=1 (108 rung. [g(L=8,T) vs T is virtually identical] 06T R o—oLenmue 1 i g L=6 106
The number of runs in parentheses is the number of runs that wereg ,, | | g °L=8 losa O
averaged to obtain the data. The solid lines are guides to the eye. ' g o=1 )
0.2 t Y {02
B. Critical behavior S
0 T ! 1 1 (=il 0
We have determined the critical exponenand the tran- 0.02 O-QF %106 Cr’~°t3 ro-‘ 01205 L""OT T 65 10
sition temperaturd as a function of the disorder through emperature (T-To)

the finite size scaling of(L,T).3*% In Fig. 3 we plotg(L FIG. 4. (a)-(c) (L, T) vs T for 0=0.3, 0.4, and 1.0 dt=4, 6,
:,8_ ) ver.susT for various values ofr. Notice th‘f‘t the tran-. and 8. The solid lines are guides to the gggL,T) vs T is virtually
sition region moves to lower temperatures with increasinggentical] The number of runs in parentheses is the number of runs
disorder. This reflects the decreaseTinwith increasingo.  that were averaged to obtain the dath.g,(L,T) for ¢=0.3 scaled
The transition temperature corresponds to the temperatuiging §(LY*(T-Tc)) with Tc=0.085+0.005 and=0.71+0.1.(€)
where the curves of(L,T) versusT for all sizes cross. Ex- g, (L,T) for ¢=0.4 scaled using§(LY"(T-To) with Tc
amples are shown in Figs. 1 and 4. =0.045+0.01 anav=1.05+0.1.(f) g,(L,T) for o=1 scaled using

To more accurately determing, we use the scaling hy- §(LY*(T-Tc)) with Tc=0.028+0.01 and/=1.30+0.2.
pothesis to collapse the data for a given valuesofnto a
single curve as shown in Fig. ¢ and v are used as adjust- The completely filled LRPM model with ionic densip=1
able parameters to collapse the data. The valuesasfd T is equivalent to ourr=0 case. In addition, Luijteet al. did
at various values of are given in Table I. We can estimate Monte Carlo studies of the restricted primitive mogePM),
the errors in the critical temperature and the critical exponemivhich has equal numbers of oppositely charged ions with
v by how well the curves can be made to collapse. The errorsqual diameters and with Coulomb interactions in three
given in the table also include our estimate of the effects oflimensiong? These grand canonical simulations of the RPM
aging. In other words, the error bars include our estimate ofised a finely discretized lattice where the ionic diameters
how the values might change if we were to run longer at lonwere 5 times larger than the lattice spacing, and they found
temperatures or cool more slowly. In Figures 5 and 6 we plothe Ising of the critical exponent=0.633).
Tc and v versuso. In the disordered caser=1) our value forry=1.3+0.2

We can see thawv increases fromy=0.55+0.1 ato differs from the value of=0.7557 obtained earliet.Again

=0 to »=1.30+£0.2 ato=1. The value ofv in the ordered this is probably due to the fact that we used Ewald summa-
case(o=0) lies between the classical val(e=0.5 and the

value for the ordered short-ranged Ising motiet0.63.4¢ TABLE I. The values ofT¢ and » for different valuse ofo.
Within the error bars, our value is consistent with both uni
versality classes, and we therefore cannot differentiate be- o Te v

tween them. Mobius and RoRterstudied a half-filled sys-

tem on a cubic lattice with Coulomb interactions and found 0.0 0.128+0.005 0.55+0.1
v=0.63510), which agrees with the value for the lIsing 0.1 0.123+0.005 0.57+0.1
model. Our simulations differ from those of Mébius and 0.2 0.110+0.005 0.61£0.1
RoRler in that we used the Ewald summation to take into 0.3 0.085+0.005 0.71x0.1
account the fact that the Coulomb interaction extends beyond 0.4 0.045+0.01 1.05+0.2
the size of the system while they did not. As we mentioned 0.5 0.030+0.01 1.35+0.2
earlier, the order-disorder transition in the LRPM model on a 1.0 0.028+0.01 1.30+0.2

