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We have performed a Monte Carlo study of a classical three-dimensional Coulomb system in which we
systematically increase the positional disorder. We start from a completely ordered system and gradually
transition to a Coulomb glass. The phase transition as a function of temperature is second order for all values
of disorder. We use finite size scaling to determine the transition temperatureTC and the critical exponentn. We
find thatTC decreases and thatn increases with increasing disorder. We also observe changes in the specific
heat, the single-particle density of states, and the staggered occupation as a function of disorder and
temperature.

DOI: 10.1103/PhysRevB.70.214203 PACS number(s): 71.23.Cq, 71.30.1h, 61.43.Bn, 64.60.Fr

I. INTRODUCTION

Electrons with long-range Coulomb interactions display a
rich and complex behavior. In doped semiconductors and
disordered metals, electrons are in the presence of quenched
disorder, and the competition between Coulomb interactions
and disorder produces a Coulomb glass, which is an amor-
phous insulator. A great deal of effort has been expended in
studying various thermodynamic properties of Coulomb
glasses such as the specific heat,1,2 the presence of a Cou-
lomb glass phase transition in which the electrons are frozen
into a highly disordered arrangement3–7 and the Coulomb
gap.8–10 Coulomb interactions between localized electrons
result in the so-called Coulomb gap in the single-particle
density of states that is centered at the Fermi energy. Simu-
lations have found a Coulomb gap in the density of
states,3,11–15 and experimental evidence for a Coulomb gap
has been seen in tunneling measurements.16–19

Many of the theoretical studies of Coulomb glasses have
been as a function of temperature. In this paper we will study
what happens as we vary the amount of disorder as well as
the temperature. We will start with an ordered system and
study the effect of gradually introducing disorder into a
three-dimensional system of electrons with long-range Cou-
lomb interactions. The system is discrete in the sense that the
electrons sit on half of the available sites. In the ordered case
the sites form a cubic lattice. The disorder is introduced in
the positions of the sites and their deviation from the posi-
tions in a cubic lattice. For all values of disorder, the system
undergoes a second-order phase transition as the temperature
is lowered. We will study the effects on the thermodynamics
of this phase transition as a function of disorder.

Discretizing our Coulomb system means that it corre-
sponds to an Ising system with long-range interactions. A site
occupied with an electron corresponds to spin up and an
empty site corresponds to spin down. This is a very general
model, and as a result relevant work has been done in other
fields motivated by somewhat different physical systems. In
particular, there is the Ising model with long-range interac-
tions. Also the ordered case is related to work that has been
done on ionic fluids near criticality. It is worth briefly re-
viewing the work that has been done in those fields.

In the case of translational invariance, ionic fluids near
criticality have been a subject of both experimental and the-

oretical investigations.20–23 As in the case of electrons, this
system is somewhat simplified by discretizing the system
and only allowing the charges to sit on specified sites. For
ionic fluids this is known as the lattice-restricted primitive
model21–23 (LRPM), where there are equal numbers of posi-
tive and negative ions with the same diameter sitting on lat-
tice sites. In the LRPM there is no quenched disorder. There
are positive sites, negative sites, and neutral sites(empty
sites) corresponding to an Ising spin-1 model with Coulomb
interactions. The phase diagram in the density-temperature
plane has a second-order transition line from a high-
temperature paramagnetic phase to a low-temperature anti-
ferromagnetic phase.21–23 This transition is in the Ising uni-
versality class with critical exponentn=0.63. At even lower
temperatures there is a first-order phase transition in which
the system undergoes a phase separation into a high-density
ordered phase and a low-density disordered phase. If there
are no neutral sites(ionic densityr=1), which corresponds
to the antiferromagnetic spin-1/2 Ising model, then there is
just the second-order transition from the high-temperature
disordered phase to the low-temperature ordered antiferro-
magnetic phase in three dimensions. For the purposes of this
article we are interested in this case where there are no neu-
tral sites. Every positively charged site has a positive ion or
missing electron, and every negatively charged site has a
negative ion or an electron. The fact that the ionic system has
a second-order phase transition to an ordered antiferroelec-
tric arrangement of ions21–23means that we expect the analo-
gous transition to occur for the case where the electrons can
sit on alternate lattice sites with no quenched disorder.

Comparing the ordered and disordered extremes reveals
similarities and differences. Both systems undergo a phase
transition when the temperature is lowered. In the ordered
case, the transition is to an ordered arrangement of electrons
occupying every other site, whereas in the disordered case
the electrons are frozen into the highly disordered arrange-
ment of a Coulomb glass.3 Both systems at low temperatures
have a gap in their single-particle density of states.

As we mentioned earlier, systems with either positively
charged sites(missing electron) or negatively charged sites
(electron present) can be mapped onto Ising spin-1/2 sys-
tems. A great deal of work has been done on Ising models
with long-range interactions. The ferromagnetic or attractive
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Ising model with power law interactions that fall off as 1/rh

without quenched disorder has been studied24,25as a function
of the dimensiond and the exponenth for hùd. However,
in this paper we will focus on interacting electrons and so we
are interested in the antiferromagnetic Ising model.

The presence of quenched disorder results in an Ising spin
glass. There has been a substantial amount of numerical ef-
fort to understand the energy of domain walls atT=0.26–33

The energy of the domain wall varies asLu, whereL is the
system size and the exponentu is positive for systems with
nonzero transition temperatures. Work on the Ising spin glass
with power law interactions has been summarized in a
couple of papers.26,34The system has a rich phase diagram in
thed-h plane, which can be found in Ref. 26, whered is the
dimension andh is the exponent of the power law interaction
1/rh. The smaller theh, the longer the range of the interac-
tion. If the range is long enough or if the dimension is large
enough, then there is a second-order phase transition with a
transition temperatureTC.0. The critical exponents are dif-
ferent in the long-range and short-range regimes. The expo-
nent u depends continuously onh in the long-range region
su=d−hd, and is independent ofh in the short-range
regime.26 This indicates that the critical exponents also de-
pend continuously onh in the long-range region, and are
independent ofh in the short-range regime.26 Katzgraber and
Young have done Monte Carlo simulations of an Ising spin
glass in one dimension with long-range interactions.26,27

They chose a value forh where the system has a second-
order spin glass transition, and they find thatn=10/3.

