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Viscoelasticity and surface tension at the defect-induced first-order melting transition
of a vortex lattice

HervéM. Carruzzo and Clare C. Yu
Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697

~Received 2 August 1999!

We show that thermally activated interstitial and vacancy defects can lead to first-order melting of a vortex
lattice. We obtain good agreement with experimentally measured melting curve, latent heat, and magnetization
jumps for YBa2Cu3O72d and Bi2Sr2CaCu2O8. The shear modulus of the vortex liquid is frequency dependent
and crosses over from zero at low frequencies to a finite value at high frequencies. We also find a small surface
tension between the vortex line liquid and the vortex lattice.
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I. INTRODUCTION

It has been experimentally established that below a c
cal value of the magnetic field, vortex lattices undergo
first-order transition in clean high-temperatu
superconductors.1–4 This has been seen in YBa2Cu3O72d

~YBCO!,5–11 Bi2Sr2CaCu2O8 ~BSCCO!,12–14 and
(La12xSrx)2CuO4.15 Evidence for first-order phase trans
tions comes from latent heat measurements8 and peaks in the
specific heat16,9,11as well as jumps in the resistivity5,13,14and
in the magnetization.17,6,7,12,15This transition is generally ac
cepted as a melting transition from a vortex solid to a vor
liquid.

A great deal of theoretical work18–28 has helped to estab
lish that there is a first-order melting transition. Bre´zin, Nel-
son, and Thiaville18 showed that including fluctuation effec
in Abrikosov’s mean-field theory of the flux lattice transitio
would drive the transition first-order. The advent of the hig
temperature superconductors and the subsequent exper
tal indications of vortex lattice melting sparked intense th
oretical activity. Early analytic efforts used the Lindema
criterion,19 though such an approach could not show that
transition was first order. Studies of the mapping betwe
vortex lines and the world lines of a two-dimensional~2D!
system of bosons have suggested a first-order transition
an Abrikosov lattice to an entangled vortex liquid.1,29,28Nu-
merical simulations20–27,30have been able to show that th
melting is first order by calculating quantities such as
magnetization jump21,23and the delta function in the specifi
heat.24,25,27However these simulations were done in the lim
of high magnetic fieldsjab!a0!lab wherejab is the co-
herence length,a0 is the spacing between vortices, andlab is
the penetration depth. Most20,21,23–27assumed that the mag
netic inductionB was spatially uniform and thus neglecte
the wave-vector dependence of the elastic moduli. This
made quantitative comparison with experimental data d
cult, especially in the case of BSCCO whose vortex latt
melts at low fields. In addition the mechanism for vort
lattice melting is still not well established. There have be
suggestions that topological defects31 such as vortex
loops,26,27 vortex-antivortex pairs,24,25 free disclinations,22

and dislocations32 may play a key role in triggering melting
PRB 610163-1829/2000/61~2!/1521~9!/$15.00
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Melting scenario

In this paper we show that melting can be induced
interstitial and vacancy line defects in the vortex latti
which soften the shear modulusc66. This softening makes it
easier to introduce more defects and increases the vibrati
free energy. The increased vibrations ultimately lead to m
ing. There is good agreement with the experimental curve
transition temperature versus field, latent heat, and magn
zation jumps for YBCO and BSCCO. Using a viscoelas
approach, we show that the shear modulus is frequency
pendent. At zero frequency the vortex liquid cannot susta
shear while at high frequency the liquid has a finite sh
modulus. Since we can calculate the free energy for both
lattice and the liquid at melting, we have estimated the s
face tension between a vortex line liquid and a vortex so

Let us describe our scenario for melting. Our approa
follows that of Granato33 as well as previous work which
showed that defects can lead to a first-order ph
transition.34 We start with a vortex lattice in a clean layere
superconductor with a magnetic fieldH applied perpendicu-
lar to the layers along thec axis. We consider the vortices t
be correlated stacks of pancake vortices. We will assume
the transition is induced by topological defect lines, i.e., v
cancies and interstitials. In a Delaunay triangulation35 a va-
cancy or an interstitial in a triangular lattice is topologica
equivalent to a pair of bound dislocations22 as well as to a
twisted bond defect.36 High-temperature decoratio
experiments36 and Monte Carlo simulations22 have found
such defects to be thermally excited. The introduction
these defects softens the elastic moduli. Since the energ
introduce interstitials and vacancies is proportional to
elastic moduli, softening makes it easier to introduce m
defects. The softening also increases the vibrational entr
of the vortex lattice which leads to a melting transition.The
transition is driven by the increased vibrational entropy
the ordinary vortex lines of the lattice, and not by the e
tropy of the wandering of the defect lines. In fact Frey, Nel-
son, and Fisher37 showed that a phase transition driven
the entropy of wandering flux lines occurs at a much hig
magnetic field than what is observed experimentally. In
vicinity of the experimentally observed first-order pha
transition, wandering in the transverse direction by mo
than a lattice spacing is energetically quite costly and the
1521 ©2000 The American Physical Society
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fore rare. Such flux line bending also makes dislocations38,39

energetically costly at low dislocation densities.@The energy
scale is set bye0s.3,4 Heres is the interplane spacing ande0,
the energy per unit length of a vortex, is given bye0
5(f0/4plab)