simple-cubic lattice belongs to the Ising universality ct&ss.
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1.4 T T T T 3 .
o—oO =0
—=¢ 6=0.1
1.2 + —006=0.2
AH—A6=0.3
2F 4—-d0=0.4
1+ —_— ¥—Vvo0=0.5
v g p—+0=1.0
>
08 | O
1 L
0.6 |
0.4 ' ' ' ' 0 o5 o1 0.15 0.2 0.25
0.0 0.2 0.4 0.6 0.8 1.0 : ’ ' : :

G Temperature

FIG. 7. The specific hedat,, vs T in units ofkg for L=8 for o
=0 (45 rung, ¢=0.1(10 rung, 0=0.2 (5 rung, ¢=0.3 (15 runyg,
0=0.4(95 rung, 0=0.5(45 rung, ando=1 (108 run3. The num-
ber of runs averaged over is indicated in parentheses. The solid
tion whereas the previous work did not. In addition we werelines are guides to the eye.
able to do longer runs at low temperatures than the previous

FIG. 5. The critical exponent vs the disorder. The solid line
is a guide to the eye.

work. C. Specific heat
The transition temperature decreases fromc In Eig. 7 we plot the specific heat versus temperature for
=0.128+0.005 ato=0 to Tc=0.028+0.01 ato=1. The 9. f-we p hect Versus temperatu

value ofTo=0.128 atr=0 is consistent with the temperature various values ofr for L=8. We see that in the ordered case

of the peak in the specific heat found previously by M(‘jbius(azo).CV exhibits a sharp peak centeredTat As the dis-
and R6RIefO Within the error the value of =0.028+0.01 order increases, the peak broadens and eventually becomes a

at =1 is consistent with the previous value afc broad bump with a maximum at a temperature abbyeror
=0.043%%% found by Grannan and Y& example, fore=1, Cy has a maximum at=0.07, whereas
e 0-008 ' Tc=0.028. In Fig. 6 we compare the temperatligg,of the

It is interesting thafl is much lower than the character- ) in th ific heat with. f X | f
istic energies of the system which are of order unity. This isma\>/<\|/mum ”:h ﬂ? Speci {Ch ea WIII c'tr?'F v?r|ous<\6a3ues 0
especially true for large values of the disorder. The reason fof" € see hall peq Matches well withic for o=1b.s. For

larger values ofr, Tpeq> Te. Spin glasses also have a maxi-

this was given by Grannan and ¥and is as follows. At the . ; Pe .
g y fnum in their specific heat at a temperature above the spin

temperatures of our simulations, nearby pairs of sites wil . ) .
with high probability consist of an occupied and an unoccydlass transition temperatut®. For the three-dimensional

pied site. Since these strongly coupled pairs of sites are clos%?ﬁlor?r? glgs.:,hwhere_tlthe d|fS(t3t:der.t|s Ith.r.lsE;)n—ls;te egergy
together, they are guaranteed to have small dipole moments. ter tﬁn m'dtﬁ poi,;llorgjs ?'b tef S| e.;,, 0 it sal. found
Therefore, they will interact weakly with the rest of the sys- at as the wi In the distribution o on-site energies in-

tem, remaining active down to temperatures much lower thaﬁreased, tr;e temperatL_ngeakof the maximum In th.é:V also
the bare interaction energy. increased:2 However, in the cases of on-site disorder that

they considered, the maximum does not signify a transition
since the existence of a phase transition in the presence of