In this paper we will be concerned with what happens to
thermodynamic quantities as we systematically introduce
disorder into a three-dimensional system of electrons with
long-range Coulomb interactions. The disorder is introduced
into the placement of sites where the electrons can sit. The
paper is organized as follows. In Sec. II we present the
Hamiltonian and describe our Monte Carlo simulation. In
Sec. III we present the quantities that we measure. In Sec. IV
we present our results, and we give our conclusions in sec. V.

II. CALCULATION

A. Hamiltonian

Let us start by considering the completely disordered
case, which is known as a Coulomb glass. The essential
physics of the Coulomb glass is the presence of both disorder
and long-range Coulomb interactions between electrons. The
Hamiltonian often studied for the Coulomb glass is4,35

H = o
i

nifi + o
i. j

sni − Kdsnj − Kd
r ij

, s1d

where we set the chargee=1, ni = ±1 is the number operator
for site i, fi is the on-site energy,r ij = urWi −rW ju, and K is a
compensating background charge making the whole system
charge neutral. Such a Hamiltonian describes a lightly doped
semiconductor, in which the impurity sites are far enough
apart that the overlap between sites can be neglected. In most
of the early work on the Coulomb glass(e.g., Refs. 4, 6, and
35), the sites are chosen to form a periodic lattice, and the

disorder is present in the form of random on-site energies.
For an ordered system, the on-site energyfi is a constant.
One could imagine gradually introducing disorder by allow-
ing fi to be chosen from a distribution whose width gradu-
ally increases.

However, the presence of random on-site energies makes
numerical analysis difficult, since even in the high-
temperature state the average occupation of a site is not zero.
This makes the search for a phase transition difficult; there is
no obvious order parameter that becomes nonzero at the tran-
sition. For our numerical analysis, it is more convenient to
take the disorder to be entirely in the location of the sites.
This changes the symmetry of the Hamiltonian from having
on-site disorder to having disorder in the interaction between
sites because the distance between sites varies. For many
quantities these two models give similar results. For ex-
ample, studies of the specific heat in Coulomb glasses have
compared having disorder in the on-site energy to having a
completely random displacement of sites.2,36 They find that
both models produce qualitatively similar results with some
quantitative differences. However, the existence and nature
of the phase transitions are different in the two models.37,38

In particular, there is always a phase transition no matter how
wide the distribution of the site placement is, whereas there
is no phase transition if the width of the distribution of the
on-site energyfi is larger than a critical value.39 Möbius39

has argued that such a critical value must exist, even if it is
vanishingly small, since there is a phase transition when
there is no disorder40 while there is no clear evidence for a
transition when there is substantial on-site disorder. This im-
plies that long-range order is destroyed by both on-site dis-
order and thermal fluctuations.

A number of previous simulations have used the form for
the Hamiltonian with disorder in the placement of the
sites.2,3,36,41In the case of half filling there is a particle-hole
symmetry, and the phase transition is associated with the
development of a nonzero Edwards-Anderson order
parameter.3 We therefore rewrite the Hamiltonian(taking K
=1/2) to look like that of a spin glass,

H =
1

4o
i. j

SiSj

r ij
. s2d

Si =1s−1d will denote an occupied(unoccupied) site.
We have simulated three-dimensional systems of linear

sizeL=4, 6, and 8. We placeN=L3 sites in the system. We
have only considered the case of half filling in order to take
advantage of the spin-flip symmetry. For the ordered case the
sites form a cubic lattice. In the ground state, every other site
is occupied; the occupied sites form a face-centered-cubic
(fcc) lattice. We can gradually introduce disorder by allowing
the deviation of a site from its position in a cubic lattice to be
chosen from a Gaussian distribution with a standard devia-
tion of s. This gives the radial distance from the cubic lattice
site. The angular coordinates of the site are chosen randomly
using a uniform distribution. The ordered case corresponds
to s=0. s=1 corresponds to the very disordered case with a
standard deviation equal to the cubic lattice constanta. We
also considered completely random arrangements of sites
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where thex, y, andz coordinates of each are chosen from a
uniform distribution. We call this the “uniform random”
case. We find no qualitative difference and only a slight
quantitative difference between the uniform random case and
thes=1 case in quantities such as the single-particle density
of states, the specific heat versus temperature, and Binder’s
g. So we will not make much mention of the uniform random
case.

