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Viscoelasticity and surface tension at the defect-induced first-order melting transition
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We show that thermally activated interstitial and vacancy defects can lead to first-order melting of a vortex
lattice. We obtain good agreement with experimentally measured melting curve, latent heat, and magnetization
jumps for YBaCu;O;_ 5 and BLSr,CaCyOg. The shear modulus of the vortex liquid is frequency dependent
and crosses over from zero at low frequencies to a finite value at high frequencies. We also find a small surface
tension between the vortex line liquid and the vortex lattice.

I. INTRODUCTION Melting scenario

In this paper we show that melting can be induced by

It has been experimentally established that below a critiinterstitial and vacancy line defects in the vortex lattice
cal value of the magnetic field, vortex lattices undergo awhich soften the shear modulags. This softening makes it
first-order  transition in  clean high-temperature €asier to introduce more defects and increases the vibrational

superconductors:* This has been seen in YBaw0,_; free energy. The increased vibrations ultimately lead to melt-
(YBCO),>™'  Bi,Sr,CaCyOq (BSCCO,'>* and ing. There is good agreement with the experimental curve of
(La; _,Sr),Cu0,.'® Evidence for first-order phase transi- transition temperature versus field, latent heat, and magneti-
tions comes from latent heat measurematsl peaks in the zation jumps for YBCO and BSCCO. Using a viscoelastic
specific hedf*'as well as jumps in the resistivity>1*and approach, we show that the shear modulus is frequency de-
in the magnetizatioh!%"12%°This transition is generally ac- pendent. At zero frequency the vortex liquid cannot sustain a
cepted as a melting transition from a vortex solid to a vortexshear while at high frequency the liquid has a finite shear
liquid. modulus. Since we can calculate the free energy for both the
A great deal of theoretical wotk?®has helped to estab- lattice and the liquid at melting, we have estimated the sur-
lish that there is a first-order melting transition. Bire Nel-  face tension between a vortex line liquid and a vortex solid.
son, and Thiavill&® showed that including fluctuation effects ~ Let us describe our scenario for melting. Our approach
in Abrikosov's mean-field theory of the flux lattice transition follows that of Granat®' as well as previous work which
would drive the transition first-order. The advent of the high-Showed that defects can lead to a first-order phase
temperature superconductors and the subsequent experimdfnsition=” We start with a vortex lattice in a clean layered
tal indications of vortex lattice melting sparked intense the-SUPerconductor with a magnetic fiettlapplied perpendicu-

oretical activity. Early analytic efforts used the Lindemannlt;’ler f:%rtrheelalta;ydersstaaclzlsg%fﬂﬁ?égkev\llircts: r;ssld\(?&;t;\il;lggiiﬁ;?hat
criterion® though such an approach could not show that th b .

. A ) . She transition is induced by topological defect lines, i.e., va-
transition was first order. Studies of the mapping betwee'?:ancies and interstitials. In a Delaunay triangulatian va-
vortex lines and the world lines of a two-dimensioraD)

. " cancy or an interstitial in a triangular lattice is topologically
system of bosons have suggested a first-order transition fro%uivalent to a pair of bound dislocatidAss well as to a
an Abrikosov lattice to an entangled vortex liqditf?® Nu-

} : : twisted bond defect® High-temperature decoration
merical simulation®?"*%have been able to show that the experiment® and Monte Carlo simulatiod% have found
melting is first order by calculating quantities such as thesych defects to be thermally excited. The introduction of
magnetization jumf}**and the delta function in the specific these defects softens the elastic moduli. Since the energy to
heat?**>*"However these simulations were done in the limitintroduce interstitials and vacancies is proportional to the
of high magnetic fields,,<ap,<\,, where ¢, is the co-  elastic moduli, softening makes it easier to introduce more
herence lengthg, is the spacing between vortices, ang,is  defects. The softening also increases the vibrational entropy
the penetration depth. M38£1?3-2"assumed that the mag- of the vortex lattice which leads to a melting transitidine
netic inductionB was spatially uniform and thus neglected transition is driven by the increased vibrational entropy of
the wave-vector dependence of the elastic moduli. This hathe ordinary vortex lines of the lattice, and not by the en-
made quantitative comparison with experimental data diffitropy of the wandering of the defect linds fact Frey, Nel-
cult, especially in the case of BSCCO whose vortex latticeson, and Fishéf showed that a phase transition driven by
melts at low fields. In addition the mechanism for vortexthe entropy of wandering flux lines occurs at a much higher
lattice melting is still not well established. There have beemmagnetic field than what is observed experimentally. In the
suggestions that topological defettssuch as vortex vicinity of the experimentally observed first-order phase
loops?%?” vortex-antivortex pairé*?°® free disclination$?  transition, wandering in the transverse direction by more
and dislocation® may play a key role in triggering melting. than a lattice spacing is energetically quite costly and there-
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fore rare. Such flux line bending also makes dislocaffots
energetically costly at low dislocation densiti€she energy
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equilibrium position byu(n,r,) whereu=(u,,u,) and the
pancake positiom=(r,,r,). The Fourier transfornu(k,q)