014 | e—oT, ' ' ] on-site disorder has not been established. The maximum in
=—aT_, (T of max of dN(E=0)/dT) Cy must be present sind®,(T) goes to zero at the extremes
012 ¢ —=o T, (T of peak of C,) T—0 andT—o0, implying that there must be a maximum
o1l ] between these extrem&sFurthermore, even without Cou-
a lomb interactions but with a large amount of on-site disorder,
T 008 T there would be a maximum in the specific heat consisting of
0.06 | a superposition of the Schottky specific heats of two-level
systems with randomly distributed excitation energfes.
0.04 To show the size dependence of the specific heat, in Fig. 8
002 we plotC,, versusT for different system sizes at=0 and at
o=1. In the ordered case the specific heat peak becomes
0o 02 02 06 08 y sharper ad. increases, while in the disordered case, the

G broad bump is only weakly dependent on system size.

FIG. 6. Transition temperaturi: vs o (O), temperaturd,, of
the maximum ofdN(E=0)/dT vs o (), and the temperaturgeax
of the maximum in the specific heat ws(<¢ ). The solid lines are In a Coulomb glass the long-range Coulomb interactions
guides to the eye. between localized electrons produce a Coulomb gap in the

D. Single-particle density of statesN(E)
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_ 0.2} m
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>
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0 ' : ; 0 05 0 0.5
0 0.05 0.1 0.15 0.2 o E '

Temperature
FIG. 9. N(E) versusE for L=8 at various temperatures. The
FIG. 8. The specific hedly vs T in units ofkg for L=4, 6, and  solid lines are guides to the ey@) o=0. The data were averaged
8 for (a) =0 and(b) o=1. The specific heat is calculated from the gver 45 runs(b) o=1. The three lowest temperatures were aver-

variance in the energy fluctuations. The specific heat calculategiged over 108 runs and the three highest temperatures were aver-
from the derivative of the energy with respect to temperature isaged over 16 runs.

similar. The number of runs averaged over is indicated in parenthe-
ses. The solid lines are guides to the eye. of states does not vanish at the Fermi energy. This has been
seen in previous simulatiods1~1>Tunneling measurements
single-particle density of states that is centered at the Fernijf the Coulomb gap have also seen that it fills in with in-
energy?*°The Coulomb gap makes the ground state stablgreasing temperatuf&® The exact form ofN(E,T) is not
with respect to single-electron hops. The ordered case al§ghown, but for strong disorder some have ardtiéé4that
has a gap but for a somewhat different reason. In the groungs |ow-temperature asymptotic behavior is described by
state of the ordered case where there is a fcc lattice, thR(E=0,T)~T% L. However, some simulatiofshave found
potential energy or local field is the same for each occupied stronger temperature dependence, N&E=0,T) ~ T with
site. The local field is equal and opposite for the unoccupied > (d-1). For d=2, Sarvestanét all® found A\=1.75+0.1,
sites. This leads to aN(E) with two & functions symmetri-  and ford=3, \=2.7+0.1.
cally placed abouE=0. In finite size systems at finite tem- In Figure 11 we show our results in a log-log plot of
peratures thesé functions broaden into finite height peaks N(E=0,T) for various values ofr at L=8. At low tempera-
due to thermal fluctuations and the formation of ordered dotures the curves are quite straight on a log-log plot. So we
mains. can fit the low-temperature part of these curves to a power
In Fig. 9 we show the density of staté§E) for single-  law formN(E=0,T) ~ T*. The fits are shown as solid lines in
particle excitations at various temperatures dor0 and for ~ Fig. 11 and in Fig. 12. We plat as a function ofo in Fig.
o=1. Because of strong electron-electron correlations, thd3. We find that\ varies between 3 to 16 and is always
density of states at zero energy starts to decrease at abcgneater thard—1=2sinced=3. Even in the case of uniform
2T. in the ordered cas@r=0) but at a temperature about an disorder(uniform random, A=4.8. The large value of for
order of magnitude aboV& in the strongly disordered case =0 is not entirely surprising since Figure 10 shows that
(0=1). In Fig. 10 we showN(E) at or nearTc for various N(E=0,T) is larger fora=0 than for any other value of the
values ofo for L=8. We see that al. the gap appears disorder in the vicinity of the transition temperature. Since
nearly fully formed foro=1 but not foro=0. In the ordered N(E=0,T) goes to zero as the temperature goes to zero,
case the finite density of states B0 is possibly due to N(E=0,T) has the farthest to go far=0. Even thougT¢ is
domains. largest foro=0, the ratioN(E=0,T)/ T is largest for the
As we can see from the figures, at finite temperatures thease of no disorder, and so it is consistent that the exponent
gap in the density of states is partially filled, and the densityA is largest for the case of no disorder.
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3