We use infinite periodic boundary conditions in which the
simulation box is infinitely replicated in all directions to
form a lattice. As a result, an electron on a given site inter-
acts with other electrons and all their images via the Cou-
lomb interaction. To handle this, we use an Ewald summa-
tion technique42 that replaces the Hamiltonian in Eq.(2) with
the following effective interaction between sites:

H = o
1øi, jøN

1

L
qiqjcS rWi j

L
D +

L

2L
o
i=1

N

qi
2, s3d

where L is the linear size of the simulation box,N is the
number of sites, the chargeqi =Si /2, and the functioncsrWd is
given by

csrWd = o
n

erfcsaurW + nW ud
urW + nW u

+
1

p
o
nÞ0

1

unW u2
expH2pinW · rW −

p2unW u2

a2 J
s4d

in which

erfcsxd = 1 −
2

Îp
E
0

x

e−t2dt s5d

is the complementary error function and

L = o
nWÞ0

FerfcsaunW ud
unW u

+
1

punW u2
e−p2n2/a2G −

2a

Îp
. s6d

Note that

L = lim
ur u→0

FcsrWd −
1

urWuG . s7d

The sum overnW in Eq. (6) is a sum over all simple-cubic
lattice points with integer coordinatesnW =sl ,m,nd. These are
the coordinates of the images of the simulation box. The
parametera is a convergence factor that is adjusted to maxi-
mize the rate of convergence of the sum. We have omitted a
positive term in the Hamiltonian(3) that is proportional to
the square of the net dipole moment of the configuration.42

This omission is equivalent to the boundary condition in
which the infinite sphere of our system and its images are
surrounded by a perfect conducting medium. We have done
some runs with the dipole term and find no qualitative dif-
ference and only a slight quantitative difference compared to
the case with no dipole term. So in this paper we will present
the result of simulation runs that omit the dipole term.

B. Monte Carlo simulation

We have used a Monte Carlo heat bath algorithm. We
keep a table of the potential energy at each site. Each elec-

tron is looked at sequentially and moved to one of the avail-
able N/2+1 sites (its own site or one of the availableN/2
unoccupied sites), chosen with a Boltzmann probability. If
the site chosen is the electron’s original location, the poten-
tial energies are unchanged; if the electron hops to a new
site, we update all the potential energies. If the electron
chooses its initial site, which it does with high probability at
low temperatures, we do not have to recompute the potential
energies. This speeds up the simulation considerably, par-
tially compensating for the much longer equilibration times
needed at low temperatures. Our longest run(for L=4 at T
=0.01 ands=0.5) had 33106 Monte Carlo steps per elec-
tron. Depending on the system size and temperature, the
sample averages involved between 5 and 190 disorder con-
figurations.

III. MEASURED QUANTITIES

A. Binder’s g and equilibration criteria

The Edwards-Anderson order parameter alluded to above
quantifies the extent to which spins or site occupations are
frozen. It is defined asq;fkSil2g; we will denote thermal
averages byk¯l and disorder averages by[¯]. Thermal
averages sum over fluctuations in the positions of the elec-
trons weighted with the correct Boltzmann probability; dis-
order averages sum over different arrangements of the sites.
We can see from the definition ofq that if the spins are
frozen, then the average orientation of a spin will have a
nonzero thermal average andq will be finite. This is whyq
can be thought of as the order parameter of the phase tran-
sition.

We can generalize the Edwards-Anderson order parameter
to a finite time overlap in either of two ways.43 The first way
computes the overlap between two replicas:

qrstd =
1

N
o

i

Si
s1dstdSi

s2dstd, s8d

where the superscripts refer to different replicas. The two
replicas are identical in their disorder, i.e., the placement of
the sites, but differ in the initial positions of the electrons.
The other way uses the same replica at two different times:

qtst,td =
1

N
o

i

Si
s1dstdSi

s1dst + td. s9d

If the time differencet is sufficiently large that the electron
configurations att and t+t are essentially uncorrelated,
qtst ,td will give the same result as the replica overlap.

We use the moments of the overlap to define Binder’sg,
which is a parameter that is related to the phase transition.
First we definegstd by43,44

gstd =
1

2
S3 −

fkq4stdlg
fkq2stdlg2D , s10d

where
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kqnstdl =
1

t
o
t=t

2t

qnstd. s11d

We will use gt sgrd to denote the result of usingqt sqrd.
Binder’s g is given by

g = lim
t→`

gstd, s12d

which we will approximate by

g < gstd s13d

for some measurement timet large enough that the configu-
rations are essentially uncorrelated so thatgt and gr agree.
We have used this fact to monitor equilibration by simulating
two replicas that have the same placement of sites but differ-
ent spin configurations.43 Typically grstd increases with time
to the equilibrium value, whereasgtstd decreases to the equi-
librium value. The two methods agree when the system has
reached equilibrium. Our criterion for equilibration was that
the values ofgr andgt agreed to within 0.1. We only present
results for systems that meet this criterion. We should cau-
tion that this criterion can be met even though the system
may still be slowly aging.

Binder’sg provides a way to monitor the phase transition.
At high temperatures, the distribution ofq tends to a Gauss-
ian so thatg→0, whereas the order parameter, and henceg,
become nonzero as the temperature approaches the phase
transition temperatureTC. If we make the assumption of one
parameter scaling, then the only relevant length is the corre-
lation lengthj,sT−TCd−n, wheren is the critical exponent
associated withj. So all lengths, includingL, can be scaled
by j. Sinceg is dimensionless, we expect that it should sat-
isfy a scaling form43,44

gsL,Td = ĝ„L1/nsT − TCd…. s14d

Thus at the critical temperature,gsL ,TCd should have the
same value independent of the system sizeL (as long asL is
sufficiently large for finite size scaling to apply).43,44

B. Specific heat

There are two ways to calculate the specific heatCVsTd.
The first way uses the variance of the energy fluctuations:

CV =
1

NkBT2fkE2l − kEl2g, s15d

whereE is the average energy per electron,N is the number
of electrons, andkB is Boltzmann’s constant. The other way
to calculate the specific heat is to take the derivative of the
energy with respect to temperature. We can approximate the
derivative by a finite temperature difference

CVsTid = U ]fkElg
]T

U
Ti

<
fkEsTi+1dlg − fkEsTidlg

sTi+1 − Tid
. s16d

We found that the specific heat calculated in these two ways
agreed quite well. Notice however, that if the slope ofE
versusT is increasing as temperature increases, then the spe-

cific heat calculated by the finite difference method will un-
derestimateCV, which is actually the slope of the tangent to
the energy curve. Similarly, if the slope ofE versusT is
decreasing as the temperature increases, the finite-difference
method will overestimateCV.