2 wheref0 is the flux quantum andlab is the
penetration depth for currents in theab plane. For example
for YBCO e0s;650 K at T570 K and for BSCCOe0s
;550 K atT560 K.40 Note thate0s@T.]

The first-order transition is nucleated in a small region
a local rearrangement of existing line segments. Sligh
above the melting temperatureTm a vortex line can distort
and make an interstitial and a vacancy line segment tha
cally melt the solid. This is the analog of a liquid dropl
which nucleates melting of a crystal. The role of the surfa
tension is played by the energy to connect the interst
segment to the rest of the vortex line. This connection can
a Josephson vortex lying between planes or a series of s
pancake vortex displacements spread over several la
When the lengthl of the interstitial and vacancy segmen
equals the critical lengthl c , the energy gained by meltin
equals the energy cost of the connections. Whenl . l c , it is
energetically favorable for the defect segments to grow to
length of the system. We are ignoring the surface tens
associated with the surface parallel to thec axis. We shall
show later that this is quite small.

II. FREE ENERGY

To study melting we assume that we have a vortex lat
with interstitial and vacancy lines extending the length of
lattice. Our goal is to find the free-energy density as a fu
tion of the concentrationn of defect lines. The free-energ
density is

f 5 f 01 f w1 f v ib1 f wan , ~1!

where f 0 is the free-energy density of a perfect lattice,f w is
the work needed to introduce a straight interstitial or vaca
line into the lattice,f v ib is the vibrational free energy densit
of the system, andf wan is the free-energy due to the wande
ing of the defect lines over distances large compared to
lattice spacing. We now examine these terms in detail.

f 0, the free-energy density of a perfect rigid flux lattice,
given by the London term:37,41

f 05
B2

8p
1

Bf0

32p2lab
2

lnS hf0

2pjab
2 B

D ,
f0

4plab
2

!B!Hc2 ,

~2!

whereB is the spatially averaged magnetic induction,jab is
the coherence length in theab plane, andh is 0.130 519 for
a hexagonal lattice and 0.133 311 for a square lattice.37 For B
nearHc2 , f 0 is given by the Abrikosov free-energy42

f 05
B2

8p
2

~Hc22B!2

8p@11~2k221!bA#
, ~3!

where the Ginzburg-Landau parameterk5lab /jab , and the
Abrikosov parameterbA is 1.16 for a triangular lattice and
1.18 for a square lattice.

To calculatef v ib , we follow Ref. 43. We denote the dis
placement of thenth vortex pancake in thenth plane from its
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equilibrium position byu(n,r n) whereu5(ux ,uy) and the
pancake positionr5(r x ,r y). The Fourier transformu(k,q)
5(nnu(n,r n)exp@i(k•r n1qn)#. k5(kx ,ky) and q is the
wave vector along thec axis.

f v ib52~kBT/V!ln Zv ib , ~4!

whereV is the volume and the vibrational partition functio
Zv ib is given by

Zv ib5E e2Fel /kBT )
k,q.0,i

duR~ ik,q!duI~ ik,q!

pjab
2

, ~5!

where we have divided by the areapjab
2 of the normal core

of a pancake.43 uR anduI are the real and imaginary parts o
u(k,q) and i e$x,y%. The elastic free-energy functional ass
ciated with these distortions is

Fel5
1

2
y0(

kq
(
i j

ui~k,q!ai j uj* ~k,q!, ~6!

where i and j e$x,y%, the volume per pancake vortex isy0
5sf0 /B, ands is the interplane spacing. Thek sum is over
a circular Brillouin zoneK0

254pB/f0. The matrix ai j is
given by

ai j 5cBkikj1~c66k
21c44Q

2!d i j , ~7!

wherecB , c66, andc44 are the bulk, shear, and tilt modul
respectively.cB5c112c66 for a hexagonal lattice.Q252(1
2cosqs)/s2. Diagonalizingai j leads to two eigenvalues:

Al~kq!5c11k
21c44Q

2,

At~kq!5c66k
21c44Q

2, ~8!

whereA is the diagonal matrix, the subscriptl denotes lon-
gitudinal, andt denotes transverse. Using this leads to

Fel5
1

2
y0(

kq
(

i 5 l ,t
Ai uui~k,q!u2, ~9!

where i e$ l ,t%. After integrating overu in Eq. ~5!, the re-
maining sums overk andq are converted to integrals:

ln Zv ib5 (
i 5 l ,t

1

2E0

K0
2 d~k2!