scale is set by,s.>* Heresis the interplane spacing arg,
the energy per unit length of a vortex, is given lay
= (oldm\ ) Where ¢y is the flux quantum andl,, is the
penetration depth for currents in tld plane. For example, (4
for YBCO €3s~650 K at T=70 K and for BSCCOeqs
~550 K atT=60 K.*> Note thateys>T.] whereV is the volume and the vibrational partition function
The first-order transition is nucleated in a small region byZ,;, is given by
a local rearrangement of existing line segments. Slightly
above the melting temperatufig, a vortex line can distort
and make an interstitial and a vacancy line segment that lo-
cally melt the solid. This is the analog of a liquid droplet
which nucleates melting of a crystal. The role of the surface -
tension is played by the energy to connect the interstitiaﬂ'\’here we ha;’e divided by the areafgb of_the ’?O”"a' core
segment to the rest of the vortex line. This connection can b8' & pancaké’ ug andu, are the real and imaginary parts of
a Josephson vortex lying between planes or a series of sma(K:d) andie{x,y}. The elastic free-energy functional asso-
pancake vortex displacements spread over several layefg@ated with these distortions is
When the lengtH of the interstitial and vacancy segments
equals the critical length., the energy gained by melting
equals the energy cost of the connections. Whet, it is
energetically favorable for the defect segments to grow to the
length of the system. We are ignoring the surface tensiomwherei andje{x,y}, the volume per pancake vortex ig
associated with the surface parallel to thexis. We shall =s¢q/B, andsis the interplane spacing. Tlkesum is over
show later that this is quite small. a circular Brillouin zoneKS=4TrB/¢o. The matrix a;; is
given by

=2pu(n,r)exdi(k-r,+qn)]. k=(k,,ky) and q is the
wave vector along the axis.

fyin=—(kgT/V)InZp,,

dug(ik,q)du,(ik,q)

2
7T§ab

Zvib:f e 7elkeT [] , (5

k,q>0,i

1
Fa=5v0 > ui(k,q)a;uf(k,q), (6)
2 kg ij

Il. FREE ENERGY
: . aj; = Cgkik + (Cegk®+ €44Q%) 8, 7
To study melting we assume that we have a vortex lattice 1= Cakikj+ (Ced 44Q°) 9 @
with interstitial and vacancy lines extending the length of thevvherecB, Ces, andcyy, are the bulk, shear, and tilt moduli,
Igittlce. Our goal is to flnd the free-er_lergy density as a fU”C'respectiver.chcll— Ces for a hexagonal latticeQ?=2(1
tion of the concentratiom of defect lines. The free-energy — cosqy/s. Diagonalizingay; leads to two eigenvalues:
density is

— 2 2
f=fo+ fu+fuip+ fuan, Ai(kg) = 11K+ C44Q%,

D

wheref is the free-energy density of a perfect latti€g,is (8)
the work needed to introduce a straight interstitial or vacancy
line into the latticef,;, is the vibrational free energy density whereA is the diagonal matrix, the subscriptienotes lon-
of the system, andl,,,, is the free-energy due to the wander- gitudinal, andt denotes transverse. Using this leads to
ing of the defect lines over distances large compared to the
lattice spacing. We now examine these terms in detail.

fo, the free-energy density of a perfect rigid flux lattice, is
given by the London term*#