C. Staggered occupation

Since an unoccupied site on a cubic lattice corresponds to
a down Ising spin and an occupied site to an up Ising spin,
the fcc crystalline phase corresponds to a maximum in the
magnitude of the staggered occupationMs. The staggered
occupation is defined by7

Ms =
1

N
o

i

s− 1di+j+kSi+j+k, s17d

wherei , j ,k are the integer coordinates of the sites in a cubic
lattice in units of the lattice constanta. So a site coordinate
sx,y,zd=sia , ja ,kad. Since disorder is introduced through a
distribution in the position of the sites with respect to the
cubic lattice sites, we can still use Eq.(17) to calculate the
staggered occupation in the presence of disorder by regard-
ing i, j , and k as coordinates of the center of the unit cell
where the site is located. It is useful to plot the staggered
occupation distributionPsMsd versusMs in order to see the
extent of the “crystalline” order. In order to compare differ-
ent system sizes, we normalize the staggered occupation to
range from −1 to +1, and the area under the curve is nor-
malized to 1.

D. Single-particle density of states

We have calculated the single-particle density of states
NsEd at various temperatures.NsEd is the distribution of po-
tential energies at single sites due to interactions with all the
other sites. In other words, we can write the Hamiltonian in
the form of an Ising model:

H = −
1

2o
i j

JijSiSj = o
i

EiSi , s18d

whereEi is the single-site energy or “local field” and is given
by

Ei = −
1

2o
j

JijSj . s19d

NsEd is the thermally averaged and disorder-averaged distri-
bution of Ei.

IV. RESULTS

A. Second-order melting transition in the ordered case„s=0…

We consider the case where the translational degrees of
freedom are discrete and the electrons can only sit on desig-
nated sites. This is equivalent to a long-range Ising model in
three dimensions. If the sites are ordered and are lattice sites,
it is also equivalent to the LRPM in the completely filled
case(ionic densityr=1).23 We find that discretization pro-
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duces a second-order phase transition regardless of the
amount of positional disorder. In this section we present evi-
dence that the ordered case withs=0 undergoes a second-
order crystallization transition to an fcc lattice as the tem-
perature is lowered. This result is consistent with the second
order transition found by Möbius and Rößler40 from numeri-
cal simulations of a half-filled system on a cubic lattice with
Coulomb interactions. It is also consistent with the second-
order transition in the LRPM model for the fully occupied
casesr=1d.23,45

In Fig. 1 we showg versus the temperatureT at L=4, 6,
and 8. The point where these curves cross yields a transition
temperature ofTC=0.127. Notice that above the transitiong
dips down and acquires negative values. This behavior has
been seen in the case of a three-state ferromagnetic Potts
model in three dimensions that undergoes a first-order phase
transition.46 However, in that case the value ofg at the mini-
mum scaled asgsTmind,−Ld, whereas in our casegsTmind
appears to saturate at largeL. The negative values ofg can
result if the distributionPsqd is non-Gaussian with finite
weight atqÞ0 corresponding to long lived occupations of
some sites. A very simpled-function distribution that illus-
trates this is

Psqd = a0dsqd + F1 − a0

2
Gdsq − a0d + F1 − a0

2
Gdsq + a0d,

s20d

wherea0 is a parameter with values between 0 and 1, and
a0 is a constant. For 2/3,a0,1, this distribution yields
g,0.

We initially thought that the transition might be first order.
One of the signatures of a first-order melting transition is the
coexistence of the liquid and crystalline phases at the melting
temperature. We looked for evidence of coexistence by ex-
amining the distributionPsMsd of the staggered occupation.
Coexistence would produce three peaks inPsMsd versusMs:
a central peak and two side peaks symmetrically placed with
respect toMs=0. The central peak corresponds to the high-
temperature liquid phase and the side peaks correspond to
the fcc crystalline phase. Furthermore, at the transition tem-
perature for a first-order transition, the three peaks would

become narrower and higher with increasing system size. On
the other hand, if the system is cooled through a second-
order transition, the high-temperature central peak inPsMsd
is replaced by two peaks symmetrically placed aboutMs=0.
These peaks do not become sharper with increasing system
size, but the width of the distribution is expected to decrease
with increasing system size asL−b/n, whereb andn are the
critical exponents defined byMs,uT−TCub and j,sT
−TCd−n.47

Figure 2 shows the distributionPsMsd of the staggered
occupation at various temperatures. Notice that in the vicin-
ity of the melting temperature there are only two symmetri-
cal side peaks. This implies that the transition is a second-
order phase transition. Furthermore we find that the value
Ms,max, where PsMsd has a maximum, decreases with in-
creasing system size atTC and varies asMs,max,L−0.6. This
is also consistent with a second-order transition. In the vicin-
ity of the phase transition wherePsMsd has two peaks, we
can define the widthMs,width of the distribution as the non-
zero value ofMs wherePsMs,widthd=PsMs=0d. We find atTC

that Ms,width is linear in L and can be fitted to the form
Ms,width=A−mL, whereA andm are constants that are tem-
perature dependent. AtT=0.128, which is close toTC, A
=1.1, andm=0.027. Notice thatMs,width does not appear to
follow the form Ms,width,L−b/n, but we would need more
than three values ofL to accurately determine if there is a
discrepancy with the scaling form.

First-order phase transitions are often characterized by
hysteresis upon heating and cooling. We have looked for
hysteresis by cooling and then heating the system, and ex-
amining the resulting curves ofg versusT as well as the
specific heatCV versusT. We find no hysteresis, which is
further evidence against a first order phase transition. To
summarize, the ordered casess=0d undergoes a second-
order phase transition as a function of temperature.