4p E
2p/s

p/s dq

2p
lnS 2kBT

y0jab
2 Ai

D , ~10!

where the volume of the sample is set to unity. The integr
in Eq. ~10! are done numerically. At low fields (b5B/Hc2
,0.25), the elastic moduli are given by3,4,44

c665
Bf0z

~8plab!
2

,

c115
B2@11lc

2~k21Q2!#

4p@11lab
2 ~k21Q2!#~11lc

2k21lab
2 Q2!

,
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c445
B2

4p~11lc
2k21lab

2 Q2!
1

Bf0

32p2lc
2

ln
jab

22

K0
21~Q/g!21lc

22

1
Bf0

32p2lab
4 Q2

lnS 11
Q2

K0
2D ~11!

where lc is the penetration depth for currents along thec
axis, g5lc /lab is the anisotropy, andz51. At high
fields (b.0.5),3,4,45 c66 is altered by the factorz'(1
20.5k22)(12b)2(120.58b10.29b2) and the penetration
depths inc11 andc44 are replaced byl̃25l2/(12b) where
l denotes eitherlab or lc . In addition the last two terms o
c44 are replaced byBf0 /(16p2l̃c

2). These replacement
guarantee that the elastic moduli vanish atHc2. For YBCO
the temperature dependence of the penetration depths
coherence lengths are given byl(T)5l(0)@1
2(T/Tc)#21/3 ~Ref. 46! and jab(T)5jab(0)@1
2(T/Tc)#21/2, respectively. For BSCCO whose meltin
field is two orders of magnitude belowHc2 , l2(T)
5l2(0)/@12(T/Tc)

4# andjab
2 (T)5jab

2 (0)/@12(T/Tc)
4#.41

The free-energy densityf w due to the energy cost of add
ing a vacancy or interstitial vortex line is difficult to calcu
late accurately.37,47 However, we can write down a plausib
form for f w by noting that a straight-line defect parallel
the c axis produces both shear and bulk~but not tilt! distor-
tions of the vortex lattice. For example, if a defect at t
origin produces a displacementu that satisfies ¹•u
5y0d(r )/s whered(r ) is a two-dimensional delta function
then ua(k)5 ika /k2.37,48 Inserting this in Eq.~6!, we find
that f w5(c661 c̄B)/2 where c̄B5(kcB(q50,k). Generaliz-
ing this to allow for a more complicated distortion and for
concentrationn of line defects, we write33

f w5E
0

n

dn~a1c661a2c̄B!, ~12!

wherea1 anda2 are dimensionless constants. We expect
isotropic distortion to be small, i.e.,a2!1, and the shea
deformation to dominate, i.e.,a1@a2. Integrating overn
allows the elastic moduli to depend on defect concentrat
We will assume thatcB is independent ofn since we believe
that the bulk modulus of the vortex solid is roughly the sa
as that of the liquid phase. To findc66(n),33 we use its defi-
nition

c665]2f /]«2, ~13!

where« is the shear strain. Assuming thatcB has negligible
shear strain dependence, we find

c66~n!5c66~0!1a1E
0

n

@]2c66~n!/]«2#dn ~14!

or

]c66~n!

]n
5a1

]2c66~n!

]«2
. ~15!

If we shear the lattice in theab plane along rows separate
by a distanced, the system must be unchanged if the d
placement is equal to a lattice spacing. This is a result of
nd

e

n.

e

-
e

discrete translational symmetry of the lattice. The sh
modulus should reflect this discrete translational symme
and therefore must be periodic in displacements equal to
lattice constanta05Af0 /B. We describe this with the sim
plest even periodic function:

c66~u!5c66~u50!cos~2pu/a0!,

5c66~«50!cos~2pd«/a0!, ~16!

where the shear strain«5u/d. Notice that this expression
goes beyond the usual harmonic approximation. Then tak
the second derivative of Eq.~16! we obtain

]2c66~n!/]«252bc66~n!, ~17!

whereb54p2d2/a0
2. Combining this with Eq.~15!, we ob-

tain

c66~n!5c66~0!exp~2a1bn!, ~18!

wherec66(0) is given in Eq.~11!. Thus the shear modulu
softens exponentially with the defect concentrationn. This
softening lowers the energy cost to introduce further defe
and increases the vibrational free energyf v ib whenc66(n) is
used inai j . Substitutingc66(n) in Eq. ~18! into our expres-
sion ~12! for f w yields

f w5
c66~n50!

b
~12e2a1bn!1a2c̄Bn. ~19!