A(kQ) = Coek®+C44Q%,

1
Fa=sv0 2 Alui(k,q)?, 9)
2 kg i=It

whereie{l,t}. After integrating overu in Eqg. (5), the re-

2
OZB_+ Bdo 7¢o o <B<H,, maining sums ovek andq are converted to integrals:
877 327727\§b 27T§§bB ' 47T>\§b e
2 1 (2 d(k?) s d 2kgT
. | o nZyp= S S[©dD = dd A BETO)
whereB is the spatially averaged magnetic inductigg, is iSTt2Jo 4w J_nms2m Vs pA

the coherence length in theb plane, andy is 0.130519 for
a hexagonal lattice and 0.133 311 for a square latfiéa@r B

where the volume of the sample is set to unity. The integrals
nearH,,, f, is given by the Abrikosov free-enertfy

in Eq. (10) are done numerically. At low fieldsb&B/H ¢,
<0.25), the elastic moduli are given i/

¢ B? (Heo—B)? 3
8T 8a[1+(2x2-1)Bal Bebod
Ce6= — 5
where the Ginzburg-Landau parameket \ 5,/ ., and the (87N ap)?
Abrikosov parameteg, is 1.16 for a triangular lattice and
1.18 for a square lattice. B 1+\2(k2+Q?)]

To calculatef;,, we follow Ref. 43. We denote the dis- C1y

placement of the'th vortex pancake in theth plane from its 41+ 02K+ QA T(1+N2K*+\5,Q%)

a
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where \; is the penetration depth for currents along the ® O O ® o
axis, y=MN./\g, is the anisotropy, and=1. At high -
fields (b>0.5)>*% cgq is altered by the factorz~(1 O
—0.5¢"%)(1-b)?(1—0.58+0.2%?) and the penetration @ @ O @) O @
depths incy; andc,, are replaced bx?=\?%/(1—b) where / \
\ denotes eithek ,, or .. In addition the last two terms of @ O O O ]
cas are replaced byB¢o/(167°\2). These replacements
guarantee that the elastic moduli vanishHgp. For YBCO @) O Q@ O @) Q
the temperature dependence of the penetration depths and
coherence lengths are given byA(T)=A(0)[1 FIG. 1. Dumbbell interstitialcy configuration in a triangular lat-

— (T/Tc)]_m (Ref. 46 and  &,u(T)=£&.(0)[ 1 tice introd:JCﬁs a stringlikecljibra;tional k:esc;]nan(:e n:iolde th:’;l]t couples
—(T/Tc)]fllz, respectively. For BSCCO whose melting to ex_terna_ shear st_ress_ and softens the s ear modulus. T eatoms or
field is two orders of magnitude belowH,, )\Z(T) flux lines involved in this mode are shown with open circles while

_ )\2(0)/[1_ (T/TC)4] andgib(T) _ égb(O)/[l— (T/TC)4].41 the rest of the sites are denoted by solid circles.
The free-energy densitfy, due to the energy cost of add-
ing a vacancy or interstitial vortex line is difficult to calcu-
late accurately’*” However, we can write down a plausible
form for f,, by noting that a straight-line defect parallel to
the ¢ axis produces both shear and bilut not tilt) distor-
tions of the vortex lattice. For example, if a defect at the
origin produces a displacement that satisfiesV-u
=vd(r)/s where (r) is a two-dimensional delta function,
then u,(k) =ik, /k?.>"*® Inserting this in Eq.(6), we find = Ce(e=0)cog 2mde/ay), (16)
that f,,= (cggt Cg)/2 Wherecg=2,cg(q=0k). Generaliz-
ing this to allow for a more complicated distortion and for awhere the shear strain=u/d. Notice that this expression
concentratiom of line defects, we writ& goes beyond the usual harmonic approximation. Then taking
the second derivative of E¢16) we obtain

discrete translational symmetry of the lattice. The shear
modulus should reflect this discrete translational symmetry
and therefore must be periodic in displacements equal to the
lattice constanty=+/¢y/B. We describe this with the sim-
plest even periodic function:

Cee(U) =Cgg(U=0)cog 27U/ ag),

fW: fo dn(a1C66+ a’zag), (12) (92066(ﬂ)/(982: _BCGG(n)y (17)

Wwhereg=4m?d?/aj. Combining this with Eq(15), we ob-

wherea; anda, are dimensionless constants. We expect th -
ain

isotropic distortion to be small, i.eq,<1, and the shear
deformation to dominate, i.eq;>a,. Integrating overn _ B
allows the elastic moduli to depend on defect concentration. Coe(N) =Cee(0)EXP( — @1 BN), (18