FIG. 10. N(E) vs E for L=8 for various values ofr at tempera-
tures in the vicinity ofTc. Shown areo=0 (T=0.128, 45 rung o
=0.1 (T=0.122, 10 rung ¢=0.2 (T=0.105, 5 rung ¢=0.3 (T
=0.085, 15 rung 0=0.4(T=0.045, 115 runs 0=0.5(T=0.030, 45

PHYSICAL REVIEW B 70, 214203(2004)

107 :
=) 10° 00=00 1
5 0 0=0.1
=z ©0=0.2
Ao=0.3
107 40=04 A
v 0=0.5
>6=1.0
107 :
107 107"
Temperature

FIG. 12. Log-log plot ofN(E=0) vs T at low temperature for
L=8 for 0=0 (45 rung, ¢=0.1 (15 rung, 0=0.2 (10 runy, o
=0.3(10 rung, 0=0.4 (115 rung, 0=0.5(45 rung, ando=1 (108
rung. The number of runs averaged over is indicated in parenthe-
ses. The solid lines are power law fits to the faN{E=0,T) ~ T,

The result is shown in Fig. 6 where we compdgewith the
temperaturdl ., wheredN(E=0)/dT is a maximum. We see

rung, and o=1 (T=0.0275, 108 runs The temperatures and the that T, ., follows T for 0<0.3 but lies abovd for larger
number of runs averaged over are indicated in parentheses. TRhgylues of the disorder-.

solid lines are guides to the eye.

Efros and Shklovsk¥1° argued that aT=0 the Coulomb
gap in the single-particle density of states of a fully disor-

We plot the data from Fig. 11 on a linear plot in Fig. 14 dered system should scale B$E)~|E—Eg|°, where §=d

where we seé&-shaped curves. We can see thHE=0,T)

—1 andd is the dimension of the system. Some subsequent

rises much more steeply for small values of disorder than fowork!1*3%has supported this form for the density of states,
large values of disorder. The steepest part of the rise for ththough some simulatioP$?155have found a steeper energy

ordered case&r=<0.3) occurs approximately af.. We can
quantify this by taking a derivativéN(E=0)/dT that can be

approximated by a finite difference:

(21)

dNE=0)| _ Nuu(E=0)-N(E=0)
dT T=T, Tisa =T
10° :
100 L g o s [-] ¢
2
S 10 06=0.0
E 0 06=0.1
Z 10t | ¢o=02 |
Ao=0.3
<0=0.4
10° | v6=05 |
>0=1.0
107 :
107 107" 10°
Temperature

FIG. 11. Log-log plot oN(E=0) versusT for L=8 for =0 (45
rung, 0=0.1(15 rung, ¢=0.2 (10 rung, 0=0.3(10 rung, 0=0.4
(115 rung, 0=0.5 (45 rung, ando=1 (108 rung. The number of

dependence, i.e.,d>§>(d-1) in two>121551 and
threé 2155 dimensions. Efro¥ included two-electron transi-
tions in calculating the density of states of a Coulomb glass
and proposed the exponential form(E)~ exd—|Eq/(E
—-Ep)|Y?] where E, is a constant. The physical reason for
such a sharp gap is the formation of polarons in which an
occupied site tends to have unoccupied sites nearby and vice
versa. Some simulatiohdiave found support for this expo-
nential form, while othe5! have not.

