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How stress can reduce dissipation in glasses
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We propose that stress can decrease the internal friction of amorphous solids, either by increasing the potential
barriers of defects, thus reducing their tunneling and thermal activation that produce loss, or by decreasing
the coupling between defects and phonons. This stress can be from impurities, atomic bonding constraints, or
externally applied stress. Externally applied stress also reduces mechanical loss through dissipation dilution. Our
results are consistent with the experiments, and predict that stress could substantially reduce dielectric loss and
increase the thermal conductivity.
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I. INTRODUCTION

At low temperatures between 0.1 and 10 K, a wide variety
of amorphous solids exhibit a universal plateau in their
mechanical dissipation Q−1 ∼ 10−4–10−3.1,2 However, there
are exceptions such as in amorphous silicon where doping
with 1 at. % of hydrogen reduces the low-temperature internal
friction plateau by about a factor of 200.3 In addition, the
dissipation in high-stress silicon nitride (Si3N4) thin films,
which show no long-range order in x-ray diffraction and
TEM images, is two to three orders of magnitude lower
than in amorphous SiO2 from 4 K up to room temperature.4

Such a large effect is surprising since the stress of 1.2 GPa
corresponds to only about 70 K/atom. Even the dissipation
of stress-relieved Si3N4 has a Q−1 that is about an order of
magnitude lower than typical amorphous solids.4

So far no theoretical explanation for these results has been
presented. In this paper we propose that all these reductions
in dissipation are due to stress but cannot be explained by
one physical effect. Impurities, dopants, and internal bond
constraints can produce internal stress. Externally applied
stress can reduce dissipation through dissipation dilution5

as Saulson has pointed out.6 In addition we propose that
stress, whether internal or external, can reduce the dissipation
produced by microscopic defects known as two-level systems
(TLS), either by increasing TLS barrier heights or by decreas-
ing the coupling between phonons and TLS. Our goal is to urge
experimentalists to make further measurements to quantify the
role of dissipation dilution as well as to differentiate between
these two possible effects of stress on TLS.

In dissipation dilution7 externally applied stress increases
the stiffness of materials without increasing their loss, resulting
in a higher Q. A simple example of dissipation dilution would
be the increase in Q of a mass suspended from a lossy spring
when a stiffer lossless spring is added in parallel to the original
spring. Since Q = f0/(�f ) where f0 is the resonant frequency
and �f is the linewidth (full width at half maximum), f0,
and hence Q, increase without increasing the damping. In the
Appendix we estimate that a thin-film square resonator of high-
stress silicon nitride could have a Q up to 40 000 times higher
than a hypothetical stress-relieved silicon nitride resonator due
to dissipation dilution. This far exceeds the experimental factor
of order 150 by which external stress increases Q in high-stress
silicon nitride.4 The full enhancement of 40 000 is not realized,

probably due to external sources of dissipation, e.g., clamping
losses.

Dissipation dilution only plays a role when there is
externally applied stress. So even though dissipation dilution
can have a dramatic effect, it cannot explain why dissipation is
lowered by an order of magnitude or more in materials which
have no externally applied stress, e.g., in silicon doped with
1 at. % hydrogen3 or in stress-relieved Si3N4.4 Also, in addition
to dissipation dilution, external stress may reduce the internal
friction arising from microscopic defects. To understand this,
we note that Q−1 = Aφ where φ is internal friction, and A is
due to dissipation dilution and is a function of macroscopic
parameters, e.g., elastic moduli.7 (For the rest of the paper,
except where noted otherwise, we will focus on the internal
friction and set A = 1 so that we can use Q−1 in place of
φ in order to be consistent with the accepted notation in the
field of glasses at low temperatures.) We propose two possible
ways in which stress could reduce internal friction: either
by increasing the barrier heights of microscopic fluctuating
defects or by decreasing the coupling (deformation potential
γ ) between phonons and TLS. We fit existing, but incomplete,
experimental data on dissipation, specific heat, and thermal
conductivity for silicon nitride and SiO2, finding somewhat
better fits to the Q−1 data of Si3N4 at high temperatures
with the barrier height model. Further measurements could
distinguish between these two models.

In glasses at low temperatures, acoustic loss at low frequen-
cies is attributed to TLS.2,8–12 While the microscopic nature of
TLS is a mystery, one can think of a TLS as an atom or group of
atoms in a double-well potential that can sit in either well. At
low temperatures, the lowest two energy levels dominate. The
TLS density of states is assumed to be uniform at energies
below a few Kelvin, so if stress merely shifts the density
of states, there should be no effect. At low frequencies and
temperatures, the primary mode of attenuation is relaxation in
which the phonon at the measurement frequency modulates
the TLS energy-level spacing.13 The measurement frequency
is not related to the TLS energy because the incident phonon
can modulate TLS with any energy splitting. Attenuation
occurs when the TLS population readjusts to the equilibrium
Boltzmann distribution with the aid of the entire thermal
distribution of phonons.