We will assume thatg is independent ofi since we believe  wherecgg(0) is given in Eq.(11). Thus the shear modulus
that the bulk modulus of the vortex solid is roughly the samesoftens exponentially with the defect concentrationThis

as that of the liquid phase. To firdg(n),* we use its defi-  softening lowers the energy cost to introduce further defects,
nition and increases the vibrational free enefgy, whencgg(n) is

used ina;; . Substitutingcgg(n) in Eq. (18) into our expres-
_ 42 2 ij 66
Cee=0"T/0e7, (13 sion(12) for f,, yields
wheree is the shear strain. Assuming thad has negligible

shear strain dependence, we find WZWU—G_”B”H@CBH. (19)
n
Coa(N) = Cee(0) + alJO [#*Cee(n)/dc®]dn  (14) The softening of the shear modulus with increasing defect
concentration is well known in the case of atomic lattites.
or There it has been shown both experimentdiiy? and
theoretically® that interstitials can substantially soften the
dCeg(N) 3%Ceg(N) elastic constants with the largest change being in the shear
on X 9e2 (19 modulus. Linear extrapolation of the experimentally mea-

sured change of the shear modulus of copper would imply
If we shear the lattice in thab plane along rows separated that the lattice becomes unstable for a concentration of about
by a distanced, the system must be unchanged if the dis-3% interstitials*® An example of how interstitials can soften
placement is equal to a lattice spacing. This is a result of théhe shear modulus is illustrated in Fig. 1. Here we show a
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Temperature [K] (YBCO)

76 80 84 88 92
700 ' o . — . 10 FIG. 2. First-order phase transition curves of
magnetic field versus temperature for YBCO and
600 | N N-;- BSCCO. Parameters used for YBCO armg
% 9 is =255, a,=0.01485 $=44.1°, \yp(0)
& s | o +* ’ © =1186 A (Ref. 46, 5=12 A, £,,(0)=15A, y
) N B (.2. E =5, and T.,=92.74 K. Parameters used for
Q o % g le 5' BSCCO are @;=1.0, «,=0.00705, ¢=60°,
AR 400 f o + , : , 3 Map(0)=2000 A, s=14 A, £,(0)=30A, v
: ++++++<> # 0.0 002 0}?4 0.08 0.08 £ =200, andT.=90 K. For BSCCO we use the
& 300 b 9§ N = low field form of the elastic moduli from Eq11)
= D E— %% " 14 8 and for YBCO we use the high-field form. Fég
O, %r N - o) we use Eq.(2) for BSCCO and Eq.(3) for
m 200 | ﬂﬂ : ~ YBCO. (For BSCCO we ploB vs T because that
& Theory ¢1-¢+ <>++ 1, is what Ref. 12 measurgdThe experimental
j00 |+ Experiment l ¢J&% +io points for YBCO come from Ref. 8 and those for
3 b BSCCO come from Ref. 12. Inset: Typicalf
3 ey versusn.
0 N N Ty )
30 90

50 70
Temperature [K] (BSCCO)

triangular lattice where an interstitial forms a dumbbell value ofH andT. Since the concentration dependenc® af
aligned in the{010) direction by sharing a site with another negligible, the change in the Gibbs free energy due to the
atom or flux line. Dumbbell displacements along (€0 presence of defect lines is given by

direction introduce a stringlike librational resonance mode

consisting of displacements along ttL0) directions. This AG(H,n)=G(H,n)—G(H,n=0)=Af(B(H),n),

mode couples strongly to an external shear stress and results (21)
in softening of the shear moduld. whereAf is given by
The last term we need to considerfis,,, the free energy

due to the wandering of the defect lines over distances large Af=f(n)—f(0)=fy+Afip+fyan- (22

compareq to the Iattlc_:e gpacmg. We can estinfgig, with Typical plots ofAf versusn are shown in the inset of Fig. 2.

the following expression. The rise inAf at largen is due to the compressional energy

cost associated bulk modulus term in Efj9). The double-
kgT well structure ofAf is characteristic of a first-order phase
fwan™~ — l_zln(ml)y (20)

transition. The equilibrium transition occurs when both
minima have the same value Aff. We associate the mini-
wherem,= 3 for a triangular latticBSCCQO andm;=4 for = mum atn=0 with the vortex solid and the minimum at finite