According to the theor§1% N(E) ~ |E-Eg|% in the limit
E— Eg. In Fig. 15 we plot our data fdiN(E) —N(Eg)] versus

20 T T T T

O 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

8]

runs averaged over is indicated in parentheses. The solid lines are FIG. 13. The poweh vs o for L=8. The solid line is a guide to
power law fits to the data at low temperatures.

the eye.
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28

26

24

exponent &

22 |

2.0

o L uatlE2 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.2 0.4 (e)
Temperature

FIG. 16. The exponend vs o from the fits to the power law
FIG. 14. Linear plot oN(E=0) vs T for L=8. Data are the same [N(E)—N(0)]~ |E-Eg? in Fig. 15. The solid line is a guide to the
as shown in Fig. 11. The solid lines are guides to the eye. eye. The error ind is approximately +0.2 due to finite-size and
finite-temperature effects described in the text.
|[E-Eg| on a log-log plot.[Since we are at finite tempera- S _
tures, we have subtracted ofi(Eg).] We fit the low-energy though finite-size effects far=6 are quite smal(less than

data in the vicinity of the Fermi enerds- to a power law of ~ 1%). _ _ _
the formN(E) ~ |[E-Eg| for various values ofr at tempera- We have checked to see if our data provide evidence for

tures belowTc. For the case of strong disordar=1), we  the exponential fornN(E)~exd—|E0/(E—E,:)|1’2] proposed
find 6=2.65+0.2, which agrees with the previous values ofty Efros®* In Fig. 17 we show a log-log plot of
§=2.6+0.2 found by Mobiust al5! and 6=2.7+0.1 found  ~1/IN[N(E)~N(Eg)] versus|E—E| for various values ofr.

by Sarvestanet all® It disagrees with the value af=d-1  [Since we are at finite temperatures, we have subtracted off
=2 predicted by Efros and Shklovski? and with the value N(Eg).] If N(E)~exd—|Ey/(E-Eg)['?] were a good de-
5=2.38 found by Li and Phillip$? In the case of no disorder, scription of the density of states, then the curves in Fig. 17
the curvature is very close to quadratic and we fiid Wwould be straight lines with slopes of 1/2. Since the expo-
=2.1+0.2. In Fig. 16 we plot the exponeéiversus the dis- hential form presumably only describes the density of states
order o. We see thats increases and then saturates within the vicinity of Er, we have fit lines through the points
increasing disorder. The estimated error of +0.3oes not ~ corresponding t¢E| < 0.04 assuming the more general form
come from the fit to the data, so much as from the fact thatN(E) ~N(Eg)]~exp—{Eo/ (E-Eg)|”. The slope of the lines
the finite temperature affects low energes kT. There are in Fig. 17 correspond to the exponentWe plot y versuso

also finite size effect that affect low energie€=<1/2L,

il a4
10° : i 0_8 1 i
o o=VU. %
10" o §§§§ i ¢ 0=0.2 4
/ %; > el A 6=0.3
— I <0=04
wo UL
w10- E w v 6=0.5 o
ZI © 0=g-? % > 6=1.0 z@
B8 E O o=0. ] — .
w10 ¢ 0=0.2 I 5
= A0=0.3 !
-+ | <0=04 |
10 Vv 0=0.5 !
>o0=1.0 10 L L
10 , , 107 107 107"
107 107 |E-E|