The softening of the shear modulus with increasing def
concentration is well known in the case of atomic lattices49

There it has been shown both experimentally50–52 and
theoretically53 that interstitials can substantially soften th
elastic constants with the largest change being in the s
modulus. Linear extrapolation of the experimentally me
sured change of the shear modulus of copper would im
that the lattice becomes unstable for a concentration of ab
3% interstitials.49 An example of how interstitials can softe
the shear modulus is illustrated in Fig. 1. Here we show

FIG. 1. Dumbbell interstitialcy configuration in a triangular la
tice introduces a stringlike librational resonance mode that cou
to external shear stress and softens the shear modulus. The ato
flux lines involved in this mode are shown with open circles wh
the rest of the sites are denoted by solid circles.
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FIG. 2. First-order phase transition curves
magnetic field versus temperature for YBCO a
BSCCO. Parameters used for YBCO area1

52.55, a250.01485, f544.1°, lab(0)
51186 Å ~Ref. 46!, s512 Å, jab(0)515 Å, g
55, and Tc592.74 K. Parameters used fo
BSCCO are a151.0, a250.00705, f560°,
lab(0)52000 Å, s514 Å, jab(0)530 Å, g
5200, andTc590 K. For BSCCO we use the
low field form of the elastic moduli from Eq.~11!
and for YBCO we use the high-field form. Forf 0

we use Eq.~2! for BSCCO and Eq.~3! for
YBCO. ~For BSCCO we plotB vs T because that
is what Ref. 12 measured!. The experimental
points for YBCO come from Ref. 8 and those fo
BSCCO come from Ref. 12. Inset: TypicalD f
versusn.
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triangular lattice where an interstitial forms a dumbb
aligned in thê 010& direction by sharing a site with anothe
atom or flux line. Dumbbell displacements along the^100&
direction introduce a stringlike librational resonance mo
consisting of displacements along the^110& directions. This
mode couples strongly to an external shear stress and re
in softening of the shear modulus.54

The last term we need to consider isf wan , the free energy
due to the wandering of the defect lines over distances la
compared to the lattice spacing. We can estimatef wan with
the following expression:37

f wan'2
kBT

l za0
2

ln~ml !, ~20!

whereml53 for a triangular lattice~BSCCO! andml54 for
a square lattice~YBCO!. l z can be thought of as the distanc
along thez axis that it takes55 for the defect line to wander a
transverse distance of one lattice spacinga0. To go from one
vacancy or interstitial site to the next, the defect line segm
must jump over the barrier between the two positions. T
gives l z a thermally activated form:l z; l 0exp(E/kBT), where
l 0'a0(e1 /eB)1/2 andE'a0(e1eB)1/2. e1 is the line tension
and is given by e1;(e0 /g2)ln(a0 /jab). Numerical
simulations37,47 indicate that the barrier heighteB is small
and we useeB52.531023e0 . f wan itself is quite small com-
pared to the other terms because of the high-energy co
vortex displacements. For example, at the transitionf wan is
about two orders of magnitude smaller thanf w or f v ib . Thus
the transition is not driven by a proliferation of wanderin
defect lines because near the transition the high-energy
of vortex displacements is not sufficiently offset by the e
tropy of the meandering line.37

Before we plotf versusn, we note that the difference
betweenB andH is negligible for YBCO but can be a sig
nificant fraction of the melting fieldHm for BSCCO. To find
the value ofB to use in the Helmholtz free-energy densityf,
we minimize the Gibbs free-energy densityG, i.e., ]G/]B
50 whereG5 f 2B•H/4p. We find B for n50 for each
l

e

lts

ge

nt
is

of

st
-

value ofH andT. Since the concentration dependence ofB is
negligible, the change in the Gibbs free energy due to
presence of defect lines is given by

DG~H,n!5G~H,n!2G~H,n50!5D f „B~H !,n…,
~21!

whereD f is given by

D f 5 f ~n!2 f ~0!5 f w1D f v ib1 f wan . ~22!

Typical plots ofD f versusn are shown in the inset of Fig. 2
The rise inD f at largen is due to the compressional energ
cost associated bulk modulus term in Eq.~19!. The double-
well structure ofD f is characteristic of a first-order phas
transition. The equilibrium transition occurs when bo
minima have the same value ofD f . We associate the mini
mum atn50 with the vortex solid and the minimum at finit
n with the vortex liquid. The defect concentration at the tra
sition is only a few percent. Equation~18! implies that a
finite value ofn yields a finite value for the shear modulu
e.g., for n55%, c66(n);0.2c66(0) for BSCCO. Previous
work34 interpreted this to mean that the lattice did not me
However, they did not appreciate the fact that the sh
modulus is frequency dependent and thec66 used here is the
high-frequency response. At high frequencies it is the ela
response which dominates and this is what enters into
expression for the free energy. For a liquid the lo
frequency response is dominated by viscosity so that
zero-frequency shear modulus is zero. We will elabor
more on this later.