a square lattic€YBCO). |, can be thought of as the distance n with the vortex liquid. The defect concentration at the tran-
along thez axis that it take® for the defect line to wander a sition is only a few percent. Equatiofi8) implies that a
transverse distance of one lattice spacdggTo go from one finite value ofn yields a finite value for the shear modulus,
vacancy or interstitial site to the next, the defect line segmeng.g., forn=5%, cgg(N)~0.2c45(0) for BSCCO. Previous
must jump over the barrier between the two positions. Thigvork®* interpreted this to mean that the lattice did not melt.
givesl, a thermally activated form;,~|,expE/ksT), where  However, they did not appreciate the fact that the shear
lo~ao(e;1/€g)? andE~ag(e,€5) "> € is the line tension modulus is frequency dependent and t@gused here is the
and is given by e;~(ey/y?)In(ag/é,). Numerical  high-frequency response. At high frequencies it is the elastic
simulations”*” indicate that the barrier heighds is small  response which dominates and this is what enters into the
and we useg=2.5x10 3¢,. f, 4, itself is quite small com- expression for the free energy. For a liquid the low-
pared to the other terms because of the high-energy cost ffequency response is dominated by viscosity so that the
vortex displacements. For example, at the transifipg, is ~ zero-frequency shear modulus is zero. We will elaborate
about two orders of magnitude smaller thigpor f,;,. Thus ~ more on this later.

the transition is not driven by a proliferation of wandering

defect lines because near the transition the high-energy cost Ill. FITS TO EXPERIMENTAL DATA

of vortex displacements is not sufficiently offset by the en-
tropy of the meandering lin¥.

Before we plotf versusn, we note that the difference In Fig. 2 we fit the experimental first-order transition
betweenB andH is negligible for YBCO but can be a sig- curves in theH-T plane by plottingA G from Eq.(21) versus
nificant fraction of the melting fieldH,, for BSCCO. To find n for a given temperature and determining the fidldvhere
the value ofB to use in the Helmholtz free-energy dendity both minima have the same value®6. We use two adust-
we minimize the Gibbs free-energy densi®y i.e., 0G/dB  able parametersy; and «, which are the proportionality
=0 whereG=f—-B-H/4w. We find B for n=0 for each constants between the free eneffgyto introduce a defect

z“0

A. Melting curve
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YBCO BSCCO (U2 = — 2kgT D anZ,, 23
10 —————— . . r 3 vy akq JA(akq)’
- |@ ) o .
di * xperimen . o -
5 f 4 Experiment . 1 whereA is given by Eq.(8) and « labels the two eigenval
X DRI - ues. Defining the Lindemann ratip by c2=(|u|?)/a3, we
gﬂ“ '+¢+¢H¢+*++++ 1 N find that ¢, ~0.25 for YBCO atH,=5 T and thatc,
= * * R ~0.11 for BSCCO aH,,=200 G. Here we have used the
o« m
< LA same values of the parameters that were used to fit the phase
00—+t —appeneis o —+—+—1o transition curves in Fig. 2. These valuesopfare consistent
1@ @ - . With previous value§:**°
04 | + ++¢—+++++ ++ 4 0.
8 03 + { e + dos .
3 . o L . D. Hysteresis
S * + 1 i . . .
3% e, M P Experiments have found little, if any, hystereig:#
04t ++ T * o+ Jo This is consistent with our calculations. We can bound the
oo T ) ) X A P hysteresis by noting the range of temperatures between
TR ke o Tkewin which the liquid minimum appears and the solid minimum

disappears. Typical values for the width of this temperature
FIG. 3. (a) and(b): Entropy jumpAs per vortex per layer versus range are 300 mK for YBCO aH=5 T and 1.3 K for
T at the transition for YBCO and BSCCO. The experimental BSCCO atH =200 G. Another measure of the hysteresis can
points for YBCO are from Ref. 8 and those for BSCCO are frompe found in the plots oA f versusn (see inset of Fig. 2 The

Ref. 12.(c) and (d): Magnetization jumpAM versusT, at the  parrier height Vg between the minima is low gy,
first-order phase transition for YBCO and BSCCO. The experimen-_ 30 mK) which is consistent with minimal hysteresis.

tal points for YBCO are from Ref. 7 and those for BSCCO are from
Ref. 12. For the theoretical points the values of the parameters are i
the same as in Fig. 1 for all the curves. E. Loss of superconducting phase coherence
In going from the normal metallic phase to the vortex
solid, two symmetries are broken: translational invariance
and gauge symmetry which produces the superconducting
rbhase coherence along the magnetic field. In the liquid, lon-
itudinal superconductivity is destroyed by the wandering
nd entanglement of the vortex lines. Even though line wan-
dering is energetically costly and therefore rare, it does oc-

line and the elastic moduli. As expected;>«, and «,
<1 (see Fig. 2 The geometrical quantity can have sev-
eral values for a given lattice structure, depending on whic
planes are sheared. We chogge w?tarf¢ where ¢ is the
angle between primitive vectors. Decoration experiments o
BSCCO find a triangular lattic® so we use$=60°. For