IE - EI
] FIG. 17. Log-log plot of —1/IAN(E)—N(Eg)] vs |[E-Eg| for L
FIG. 15. Log-log plot offN(E)-N(Eg)] vs |E-Eg| for L=8 for =8 for ¢=0 (T=0.120, 45 rung ¢=0.1 (T=0.111, 15 rung o
=0 (T=0.120, 45 runp ¢=0.1 (T=0.111, 15 rung ¢=0.2 (T  =0.2 (T=0.08, 20 run§ ¢=0.3 (T=0.055, 15 rung ¢=0.4 (T
=0.08, 20 rung ¢=0.3 ( T=0.055, 15 rung o=0.4 ( T=0.0335, =0.0335, 115 runs ¢=0.5 (T=0.0275, 45 runs o=1.0 (T
115 rung, 0=0.5 (T=0.0275, 45 runs ¢=1.0 (T=0.0300, 108 =0.0300, 108 runs The temperatues are all belol¢. The solid
rung. The temperatues are all beldi. The solid lines are fits to a  lines are fits to —1/IN(E) ~N(Eg)]~ |E—Eg|” for values ofE very
power law[N(E)—N(0)]~ |[E-Eg|? for values ofE very close to the  close to the Fermi enerdg;, i.e.,|E—Eg|<0.04. The slope of each
Fermi energyEg, i.e.,|[E—Eg|<0.04. The plots includ®&l(E) values line givesy. The plots includeN(E) values forE above and below
for E above and belovi. Er.
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0.70 . ' - ' 10’ . : :
- ——o N(E,T=0.120) vs. E
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FIG. 18. The exponeny vs ¢ from the fits to the exponential ll 107
form [N(E) —N(Eg)] ~ exp—Eq/ (E-Eg)|” in Fig. 17. The solid line i
is a guide to the eye. > 102
in Ei q
in Fig. 18. The value_s oﬂl_uctu_ate _around 1/2, but the large 10° 1 N(E.T=0.03) vs. E ]
curvature of the trajectories in Fig. 17 do not lend strong ’
. . =—-=a N(E=0,T)vs. T
support to the exponential form of the density of states. 10 . . .
Analytical theorie$®>1* of the Coulomb glass predict that 0 0.05 0.1 0.15 0.2
the finite-temperature density of statt§E=0,T) at the EorT

Fermi energy(Er=0) should be proportional to the zero-
temperature density of statdd(E,T=0) at an energyE
=kgT, i.e., N(E=0,T)~N(E,T=0) with |[E-Eg|=kgT. This
has been supported by Coulomb glass simulatiéngle
tested this relation by plottindN\(E=0,T) versusT, and
N(E,T=To) versusE on the same graph, whefg IS the systematically increase the positional disorder by introducing
lowest temperature at which we were able to equilibrate theyejations from positions in a cubic lattice. We start from a
system. We show our results in Fig. 19 ier0 and 1. The = .,y 5jetely ordered system and gradually transition to a Cou-

hypothesis seems to work for a limited range of energiesonp giass. The phase transition as a function of temperature

betweenkgT, and the width of the Coulomb gap. It @lso js second order for all values of disorder. We use finite-size
appears to be more applicable for high disortier 1) than  gq4jing to determine the transition temperatizeand the

for the case of no disordép=0). critical exponentr. We find thatT. decreases and that
increases with increasing disorder. Both quantities saturate in

FIG. 19. (a) N(E=0,T) vs T, and N(E,T=0.120Q vs E for o
=0. The data are averaged over 45 ruiis.N(E=0,T) vs T, and
N(E,T=0.0279 vs E for o=1. The data are averaged over 108
runs. The solid lines are guides to the eye.

E. Staggered occupation

We have studied the staggered occupation at various val-
ues of the disorder. At high temperatures the distribution has
a peak centered dl;=0 for all values of the disorder. At
low temperatures the distribution broadens and has two
peaks symmetrically placed about zero for the ordered case
and for small and moderate values of the disorder. For the
strongly disordered case= 0.5, the distribution has a peak
centered aM =0 for all values of the temperature where the
system was able to attain equilibrium in our simulations.
This is what one would expect for a random system. These
features are illustrated in Fig. 20, which shows the staggered
occupation for various values ofin the vicinity of Tc. As a
function of system size, the high-temperature peaR(illy)
becomes sharper dsincreases for all values af. An ex-
ample is shown in Fig. 21.