FIG. 1. (a) grsL ,Td vs T for s=0. [gtsL ,Td vs T is virtually
identical.] The data forL=4 are averaged over 190 runs,L=6 is
averaged over 67 runs, andL=8 is averaged over 45 runs. The solid
lines are guides to the eye.(b) gsL ,Td for s=0 scaled using
ĝ(L1/nsT−TCd) with TC=0.128±0.001 andn=0.55±0.1.

FIG. 2. The distributionPsMSd of the staggered occupationMS

for L=8 ats=0 at various temperatures. The central peak is highest
at T=1 and gradually decreases asT decreases. The two side peaks
begin to appear in the vicinity ofTC and become more pronounced
asT drops belowTC. There is no temperature where three peaks are
present, indicating that the transition is not first order. The data were
the result of averaging over 35 runs.
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B. Critical behavior

We have determined the critical exponentn and the tran-
sition temperatureTC as a function of the disorders through
the finite size scaling ofgsL ,Td.3,43 In Fig. 3 we plotgsL
=8,Td versusT for various values ofs. Notice that the tran-
sition region moves to lower temperatures with increasing
disorder. This reflects the decrease inTC with increasings.
The transition temperature corresponds to the temperature
where the curves ofgsL ,Td versusT for all sizes cross. Ex-
amples are shown in Figs. 1 and 4.

To more accurately determineTC, we use the scaling hy-
pothesis to collapse the data for a given value ofs onto a
single curve as shown in Fig. 4.TC andn are used as adjust-
able parameters to collapse the data. The values ofn andTC
at various values ofs are given in Table I. We can estimate
the errors in the critical temperature and the critical exponent
n by how well the curves can be made to collapse. The errors
given in the table also include our estimate of the effects of
aging. In other words, the error bars include our estimate of
how the values might change if we were to run longer at low
temperatures or cool more slowly. In Figures 5 and 6 we plot
TC andn versuss.

We can see thatn increases fromn=0.55±0.1 at s
=0 to n=1.30±0.2 ats=1. The value ofn in the ordered
casess=0d lies between the classical valuesn=0.5d and the
value for the ordered short-ranged Ising modelsn=0.63d.48

Within the error bars, our value is consistent with both uni-
versality classes, and we therefore cannot differentiate be-
tween them. Möbius and Rößler40 studied a half-filled sys-
tem on a cubic lattice with Coulomb interactions and found
n=0.635s10d, which agrees with the value for the Ising
model. Our simulations differ from those of Möbius and
Rößler in that we used the Ewald summation to take into
account the fact that the Coulomb interaction extends beyond
the size of the system while they did not. As we mentioned
earlier, the order-disorder transition in the LRPM model on a
simple-cubic lattice belongs to the Ising universality class.45

The completely filled LRPM model with ionic densityr=1
is equivalent to ours=0 case. In addition, Luijtenet al. did
Monte Carlo studies of the restricted primitive model(RPM),
which has equal numbers of oppositely charged ions with
equal diameters and with Coulomb interactions in three
dimensions.49 These grand canonical simulations of the RPM
used a finely discretized lattice where the ionic diameters
were 5 times larger than the lattice spacing, and they found
the Ising of the critical exponentn=0.63s3d.

In the disordered casess=1d our value forn=1.3±0.2
differs from the value ofn=0.75−0.1

+0.2 obtained earlier.3 Again
this is probably due to the fact that we used Ewald summa-

TABLE I. The values ofTC andn for different valuse ofs.

s TC n

0.0 0.128±0.005 0.55±0.1

0.1 0.123±0.005 0.57±0.1

0.2 0.110±0.005 0.61±0.1

0.3 0.085±0.005 0.71±0.1

0.4 0.045±0.01 1.05±0.2

0.5 0.030±0.01 1.35±0.2

1.0 0.028±0.01 1.30±0.2

FIG. 3. grsL=8,Td vs T for s=0 (45 runs), s=0.1 (10 runs),
s=0.2 (5 runs), s=0.3 (15 runs), s=0.4 (115 runs), s=0.5 (45
runs), ands=1 (108 runs). [gtsL=8,Td vs T is virtually identical.]
The number of runs in parentheses is the number of runs that were
averaged to obtain the data. The solid lines are guides to the eye.

FIG. 4. (a)-(c) grsL ,Td vs T for s=0.3, 0.4, and 1.0 atL=4, 6,
and 8. The solid lines are guides to the eye.[gtsL,Td vs T is virtually
identical.] The number of runs in parentheses is the number of runs
that were averaged to obtain the data.(d) grsL ,Td for s=0.3 scaled
using ĝ(L1/nsT−TCd) with TC=0.085±0.005 andn=0.71±0.1.(e)
grsL ,Td for s=0.4 scaled using ĝ(L1/nsT−TCd) with TC

=0.045±0.01 andn=1.05±0.1.(f) grsL ,Td for s=1 scaled using
ĝ(L1/nsT−TCd) with TC=0.028±0.01 andn=1.30±0.2.
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tion whereas the previous work did not. In addition we were
able to do longer runs at low temperatures than the previous
work.

The transition temperature decreases fromTC
=0.128±0.005 ats=0 to TC=0.028±0.01 ats=1. The
value ofTC=0.128 ats=0 is consistent with the temperature
of the peak in the specific heat found previously by Möbius
and Rößler.40 Within the error the value ofTC=0.028±0.01
at s=1 is consistent with the previous value ofTC
=0.043−0.006

+0.003 found by Grannan and Yu.3

It is interesting thatTC is much lower than the character-
istic energies of the system which are of order unity. This is
especially true for large values of the disorder. The reason for
this was given by Grannan and Yu3 and is as follows. At the
temperatures of our simulations, nearby pairs of sites will
with high probability consist of an occupied and an unoccu-
pied site. Since these strongly coupled pairs of sites are close
together, they are guaranteed to have small dipole moments.
Therefore, they will interact weakly with the rest of the sys-
tem, remaining active down to temperatures much lower than
the bare interaction energy.