YBCO we choosap=44.1° W?é‘:h Is very close f0 a square o As a result, the correlation length along thaxis will
lattice which hasp=45°. Makr™ has argued that thiewave o quite long and of order,. This is consistent with mea-
symmetry of the order parameter yields a square vortex lalrements in YBCO of the-axis resistivity which find that

tice tilted by 45° from theaoaX|s. Fxperlmenfg 0N there is loss of vortex velocity correlations for samples
YBCO find ¢ ranging from 36° to 45°. thicker than 10Qum.®®~" For an infinitely thick sample, the
loss of longitudinal superconductivity coincides with the
melting transition’? This agrees with experiments which in-
We can calculate the jump in magnetizatid at the dicate that the loss of superconducting phase coherence
transition usingAM = — aAG/aH|T:Tm where AG=G(n)) along thec axis coincides with the first-order transiti6t.”

—G(n=0). Heren, is the defect concentration in the liquid
at the melting transition. The jump in entrops is given by IV. SURFACE TENSION

As=—vpdAG/dT|u_p,, whereAs is the entropy change per The vortex line wandering renormalizes the coupling be-

vortex per layer. The results are shown in Fig. 3. We havgyeen the planes in the liquid phase, so it is difficult to esti-
qhecked that our results satisfy the Clausu_Js—CIapeyron €dUdate the surface tension parallel to thk planes which is
tion As=—(vpAB/4m)dH,/dT. We obtain good agree- pimarily due to Josephson vortices. However, since we have
ment with experiment for YBCO and the right order of mag- eypressions for the free energy in both the liquid and solid
nitude for BSCCO. The difference between theory andspases; we can estimate the surface tension parallel © the
experiment in the temperature dependence of the entropy angdis along the melting curve. We imagine a plane interface
magnetization Jumpls_ggr BSCCO may be due to the decoupsgiel to ther axis between the vortex liquid and the vortex
pling of the plane$!~® This enhances the thermal excur- lattice phases. The surface tensieris given by

sions and hence the entropy of the pancake vorfites.

Decoupling may be brought about by other types of defects o
such as dislocations which we will discuss in Sec. V B. o= fﬁ [G(x)=Goldx, (24)

B. Magnetization and entropy jumps

C. Lindemann criterion whereG(x) is the Gibbs free energy as a function of position

We can compare our results with the Lindemann criterionand the constar(s, is the Gibbs free energy far away from
by calculating the mean-square displacem@ot?) at the the interface, for example within the solid phase where
transition using Eq(5): =0. (At melting the vortex liquid and solid phases coexist
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0.04 g

the crossover between the two occurs over a narrow fre-
quency range so that the shear modulus as a function of
frequency is rather like a step function. This behavior can be
simply modeled using the Maxwell mod&For viscoelastic-

ity in which a massless spring is damped by a viscous force.

The rate of shear strain is given by

e
o
@

o e 6
¢ Cee(w=>) 7’

Surface Tension [K/sa,]
o
Q
N

where o is the shear stress; is the time derivative of the

shear stress, and is the frequency. Using the Maxwell re-

lation for the relaxation time= 7/cge( w =) and the defi-

. 1060 . . nition of the frequency dependent shear modutyg w)

40 50 80 70 80 90 =o(w)/e(w), we find that the real part of the shear modu-
TnlK] lus is given by

e
o
=

0.00

FIG. 4. Surface tension between the vortex solid and liquid 2 5
phases along an interface parallel to thexis versus melting tem- Cos( @) = Ceel 0 =22) W T 27
peratureT,,. We use the values of field and temperature along the 66 66 1+ w22