FIG. 20. Staggered occupation distribution for 8 for various
values ofo in the vicinity of Tc. =0 (35 runs,T=0.128, ¢=0.1
V. SUMMARY (15 runs, T=0.123, 0=0.2 (10 runs,T=0.110, ¢=0.3 (10 runs,
T=0.085, ¢=0.4 (40 runs,T=0.045, ¢=0.5 (10 runs,T=0.03,
We have performed a Monte Carlo study of a classicabndo=1 (10 runs, T=0.03. The number of runs averaged over is
three-dimensional Coulomb system of electrons in which wendicated in parentheses. The solid lines are guides to the eye.
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-0.5

FIG. 21. Staggered occupation distribution fer1 atT=1 for
L=4, 6, and 8. The peak height increases with increakinghe

PHYSICAL REVIEW B 70, 214203(2004

states for all values of. At low temperaturetN(E=0) ~ T
where\ > 3.8 for all values ofo. At low temperatures and
low energies neaEg, the density of states can be fitted to a
power law formN(E) ~ |[E-Eg|° whered—-1< §<d for all
values of 0. & increases with increasing, starting até
=2.1 foro=0 and saturating at=2.65 foro=1. The distri-
bution of the staggered occupation has a single central peak
at high temperature for all values of the disorder. In the or-
dered case$o<0.4) P(M,) develops two peaks symmetri-
cally placed on either side d1;=0 in the vicinity of the
phase transition.

ACKNOWLEDGMENTS

We thank Peter Young, Robijn Bruinsma, Alina Ciach,
and Sylvain Grollau for helpful discussions. We thank Joseph

data shown are the result of averaging over 10 runs. The solid linenider for technical assistance. This work was supported by

are guides to the eye.

DOE Grants Nos. DE-FG03-00ER45843 and DE-FGO02-
04ER46107. Work done while C.C.Y. was visiting the Kavli

the limit of large disorder. The specific heat peak value deinstitute for Theoretical Physics at the University of Califor-
creases and the peak broadens to a broad bump with increasia, Santa Barbara was supported in part by the National
ing disorder. A gap develops in the single-particle density ofScience Foundation under Grant No. PHY99-07949.

1A. Mébius and P. Thomas, Phys. Rev. 35, 7460(1997).

2A. Mébius, P. Thomas, J. Talamantes, and C. J. Adkins, Philos.

Mag. B 81, 1105(2001).

3E. R. Grannan and C. C. Yu, Phys. Rev. Léti, 3335(1993.

4J. H. Davies, P. A. Lee, and T. M. Rice, Phys. Rev. Ld8, 758
(1982.

5J. H. Davies, P. A. Lee, and T. M. Rice, Phys. Rev2B, 4260
(1984).

6M. Griinewald, B. Pohlmann, L. Schweitzer, and D. Wurtz, J.

Phys. C 15, L1153 (1982.

7T. Vojta, J. Phys. A26, 2883(1993.

8M. Pollak, Discuss. Faraday SoB0, 13 (1970.

9A. L. Efros and B. I. Shklovskj J. Phys. C8 L49 (1975.

10B, |. Shklovski and A. L. Efros,Electronic Properties of Doped
SemiconductorgSpinger-Verlag, Berlin, 1984

E. I. Levin, V. L. Nguyen, B. |. Shklovskj and A. L. Efros, Zh.
Eksp. Teor. Fiz.92, 1499 (1987 [Sov. Phys. JETP65, 842
(1987).

12Q. Li and P. Phillips, Phys. Rev. B9, 10 269(1994.

I3A. A. Mogilyanskii and M. E. Rakh, Zh. Eksp. Teor. Fiz95,
1870(1989 [Sov. Phys. JETF68, 1081(1989)].