C. Specific heat

In Fig. 7 we plot the specific heat versus temperature for
various values ofs for L=8. We see that in the ordered case
ss=0d CV exhibits a sharp peak centered atTC. As the dis-
order increases, the peak broadens and eventually becomes a
broad bump with a maximum at a temperature aboveTC. For
example, fors=1, CV has a maximum atT=0.07, whereas
TC=0.028. In Fig. 6 we compare the temperatureTpeakof the
maximum in the specific heat withTC for various values of
s. We see thatTpeak matches well withTC for sø0.3. For
larger values ofs, Tpeak.TC. Spin glasses also have a maxi-
mum in their specific heat at a temperature above the spin
glass transition temperature.50 For the three-dimensional
Coulomb glass where the disorder is in the on-site energy
rather than in the positions of the sites, Möbiuset al. found
that as the width in the distribution of on-site energies in-
creased, the temperatureTpeakof the maximum in theCV also
increased.1,2 However, in the cases of on-site disorder that
they considered, the maximum does not signify a transition
since the existence of a phase transition in the presence of
on-site disorder has not been established. The maximum in
CV must be present sinceCVsTd goes to zero at the extremes
T→0 andT→`, implying that there must be a maximum
between these extremes.39 Furthermore, even without Cou-
lomb interactions but with a large amount of on-site disorder,
there would be a maximum in the specific heat consisting of
a superposition of the Schottky specific heats of two-level
systems with randomly distributed excitation energies.39

To show the size dependence of the specific heat, in Fig. 8
we plotCV versusT for different system sizes ats=0 and at
s=1. In the ordered case the specific heat peak becomes
sharper asL increases, while in the disordered case, the
broad bump is only weakly dependent on system size.

D. Single-particle density of statesN„E…

In a Coulomb glass the long-range Coulomb interactions
between localized electrons produce a Coulomb gap in the

FIG. 5. The critical exponentn vs the disorders. The solid line
is a guide to the eye.

FIG. 6. Transition temperatureTC vs s (s), temperatureTmaxof
the maximum ofdNsE=0d /dT vs s (h), and the temperatureTpeak

of the maximum in the specific heat vss (L). The solid lines are
guides to the eye.

FIG. 7. The specific heatCV vs T in units of kB for L=8 for s
=0 (45 runs), s=0.1 (10 runs), s=0.2 (5 runs), s=0.3 (15 runs),
s=0.4 (95 runs), s=0.5 (45 runs), ands=1 (108 runs). The num-
ber of runs averaged over is indicated in parentheses. The solid
lines are guides to the eye.
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single-particle density of states that is centered at the Fermi
energy.8–10 The Coulomb gap makes the ground state stable
with respect to single-electron hops. The ordered case also
has a gap but for a somewhat different reason. In the ground
state of the ordered case where there is a fcc lattice, the
potential energy or local field is the same for each occupied
site. The local field is equal and opposite for the unoccupied
sites. This leads to anNsEd with two d functions symmetri-
cally placed aboutE=0. In finite size systems at finite tem-
peratures thesed functions broaden into finite height peaks
due to thermal fluctuations and the formation of ordered do-
mains.

In Fig. 9 we show the density of statesNsEd for single-
particle excitations at various temperatures fors=0 and for
s=1. Because of strong electron-electron correlations, the
density of states at zero energy starts to decrease at about
2TC in the ordered casess=0d but at a temperature about an
order of magnitude aboveTC in the strongly disordered case
ss=1d. In Fig. 10 we showNsEd at or nearTC for various
values of s for L=8. We see that atTC the gap appears
nearly fully formed fors=1 but not fors=0. In the ordered
case the finite density of states atE=0 is possibly due to
domains.

As we can see from the figures, at finite temperatures the
gap in the density of states is partially filled, and the density

of states does not vanish at the Fermi energy. This has been
seen in previous simulations.3,11–15Tunneling measurements
of the Coulomb gap have also seen that it fills in with in-
creasing temperature.18,19 The exact form ofNsE,Td is not
known, but for strong disorder some have argued11,12,14that
its low-temperature asymptotic behavior is described by
NsE=0,Td,Td−1. However, some simulations15 have found
a stronger temperature dependence, i.e.,NsE=0,Td,Tl with
l. sd−1d. For d=2, Sarvestaniet al.15 found l=1.75±0.1,
and ford=3, l=2.7±0.1.

In Figure 11 we show our results in a log-log plot of
NsE=0,Td for various values ofs at L=8. At low tempera-
tures the curves are quite straight on a log-log plot. So we
can fit the low-temperature part of these curves to a power
law form NsE=0,Td,Tl. The fits are shown as solid lines in
Fig. 11 and in Fig. 12. We plotl as a function ofs in Fig.
13. We find thatl varies between 3 to 16 and is always
greater thand−1=2 sinced=3. Even in the case of uniform
disorder(uniform random), l=4.8. The large value ofl for
s=0 is not entirely surprising since Figure 10 shows that
NsE=0,Td is larger fors=0 than for any other value of the
disorder in the vicinity of the transition temperature. Since
NsE=0,Td goes to zero as the temperature goes to zero,
NsE=0,Td has the farthest to go fors=0. Even thoughTC is
largest fors=0, the ratioNsE=0,Td /TC is largest for the
case of no disorder, and so it is consistent that the exponent
l is largest for the case of no disorder.