III. FITS TO EXPERIMENTAL DATA

A. Melting curve

In Fig. 2 we fit the experimental first-order transitio
curves in theH-T plane by plottingDG from Eq.~21! versus
n for a given temperature and determining the fieldH where
both minima have the same value ofDG. We use two adust-
able parametersa1 and a2 which are the proportionality
constants between the free energyf w to introduce a defect
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line and the elastic moduli. As expected,a1@a2 and a2
!1 ~see Fig. 2!. The geometrical quantityb can have sev-
eral values for a given lattice structure, depending on wh
planes are sheared. We chooseb5p2tan2f wheref is the
angle between primitive vectors. Decoration experiments
BSCCO find a triangular lattice,36 so we usef560°. For
YBCO we choosef544.1° which is very close to a squar
lattice which hasf545°. Maki56 has argued that thed-wave
symmetry of the order parameter yields a square vortex
tice tilted by 45° from thea axis. Experiments57–60 on
YBCO find f ranging from 36° to 45°.

B. Magnetization and entropy jumps

We can calculate the jump in magnetizationDM at the
transition usingDM52]DG/]HuT5Tm

where DG5G(nl)

2G(n50). Herenl is the defect concentration in the liqui
at the melting transition. The jump in entropyDs is given by
Ds52y0]DG/]TuH5Hm

whereDs is the entropy change pe
vortex per layer. The results are shown in Fig. 3. We ha
checked that our results satisfy the Clausius-Clapeyron e
tion Ds52(y0DB/4p)dHm /dT. We obtain good agree
ment with experiment for YBCO and the right order of ma
nitude for BSCCO. The difference between theory a
experiment in the temperature dependence of the entropy
magnetization jumps for BSCCO may be due to the dec
pling of the planes.61–65 This enhances the thermal excu
sions and hence the entropy of the pancake vortices.66–68

Decoupling may be brought about by other types of defe
such as dislocations which we will discuss in Sec. V B.

C. Lindemann criterion

We can compare our results with the Lindemann criter
by calculating the mean-square displacement^uuu2& at the
transition using Eq.~5!:

FIG. 3. ~a! and~b!: Entropy jumpDs per vortex per layer versu
Tm at the transition for YBCO and BSCCO. The experimen
points for YBCO are from Ref. 8 and those for BSCCO are fro
Ref. 12. ~c! and ~d!: Magnetization jumpDM versusTm at the
first-order phase transition for YBCO and BSCCO. The experim
tal points for YBCO are from Ref. 7 and those for BSCCO are fro
Ref. 12. For the theoretical points the values of the parameters
the same as in Fig. 1 for all the curves.
h

n

t-

e
a-

d
nd
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ts

n

^uuu2&52
2kBT

y0
(
akq

] ln Zv ib

]A~akq!
, ~23!

whereA is given by Eq.~8! anda labels the two eigenval-
ues. Defining the Lindemann ratiocL by cL

25^uuu2&/a0
2 , we

find that cL'0.25 for YBCO at Hm55 T and that cL
'0.11 for BSCCO atHm5200 G. Here we have used th
same values of the parameters that were used to fit the p
transition curves in Fig. 2. These values ofcL are consistent
with previous values.3,4,19

D. Hysteresis

Experiments have found little, if any, hysteresis.5,12,14

This is consistent with our calculations. We can bound
hysteresis by noting the range of temperatures betw
which the liquid minimum appears and the solid minimu
disappears. Typical values for the width of this temperat
range are 300 mK for YBCO atH55 T and 1.3 K for
BSCCO atH5200 G. Another measure of the hysteresis c
be found in the plots ofD f versusn ~see inset of Fig. 2!. The
barrier height VB between the minima is low (VBy0
;30 mK) which is consistent with minimal hysteresis.