14T, Vojta, W. John, and M. Schreiber, J. Phys.: Condens. Md&ter
4989(1993.

15M. Sarvestani, M. Schreiber, and T. Vojta, Phys. Rev.58,
R3820(1995.

16]. G. Massey and M. Lee, Phys. Rev. Lél6, 4266(1995.

7). G. Massey and M. Lee, Phys. Rev. L€, 3399(1996.

18M. Lee, J. G. Massey, V. L. Nguyen, and B. I. Shklovskii, Phys.
Rev. B 60, 1582(1999.

198, Sandowet al, Phys. Rev. Lett86, 1845(2001.

20A. Ciach and G. Stell, Physica 806, 220(2002, and references
therein.

2LA. Z. Panagiotopoulos and S. K. Kumar, Phys. Rev. L&8,

2981(1999.

22R. Dickman and G. Stell, iSimulation and Theory of Electro-
static Interactions in Solutionsedited by L. R. Pratt and G.
Hummer(AIP, Woodbury, NY, 1999 p. 225.

23/, Brognara, A. Parola, and L. Reatto, Phys. Rev6E 066113
(2002, and references therein.

24M. E. Fisher, S. K. Ma, and B. G. Nickel, Phys. Rev. Leo,
917 (1972.

25E. Luijten and H. W. J. Bléte, Phys. Rev. Let89, 025703
(2002.

26H. G. Katzgraber and A. P. Young, Phys. Rev. @, 134410
(2003.

2TH. G. Katzgraber and A. P. Young, Phys. Rev. @8, 224408
(2003.

287, J. Bray and M. A. Moore, J. Phys. @7 L463 (1984.

29W. L. McMillan, Phys. Rev. B29, 4026(1984).

30W. L. McMillan, Phys. Rev. B30, 476(1984).

31N, Riegeret al, J. Phys. A29, 3939(1996.

82A. K. Hartmann and A. P. Young, Phys. Rev. 84, 180404
(2000).

33A. C. Carter, A. J. Bray, and M. A. Moore, Phys. Rev. Leg8,
077201(2002.

34D. S. Fisher and D. A. Huse, Phys. Rev.3B, 386(1988.

353, D. Baranovskj A. L. Efros, B. L. Ge'mont, and B. I. Shk-
lovskit, J. Phys. C12, 1023(1979.

36A. Diaz-Sancheet al, Phys. Rev. B62, 8030(2000).

S7T. Vojta and M. Schreiber, Phys. Rev. Left3, 2933(1994.

38E. R. Grannan and C. C. Yu, Phys. Rev. Lét8, 2934(1994).

39A. Mébius (private communication

40A. Mébius and U. K. RéRler, cond-mat/03090Qinpublishes

41W. Xue and P. A. Lee, Phys. Rev. B8, 9093(1988.

214203-12



EFFECT OF INCREASING DISORDER ON THE PHYSICAL REVIEW B 70, 214203(2004)

425 W. de Leeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc*®M. E. Fisher, J. Stat. Phys5, 1 (1994).

London, Ser. A373 27 (1980. 49E. Luijten, M. E. Fisher, and A. Z. Panagiotopoulos, Phys. Rev.
43R. N. Bhatt and A. P. Young, Phys. Rev. 8, 5606(1988. Lett. 88, 185701(2002.
i:K- Binder, Z. Phys. B: Condens. Mattet3, 119 (198). S0K. Binder and A. P. Young, Rev. Mod. Phy&8, 801 (1986
A. Ciach (private communication ) 51A. Mobius, M. Richter, and B. Drittler, Phys. Rev. B5, 11 568
46K. Vollmayr, J. D. Reger, M. Scheucher, and K. Binder, Z. Phys. (1992
B: Condens. Mattei91, 113(1993. 52A. L. Efros, J. Phys. C9, 2021(1976.

47A. P. Young(private communications

214203-13