FIG. 8. The specific heatCV vs T in units ofkB for L=4, 6, and
8 for (a) s=0 and(b) s=1. The specific heat is calculated from the
variance in the energy fluctuations. The specific heat calculated
from the derivative of the energy with respect to temperature is
similar. The number of runs averaged over is indicated in parenthe-
ses. The solid lines are guides to the eye.

FIG. 9. NsEd versusE for L=8 at various temperatures. The
solid lines are guides to the eye.(a) s=0. The data were averaged
over 45 runs.(b) s=1. The three lowest temperatures were aver-
aged over 108 runs and the three highest temperatures were aver-
aged over 16 runs.
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We plot the data from Fig. 11 on a linear plot in Fig. 14
where we seeS-shaped curves. We can see thatNsE=0,Td
rises much more steeply for small values of disorder than for
large values of disorder. The steepest part of the rise for the
ordered casesssø0.3d occurs approximately atTC. We can
quantify this by taking a derivativedNsE=0d /dT that can be
approximated by a finite difference:

UdNsE = 0d
dT

U
T=Ti

<
Ni+1sE = 0d − NisE = 0d

Ti+1 − Ti
. s21d

The result is shown in Fig. 6 where we compareTC with the
temperatureTmax wheredNsE=0d /dT is a maximum. We see
that Tmax follows TC for sø0.3 but lies aboveTC for larger
values of the disorders.

Efros and Shklovski�9,10 argued that atT=0 the Coulomb
gap in the single-particle density of states of a fully disor-
dered system should scale asNsEd,uE−EFud, where d=d
−1 andd is the dimension of the system. Some subsequent
work11,14,35has supported this form for the density of states,
though some simulations5,12,15,51have found a steeper energy
dependence, i.e., d.d. sd−1d in two5,12,15,51 and
three12,15,51dimensions. Efros52 included two-electron transi-
tions in calculating the density of states of a Coulomb glass
and proposed the exponential formNsEd,expf−uE0/ sE
−EFdu1/2g where E0 is a constant. The physical reason for
such a sharp gap is the formation of polarons in which an
occupied site tends to have unoccupied sites nearby and vice
versa. Some simulations5 have found support for this expo-
nential form, while others35,51 have not.

According to the theory,9,10, NsEd,uE−EFud−1 in the limit
E→EF. In Fig. 15 we plot our data forfNsEd−NsEFdg versus

FIG. 10. NsEd vs E for L=8 for various values ofs at tempera-
tures in the vicinity ofTC. Shown ares=0 (T=0.128, 45 runs), s
=0.1 (T=0.122, 10 runs), s=0.2 (T=0.105, 5 runs), s=0.3 (T
=0.085, 15 runs), s=0.4 (T=0.045, 115 runs), s=0.5 (T=0.030, 45
runs), and s=1 (T=0.0275, 108 runs). The temperatures and the
number of runs averaged over are indicated in parentheses. The
solid lines are guides to the eye.

FIG. 11. Log-log plot ofNsE=0d versusT for L=8 for s=0 (45
runs), s=0.1 (15 runs), s=0.2 (10 runs), s=0.3 (10 runs), s=0.4
(115 runs), s=0.5 (45 runs), ands=1 (108 runs). The number of
runs averaged over is indicated in parentheses. The solid lines are
power law fits to the data at low temperatures.

FIG. 12. Log-log plot ofNsE=0d vs T at low temperature for
L=8 for s=0 (45 runs), s=0.1 (15 runs), s=0.2 (10 runs), s
=0.3 (10 runs), s=0.4 (115 runs), s=0.5 (45 runs), ands=1 (108
runs). The number of runs averaged over is indicated in parenthe-
ses. The solid lines are power law fits to the formNsE=0,Td,Tl.

FIG. 13. The powerl vs s for L=8. The solid line is a guide to
the eye.
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uE−EFu on a log-log plot.[Since we are at finite tempera-
tures, we have subtracted offNsEFd.] We fit the low-energy
data in the vicinity of the Fermi energyEF to a power law of
the formNsEd,uE−EFud for various values ofs at tempera-
tures belowTC. For the case of strong disorderss=1d, we
find d=2.65±0.2, which agrees with the previous values of
d=2.6±0.2 found by Möbiuset al.51 and d=2.7±0.1 found
by Sarvestaniet al.15 It disagrees with the value ofd=d−1
=2 predicted by Efros and Shklovskii9,10 and with the value
d=2.38 found by Li and Phillips.12 In the case of no disorder,
the curvature is very close to quadratic and we findd
=2.1±0.2. In Fig. 16 we plot the exponentd versus the dis-
order s. We see thatd increases and then saturates with
increasing disorder. The estimated error of ±0.2 ind does not
come from the fit to the data, so much as from the fact that
the finite temperature affects low energiesE&kT. There are
also finite size effects51 that affect low energiesE&1/2L,

though finite-size effects forLù6 are quite small(less than
1%).

We have checked to see if our data provide evidence for
the exponential formNsEd,expf−uE0/ sE−EFdu1/2g proposed
by Efros.52 In Fig. 17 we show a log-log plot of
−1/ lnfNsEd−NsEFdg versusuE−EFu for various values ofs.
[Since we are at finite temperatures, we have subtracted off
NsEFd.] If NsEd,expf−uE0/ sE−EFdu1/2g were a good de-
scription of the density of states, then the curves in Fig. 17
would be straight lines with slopes of 1/2. Since the expo-
nential form presumably only describes the density of states
in the vicinity of EF, we have fit lines through the points
corresponding touEu,0.04 assuming the more general form
fNsEd−NsEFdg,exp−uE0/ sE−EFdug. The slope of the lines
in Fig. 17 correspond to the exponentg. We plotg versuss

FIG. 14. Linear plot ofNsE=0d vs T for L=8. Data are the same
as shown in Fig. 11. The solid lines are guides to the eye.