melting curve for YBCO and BSCCO. The surface tension is mea-
sured in units of Kelvirga,, wheres is the spacing between layers Notice thatcgg(w=0)=0 which confirms that the vortex
and a,= /¢, /B is the vortex lattice spacing. The values of the liquid cannot sustain a shear stress. At high frequencies
parameters are the same as in Fig. 1. Cees(w) IS given by cgg(w=>). To estimate the crossover
frequency we need to estimate the viscosity.
because they have the same bulk value for the Gibbs free We are interested in the shear viscosity which arises from
energy. In the interface region the defect concentration the interactions between vortices. There are other sources of
changes from zero in the solid phase to a finite value in th&iscosity. For example a single moving vortex line experi-
liquid phase. Let us assume that in this region the concentrances a viscous drag due to the normal electrons in the core
tion gradientdn/dx is a constaning/a, whereng is the  which produce resistance when they move with the vortex.
concentration of defects in the bulk liquid phase. Here we ar@his is described by the Bardeen-Stephen méti&here is
assuming that the width of the interface is of order a vortexalso viscosity which arises from pinning; we will ignore this
lattice constant,. Then contribution since we are considering a clean lattice. We can
obtain a simple estimate for the viscosity following the ap-
proach of Dyre, Olsen, and Christensérshear flow occurs
when some vortices push past other vortices. The viscasity

. . . is given by
This is an integral of the area under the barrier between the

solid and liquid phases in the plot of the Gibbs free energy AF(T)
versus defect concentratigeee inset of Fig. 2 Using the 7= 7o exp{ T }
values forT and B along the melting curve, we find the B
surface tension given in Fig. 4. The dependence of the suiyhere the prefacto, is the viscosity of a single noninter-
face tension on the melting temperattirg reflects that of  acting vortex line and is given by the Bardeen-Stephen
the barrier heigh¥/g on T,,. The order of magnitude of the relatiorf! 7.~ ¢oH»/p,c? Wherep,, is the normal-state re-
surface tension is given by~Vg/sa, and as a result, the sistivity andc is the speed of light. In Eq28) AF(T) is the
values are quite small. For example, Tat60.24 K andB  activation energy which is identified with the work done per
=202.28 G, ¢=0.015Kksa, for BSCCO, and atT  vortex pancake in shoving aside the surrounding vortices.
=80.9184 K andH=6.4807 T, 0=7.26x10 % K/sa, for  The elastic energy associated with distorting the vortices is
YBCO, wheres is the interplane spacing aray=+/ ¢y /B. given by Eq.(6); we identify AF(T) with F,, at the maxi-
We believe these are correct order of magnitude estimatesum distortionu produced by the shoving. The actual form
for the surface tension since the small values of the barriesf the distortion is difficult to determine analytically. We
height is consistent with the small amount of hysteresisyill assume that the dominant contribution comes from tilt

ao No
o= n_OJo [G(n)—G,]dn. (25)

(28)

found experimentally:}%1 and shear; and that there is no change in the density so that
the contribution from the bulk modulus can be ignored. In
V. VORTEX LIQUID BSCCO in the vortex liquid, the planes are decoupled and

the tilt modulus can be ignored. In YBCO in the liquid the
correlation along the axis can be quite long as we discussed
We now discuss the viscoelastic behavior of the vortexearlier. In this case the distortion involves various wave vec-
liquid. As we mentioned earlier, the shear modulus is fre-tors; the wave-vector dependence of the tilt modudugis
guency dependent. The low-frequency response to a sheauch that at smald, c,4 is roughly comparable to the high-
stress is the flow of vortices and this is characterized by drequency shear modulusgs(w=) and at largeq, Cyq4
viscosity . At high frequencies the response is elastic and<cgg(w=). (Since we are considering the elastic response,

A. Viscoelastic behavior
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FIG. 5. Reduced viscosity/ 7, of the vortex liquid versus FIG. 6. Shear modulusg, versus frequency for YBCO and

melting temperaturél,, along the melting curve for YBCO and Bscco. For YBCOH=5 T, T=83 K, and the defect concentra-

BSCCO.5=1. The values of the parameters are the same as in Figijon n=4%. For BSCCOB=200 G, T=60 K, andn=5%. The

1 values chosen are close to those on the melting curve. The rest of
the values of the parameters are the same as in Fig. 1.