E. Loss of superconducting phase coherence

In going from the normal metallic phase to the vort
solid, two symmetries are broken: translational invarian
and gauge symmetry which produces the superconduc
phase coherence along the magnetic field. In the liquid, l
gitudinal superconductivity is destroyed by the wander
and entanglement of the vortex lines. Even though line w
dering is energetically costly and therefore rare, it does
cur. As a result, the correlation length along thec axis will
be quite long and of orderl z . This is consistent with mea
surements in YBCO of thec-axis resistivity which find that
there is loss of vortex velocity correlations for sampl
thicker than 100mm.69–71For an infinitely thick sample, the
loss of longitudinal superconductivity coincides with th
melting transition.72 This agrees with experiments which in
dicate that the loss of superconducting phase cohere
along thec axis coincides with the first-order transition.69–71

IV. SURFACE TENSION

The vortex line wandering renormalizes the coupling b
tween the planes in the liquid phase, so it is difficult to es
mate the surface tension parallel to theab planes which is
primarily due to Josephson vortices. However, since we h
expressions for the free energy in both the liquid and so
phases, we can estimate the surface tension parallel to tc
axis along the melting curve. We imagine a plane interfa
parallel to thec axis between the vortex liquid and the vorte
lattice phases. The surface tensions is given by

s5E
2`

`

@G~x!2G0#dx, ~24!

whereG(x) is the Gibbs free energy as a function of positi
and the constantG0 is the Gibbs free energy far away from
the interface, for example within the solid phase wheren
50. ~At melting the vortex liquid and solid phases coex
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because they have the same bulk value for the Gibbs
energy!. In the interface region the defect concentrationn
changes from zero in the solid phase to a finite value in
liquid phase. Let us assume that in this region the concen
tion gradientdn/dx is a constantn0 /a0 where n0 is the
concentration of defects in the bulk liquid phase. Here we
assuming that the width of the interface is of order a vor
lattice constanta0. Then

s5
a0

n0
E

0

n0
@G~n!2G0#dn. ~25!

This is an integral of the area under the barrier between
solid and liquid phases in the plot of the Gibbs free ene
versus defect concentration~see inset of Fig. 2!. Using the
values for T and B along the melting curve, we find th
surface tension given in Fig. 4. The dependence of the
face tension on the melting temperatureTm reflects that of
the barrier heightVB on Tm . The order of magnitude of the
surface tension is given bys;VB /sa0, and as a result, the
values are quite small. For example, atT560.24 K andB
5202.28 G, s50.015 K/sa0 for BSCCO, and at T
580.9184 K andH56.4807 T, s57.2631023 K/sa0 for
YBCO, wheres is the interplane spacing anda05Af0 /B.
We believe these are correct order of magnitude estim
for the surface tension since the small values of the bar
height is consistent with the small amount of hystere
found experimentally.5,12,14

V. VORTEX LIQUID

A. Viscoelastic behavior

We now discuss the viscoelastic behavior of the vor
liquid. As we mentioned earlier, the shear modulus is f
quency dependent. The low-frequency response to a s
stress is the flow of vortices and this is characterized b
viscosityh. At high frequencies the response is elastic a

FIG. 4. Surface tension between the vortex solid and liq
phases along an interface parallel to thec axis versus melting tem
peratureTm . We use the values of field and temperature along
melting curve for YBCO and BSCCO. The surface tension is m
sured in units of Kelvin/sa0, wheres is the spacing between layer
and a05Af0 /B is the vortex lattice spacing. The values of th
parameters are the same as in Fig. 1.
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the crossover between the two occurs over a narrow
quency range so that the shear modulus as a function
frequency is rather like a step function. This behavior can
simply modeled using the Maxwell model73 for viscoelastic-
ity in which a massless spring is damped by a viscous fo
The rate of shear strain«̇ is given by

«̇5
ṡ

c66~v5`!
1

s

h
, ~26!

wheres is the shear stress,ṡ is the time derivative of the
shear stress, andv is the frequency. Using the Maxwell re
lation for the relaxation timet5h/c66(v5`) and the defi-
nition of the frequency dependent shear modulusc66(v)
5s(v)/«(v), we find that the real part of the shear mod
lus is given by

c66~v!5c66~v5`!F v2t2

11v2t2G . ~27!

Notice that c66(v50)50 which confirms that the vortex
liquid cannot sustain a shear stress. At high frequenc
c66(v) is given by c66(v5`). To estimate the crossove
frequency we need to estimate the viscosity.

We are interested in the shear viscosity which arises fr
the interactions between vortices. There are other source
viscosity. For example a single moving vortex line expe
ences a viscous drag due to the normal electrons in the
which produce resistance when they move with the vort
This is described by the Bardeen-Stephen model.41 There is
also viscosity which arises from pinning; we will ignore th
contribution since we are considering a clean lattice. We
obtain a simple estimate for the viscosity following the a
proach of Dyre, Olsen, and Christensen.74 Shear flow occurs
when some vortices push past other vortices. The viscosih
is given by

h5h0 expFDF~T!

kBT G , ~28!