FIG. 15. Log-log plot offNsEd−NsEFdg vs uE−EFu for L=8 for
s=0 (T=0.120, 45 runs), s=0.1 (T=0.111, 15 runs), s=0.2 (T
=0.08, 20 runs), s=0.3 ( T=0.055, 15 runs), s=0.4 ( T=0.0335,
115 runs), s=0.5 (T=0.0275, 45 runs), s=1.0 (T=0.0300, 108
runs). The temperatues are all belowTC. The solid lines are fits to a
power lawfNsEd−Ns0dg,uE−EFud for values ofE very close to the
Fermi energyEF, i.e., uE−EFu,0.04. The plots includeNsEd values
for E above and belowEF.

FIG. 16. The exponentd vs s from the fits to the power law
fNsEd−Ns0dg,uE−EFud in Fig. 15. The solid line is a guide to the
eye. The error ind is approximately ±0.2 due to finite-size and
finite-temperature effects described in the text.

FIG. 17. Log-log plot of −1/ lnfNsEd−NsEFdg vs uE−EFu for L
=8 for s=0 (T=0.120, 45 runs), s=0.1 (T=0.111, 15 runs), s
=0.2 (T=0.08, 20 runs), s=0.3 (T=0.055, 15 runs), s=0.4 (T
=0.0335, 115 runs), s=0.5 (T=0.0275, 45 runs), s=1.0 (T
=0.0300, 108 runs). The temperatues are all belowTC. The solid
lines are fits to −1/ lnfNsEd−NsEFdg,uE−EFug for values ofE very
close to the Fermi energyEF, i.e., uE−EFu,0.04. The slope of each
line givesg. The plots includeNsEd values forE above and below
EF.
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in Fig. 18. The values ofg fluctuate around 1/2, but the large
curvature of the trajectories in Fig. 17 do not lend strong
support to the exponential form of the density of states.

Analytical theories13,14 of the Coulomb glass predict that
the finite-temperature density of statesNsE=0,Td at the
Fermi energysEF=0d should be proportional to the zero-
temperature density of statesNsE,T=0d at an energyE
=kBT, i.e., NsE=0,Td,NsE,T=0d with uE−EFu=kBT. This
has been supported by Coulomb glass simulations.15 We
tested this relation by plottingNsE=0,Td versus T, and
NsE,T=T0d versusE on the same graph, whereT0 is the
lowest temperature at which we were able to equilibrate the
system. We show our results in Fig. 19 fors=0 and 1. The
hypothesis seems to work for a limited range of energies
betweenkBT0 and the width of the Coulomb gap. It also
appears to be more applicable for high disorderss=1d than
for the case of no disorderss=0d.

E. Staggered occupation

We have studied the staggered occupation at various val-
ues of the disorder. At high temperatures the distribution has
a peak centered atMs=0 for all values of the disorder. At
low temperatures the distribution broadens and has two
peaks symmetrically placed about zero for the ordered case
and for small and moderate values of the disorder. For the
strongly disordered casesù0.5, the distribution has a peak
centered atMs=0 for all values of the temperature where the
system was able to attain equilibrium in our simulations.
This is what one would expect for a random system. These
features are illustrated in Fig. 20, which shows the staggered
occupation for various values ofs in the vicinity of TC. As a
function of system size, the high-temperature peak inPsMsd
becomes sharper asL increases for all values ofs. An ex-
ample is shown in Fig. 21.

V. SUMMARY

We have performed a Monte Carlo study of a classical
three-dimensional Coulomb system of electrons in which we

systematically increase the positional disorder by introducing
deviations from positions in a cubic lattice. We start from a
completely ordered system and gradually transition to a Cou-
lomb glass. The phase transition as a function of temperature
is second order for all values of disorder. We use finite-size
scaling to determine the transition temperatureTC and the
critical exponentn. We find thatTC decreases and thatn
increases with increasing disorder. Both quantities saturate in

FIG. 18. The exponentg vs s from the fits to the exponential
form fNsEd−NsEFdg,expu−E0/ sE−EFdug in Fig. 17. The solid line
is a guide to the eye.

FIG. 19. (a) NsE=0,Td vs T, and NsE,T=0.120d vs E for s
=0. The data are averaged over 45 runs.(b) NsE=0,Td vs T, and
NsE,T=0.0275d vs E for s=1. The data are averaged over 108
runs. The solid lines are guides to the eye.

FIG. 20. Staggered occupation distribution forL=8 for various
values ofs in the vicinity of TC. s=0 (35 runs,T=0.128), s=0.1
(15 runs,T=0.123), s=0.2 (10 runs,T=0.110), s=0.3 (10 runs,
T=0.085), s=0.4 (40 runs,T=0.045), s=0.5 (10 runs,T=0.03),
ands=1 (10 runs,T=0.03). The number of runs averaged over is
indicated in parentheses. The solid lines are guides to the eye.
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the limit of large disorder. The specific heat peak value de-
creases and the peak broadens to a broad bump with increas-
ing disorder. A gap develops in the single-particle density of

states for all values ofs. At low temperaturesNsE=0d,Tl

wherel.3.8 for all values ofs. At low temperatures and
low energies nearEF, the density of states can be fitted to a
power law formNsEd,uE−EFud whered−1,d,d for all
values of s. d increases with increasings, starting atd
=2.1 for s=0 and saturating atd=2.65 fors=1. The distri-
bution of the staggered occupation has a single central peak
at high temperature for all values of the disorder. In the or-
dered casesssø0.4d PsMsd develops two peaks symmetri-
cally placed on either side ofMs=0 in the vicinity of the
phase transition.
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