it is appropriate to consider the high-frequency shear modu-

lus.) So as a crude estimate we will assume the displaceme

t . . . .
is pure shear and write rtjhe key role in mediating the melting transition because of

their high-energy cost, we think that they will proliferate as
AF(T)=cglw=2,n,T)V, (29)  soon as the vacancies and interstitials appear. This prolifera-
tion of dislocations precludes the appearance of neutron-
whereV. is the volume change due to shoving and rearrangscattering Bragg peaks which would be expected if the liquid
ing vortices. SincAF(T) is the energy per vortex pancake, were just a lattice with a few percent of defect lines. While
_ ( J p
V. is some fractions of the volumey, per vortex pancake, neutron scattering has detected Bragg peaks at one point
i.e.,Ve=0vo. Cee(@=2,Nn,T) is given by Eq(18). In Fig. 5 above the melting curve of BSCC®/" the structure of the
we show the reduced viscosity/ 77, along the melting line  Jiquid has not been determined via neutron scattering or
for both YBCO and BSCCO withf=1. As one can see, muyon spin resonance, e.g., neutron-scattering diffraction
interactions enhance the viscosifyover the noninteracting rings have not been observed in the vortex liquid.
viscosity 7o by a factor of 2 or less. This is because There are two reasons to expect dislocations to prolifer-
AF(Tm)/kgTm<1 along the melting line. ate. First interstitial vortex lines are usually attractivand
Using our estimate of the viscosity and Hg7), we can  can aggregate to form dislocations that extend the entire
calculate the frequer_lcy dependence of the she_ar mOdou“I'éngth of the lattice parallel to theaxis. The same is true for
Cee(w) as shown in Fig. 6 for a defect concentration of 5/°'vacancies. In particular, Olive and Braffdhave done nu-
As gxpected the shear modu!us has the shape of a step fgr}(ﬁérical simulations on line defects which were at least five
.tIO!’I,'It is zero at low frequencies and rses quite sharply to ItsIattice spacings apart. They found that both centered and
infinite frequency valu@eg(« ="¢). Notice that for BSCCO edge interstitial® are attractive if\,,/ao=1. For \,,/a,

the crossover frequency is a few MHz and for YBCO it is a ) o : .
few GHz. Sine 1 K corresponds to 20 GHz, this means that 0.25, edge interstitials were attractive for separations less
we made an excellent approximation in Settitgg= Cee( @ than ten lattice spacings and repulsive at larger distances

—) in the free-energy densitlin Eq. (1). while pentergd interstit.ials were repylsive at distanc_es Iarger
than five lattices spacings. Vacancies were attractive in all
) _ cases.
B. Dislocations The second reason is that the substantial softening of the
Any theory that tries to describe melting has to containshear modulus brought about by the vacancies and intersti-
two main ingredients: a satisfactory description of both thetials reduces the dislocation core energy as well as the elastic
solid and the liquid phases and a mechanism by which thenergy of creating dislocations. For example, the core energy
system goes from one to the other. The difficulty has alway®f a z-directed dislocation goes &ggb? and the core energy
been to describe two phases with wildly different propertiesof a screw dislocation goes a€gC440> Whereb is the mag-
within the same framework. In the present work, we havenitude of the Burger's vectof. In addition the long-range
achieved this by viewing the liquid as a solid with a finite interaction between dislocation loops is mediated by the
concentration of vacancies and interstitials. Clearly this is arstrain field and depends agg.>° Once the dislocations have
approximation. If one wishes to describe a liquid as a solidoroliferated, the method and results of Marchetti and
with defects, other types of defects have to be taken intd&Radzihovsky® can be used to provide a more detailed and
account as well. This is particularly true of dislocations.accurate description of the liquid side of the transition. For
While it is unlikely that thermally excited dislocations play example, they show that when dislocations at all length
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scales are present, the shear modulus vanishes in the lonfgr YBCO. The hysteresis is small. We find a very small
wavelength limit?®3°Work in this direction is in progress. surface tension between the vortex solid and the vortex lig-
uid along an interface parallel to tleeaxis. The shear modu-
lus is frequency dependent; it is zeroaat 0 and plateaus at

) _ higher frequencies to its infinite frequency value.
To summarize, we have presented a model for the melting

of a vortex lattice into a vortex liquid. The melting transition

is induced by a few percent of vacancy and interstitial vortex
lines that soften the shear modulus and increase the vibra-
tional entropy. The increased vibrational entropy leads to We thank Andy Granato and Lev Bulaevskii for helpful
melting. We obtain good agreement with the experimentallydiscussions. This work was supported in part by ONR Grant
measured curve of transition temperature versus field, lateMMo. N00014-96-1-0905 and by funds provided by the Uni-
heat, and jumps in magnetization for BSCCO and YBCO.versity of California for the conduct of discretionary research
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