where the prefactorh0 is the viscosity of a single noninter
acting vortex line and is given by the Bardeen-Steph
relation41 h0'f0Hc2 /rnc2 wherern is the normal-state re
sistivity andc is the speed of light. In Eq.~28! DF(T) is the
activation energy which is identified with the work done p
vortex pancake in shoving aside the surrounding vortic
The elastic energy associated with distorting the vortice
given by Eq.~6!; we identify DF(T) with Fel at the maxi-
mum distortionu produced by the shoving. The actual for
of the distortion is difficult to determine analytically. W
will assume that the dominant contribution comes from
and shear; and that there is no change in the density so
the contribution from the bulk modulus can be ignored.
BSCCO in the vortex liquid, the planes are decoupled a
the tilt modulus can be ignored. In YBCO in the liquid th
correlation along thec axis can be quite long as we discuss
earlier. In this case the distortion involves various wave v
tors; the wave-vector dependence of the tilt modulusc44 is
such that at smallq, c44 is roughly comparable to the high
frequency shear modulusc66(v5`) and at largeq, c44
!c66(v5`). ~Since we are considering the elastic respon

d

e
-



d
e

ng
e,
,

,

e

u
%
fu
it

a
a

ain
th
th

ay
ie
v
te
a
li

in
s
y

of
as
era-
on-
uid
ile
oint

or
tion

fer-

tire
r

ve
and

less
ces
ger
all

the
rsti-
stic
rgy

the
e
nd
nd
or

gth

F
-

st of

PRB 61 1527VISCOELASTICITY AND SURFACE TENSION AT THE . . .
it is appropriate to consider the high-frequency shear mo
lus.! So as a crude estimate we will assume the displacem
is pure shear and write75

DF~T!5c66~v5`,n,T!Vc , ~29!

whereVc is the volume change due to shoving and rearra
ing vortices. SinceDF(T) is the energy per vortex pancak
Vc is some fractiond of the volumey0 per vortex pancake
i.e., Vc5dy0 . c66(v5`,n,T) is given by Eq.~18!. In Fig. 5
we show the reduced viscosityh/h0 along the melting line
for both YBCO and BSCCO withd51. As one can see
interactions enhance the viscosityh over the noninteracting
viscosity h0 by a factor of 2 or less. This is becaus
DF(Tm)/kBTm,1 along the melting line.

Using our estimate of the viscosity and Eq.~27!, we can
calculate the frequency dependence of the shear mod
c66(v) as shown in Fig. 6 for a defect concentration of 5
As expected the shear modulus has the shape of a step
tion; it is zero at low frequencies and rises quite sharply to
infinite frequency valuec66(v5`). Notice that for BSCCO
the crossover frequency is a few MHz and for YBCO it is
few GHz. Since 1 K corresponds to 20 GHz, this means th
we made an excellent approximation in settingc665c66(v
5`) in the free-energy densityf in Eq. ~1!.

B. Dislocations

Any theory that tries to describe melting has to cont
two main ingredients: a satisfactory description of both
solid and the liquid phases and a mechanism by which
system goes from one to the other. The difficulty has alw
been to describe two phases with wildly different propert
within the same framework. In the present work, we ha
achieved this by viewing the liquid as a solid with a fini
concentration of vacancies and interstitials. Clearly this is
approximation. If one wishes to describe a liquid as a so
with defects, other types of defects have to be taken
account as well. This is particularly true of dislocation
While it is unlikely that thermally excited dislocations pla

FIG. 5. Reduced viscosityh/h0 of the vortex liquid versus
melting temperatureTm along the melting curve for YBCO and
BSCCO.d51. The values of the parameters are the same as in
1.
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the key role in mediating the melting transition because
their high-energy cost, we think that they will proliferate
soon as the vacancies and interstitials appear. This prolif
tion of dislocations precludes the appearance of neutr
scattering Bragg peaks which would be expected if the liq
were just a lattice with a few percent of defect lines. Wh
neutron scattering has detected Bragg peaks at one p
above the melting curve of BSCCO,76,77 the structure of the
liquid has not been determined via neutron scattering
muon spin resonance, e.g., neutron-scattering diffrac
rings have not been observed in the vortex liquid.

There are two reasons to expect dislocations to proli
ate. First interstitial vortex lines are usually attractive47 and
can aggregate to form dislocations that extend the en
length of the lattice parallel to thec axis. The same is true fo
vacancies. In particular, Olive and Brandt47 have done nu-
merical simulations on line defects which were at least fi
lattice spacings apart. They found that both centered
edge interstitials75 are attractive iflab /a0>1. For lab /a0

50.25, edge interstitials were attractive for separations
than ten lattice spacings and repulsive at larger distan
while centered interstitials were repulsive at distances lar
than five lattices spacings. Vacancies were attractive in
cases.

The second reason is that the substantial softening of
shear modulus brought about by the vacancies and inte
tials reduces the dislocation core energy as well as the ela
energy of creating dislocations. For example, the core ene
of a z-directed dislocation goes asc66b

2 and the core energy
of a screw dislocation goes asAc66c44b

2 whereb is the mag-
nitude of the Burger’s vector.39 In addition the long-range
interaction between dislocation loops is mediated by
strain field and depends onc66.39 Once the dislocations hav
proliferated, the method and results of Marchetti a
Radzihovsky39 can be used to provide a more detailed a
accurate description of the liquid side of the transition. F
example, they show that when dislocations at all len

ig.

FIG. 6. Shear modulusc66 versus frequency for YBCO and
BSCCO. For YBCO,H55 T, T583 K, and the defect concentra
tion n54%. For BSCCO,B5200 G, T560 K, andn55%. The
values chosen are close to those on the melting curve. The re
the values of the parameters are the same as in Fig. 1.
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scales are present, the shear modulus vanishes in the
wavelength limit.38,39 Work in this direction is in progress.

VI. SUMMARY

To summarize, we have presented a model for the mel
of a vortex lattice into a vortex liquid. The melting transitio
is induced by a few percent of vacancy and interstitial vor
lines that soften the shear modulus and increase the v
tional entropy. The increased vibrational entropy leads
melting. We obtain good agreement with the experimenta
measured curve of transition temperature versus field, la
heat, and jumps in magnetization for BSCCO and YBC
The Lindemann ratiocL is ;11% for BSCCO and;25%
.

ng-

g

x
a-
o
y
nt
.

for YBCO. The hysteresis is small. We find a very sm
surface tension between the vortex solid and the vortex
uid along an interface parallel to thec axis. The shear modu
lus is frequency dependent; it is zero atv50 and plateaus a
higher frequencies to its infinite frequency value.

ACKNOWLEDGMENTS

We thank Andy Granato and Lev Bulaevskii for helpf
discussions. This work was supported in part by ONR Gr
No. N00014-96-1-0905 and by funds provided by the U
versity of California for the conduct of discretionary resear
by Los Alamos National Laboratory.
s

of

in-
1D.R. Nelson, Phys. Rev. Lett.60, 1973~1988!.
2D.S. Fisher, M.P.A. Fisher, and D.A. Huse, Phys. Rev. B43, 130

~1991!.
3G. Blatteret al., Rev. Mod. Phys.66, 1125~1994!.
4E.H. Brandt, Rep. Prog. Phys.58, 1465~1995!.
5H. Safaret al., Phys. Rev. Lett.70, 3800~1993!.
6R. Liang, D.A. Bonn, and W.N. Hardy, Phys. Rev. Lett.76, 835

~1996!.
7U. Welp et al., Phys. Rev. Lett.76, 4809~1996!.
8A. Schilling et al., Nature~London! 382, 791 ~1996!.
9A. Schilling et al., Phys. Rev. Lett.78, 4833~1997!.

10A. Schilling et al., Phys. Rev. B58, 11 157~1998!.
11M. Roulin, A. Junod, A. Erb, and E. Walker, Phys. Rev. Lett.80,

1722 ~1998!.
12E. Zeldovet al., Nature~London! 375, 373 ~1995!.
13D.T. Fuchset al., Phys. Rev. B54, R796~1996!.
14C.D. Keeneret al., Phys. Rev. Lett.78, 1118~1997!.
15T. Sasagawaet al., Phys. Rev. Lett.80, 4297~1998!.
16A. Schilling et al., Physica C282-287, 327 ~1997!.
17H. Pastoriza, M.F. Goffman, A. Arribe´re, and F. de la Cruz, Phys

Rev. Lett.72, 2951~1994!.
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21R. Šášik and D. Stroud, Phys. Rev. Lett.75, 2582~1995!.
22S. Ryu and D. Stroud, Phys. Rev. B54, 1320~1996!.
23S. Ryu and D. Stroud, Phys. Rev. Lett.78, 4629~1997!.
24X. Hu, S. Miyashita, and M. Tachiki, Phys. Rev. Lett.79, 3498

~1997!.
25X. Hu, S. Miyashita, and M. Tachiki, Phys. Rev. B58, 3438

~1998!.
26A.K. Nguyen, A. Sudbo”, and R.E. Hetzel, Phys. Rev. Lett.77,

1592 ~1996!.
27A.K. Nguyen and A. Sudbo”, Phys. Rev. B57, 3123~1998!.
28H. Nordborg and G. Blatter, Phys. Rev. Lett.79, 1925~1997!.
29D.R. Nelson and H.S. Seung, Phys. Rev. B39, 9153~1989!.
30Y.-H. Li and S. Teitel, Phys. Rev. B49, 4136~1994!.
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