Low acoustic loss could have important implications for
dielectric loss since the two are completely analogous within
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the TLS model.14 TLS with electric dipole moments can
produce dielectric loss by attenuating photons. So we would
expect stressed dielectrics to also have low dielectric loss that
could make them useful substrates to reduce loss and noise in
superconducting qubit circuits.15 For example, hydrogenating
amorphous silicon nitride decreases its dielectric loss tangent
by approximately a factor of 50.16

At low temperatures tunneling dominates, but at higher
temperatures thermal activation over energy barriers becomes
important. One possibility is that stress increases the potential
energy barriers V , which reduces tunneling and thermal
activation, thus effectively reducing the number of defects
and the internal friction. We will show that this approach is
quantitatively consistent with measurements of Q−1 in stress-
relieved Si3N4, and, even if we ignore dissipation dilution
and demand that the entire reduction be due to a reduction
in internal friction, with measurements of Q−1 in high-stress
Si3N4. We use a single set of parameters to calculate Q−1,
the specific heat C(T ), and the thermal conductivity κ(T ) in
SiO2 and silicon nitride. Since low dissipation implies a long
phonon mean-free path and a high thermal conductivity, we
predict that the thermal conductivity of stress-relieved Si3N4 is
an order of magnitude higher than amorphous SiO2 from 4 K
up to room temperature, and, if there is no dissipation dilution,
the thermal conductivity of high-stress Si3N4 could be even
higher, potentially making silicon nitride a useful substrate for
integrated circuits where cooling is important.

The paper is organized as follows. We describe our calcula-
tions of the dissipation, thermal conductivity, specific heat, and
dielectric loss in Sec. II. In Sec. III, we explain our procedure
for determining the parameters for fitting the experimental
data. The results of those fits to the specific heat, thermal
conductivity, and dissipation are presented in Sec. IV. We
discuss why the dissipation of stress-relieved Si3N4 is lower
than ordinary materials in Sec. V. We discuss the possibility
that stress could reduce dielectric loss in Sec. VI. In Sec. VII
we present an alternative model for how stress could lower the
dissipation, namely, by reducing the coupling between TLS
and phonons. We summarize our work in Sec. VIII.

II. CALCULATIONS OF DISSIPATION, THERMAL
CONDUCTIVITY, SPECIFIC HEAT, AND DIELECTRIC

LOSS

Let us briefly review the TLS model.8,9 The TLS Hamilto-
nian is H = H0 + He, where H0 = (1/2) [�σz − �0σx] and
He = γ eσz, where � is the energy asymmetry between the
potential energy wells, �0 is the tunneling matrix element, γ

is the deformation potential, e is the strain field, and σx and
σz are Pauli matrices. The energy eigenvalues of H0 are E =
±

√
�2

0 + �2. We follow Tielburger et al.17 and approximate
the double well by two overlapping harmonic oscillator wells,
each with energy-level spacing h̄�0. The tunneling matrix
element �0 is given by the WKB approximation:17

�0 = h̄�0

π
(
√

	 + 1 +
√

	) exp(−
√

	2 + 	), (1)

where 	 = 2V/(h̄�0) and V is the height of the energy barrier.
Fits to the low-temperature thermal conductivity find the TLS

density of states P̄ that couples to phonons to be approximately
constant. However, an excess of local vibrational states,
referred to as the boson peak, is evident at higher temperatures
and energies.1,18 We model these modes by Einstein oscillators
with a step function in the density of states that starts at an
energy E0 typically between 10 and 40 K.19

According to the TLS model, at low frequencies (ν < 1
THz) and low temperatures (0.1 K < T < 10 K), Q−1 is a
temperature-independent constant given by10

Q−1
0 = πP̄ γ 2

2ρv2
, (2)

where ρ is the mass density, and v is the sound velocity.
The sources of attenuation are TLS relaxation processes
(Q−1

rel,TLS), resonant scattering of phonons from TLS (Q−1
res,TLS)

and Einstein oscillators (Q−1
EO) in which the phonon energy

matches the energy-level spacing, and Rayleigh scattering
(Q−1

Ray) from small scatterers of size a such that ka
<∼ 1,

where k is the phonon wave vector.19 Yu and Freeman19 found
that a = k−1 = h̄v/E0 is consistently ∼25% larger than the
size20 of a molecular unit for SiO2, GeO2, polystyrene, and
PMMA (polymethylmethacrylate). Just as in their work, we
cut off Rayleigh scattering at E0. We include thermal activation
as well as direct phonon relaxation in the TLS relaxation
processes,17 and assume that the relaxation attenuation from
Einstein oscillators is negligible.19 Thus we can write17,19

Q−1 =
{

Q−1
res,TLS + Q−1

rel,TLS + Q−1
Ray, E < E0

Q−1
res,TLS + Q−1

rel,TLS + Q−1
EO, E > E0.

(3)

The attenuation due to TLS relaxation is given by

Q−1
rel,TLS = 2Q−1

0

πkBT

∫
V,�

(
�

E

)2

sech2 E

2kBT

ωτ

1 + (ωτ )2
, (4)

where
∫
V,�

≡ ∫ Vmax

0 dV
∫ 2V

0 d�P (�,V )/P̄ with Vmax =
V0 + 6σ0. P (�,V ) is the TLS distribution of � and V . We
assume that � has a uniform distribution and V has a Gaussian
distribution with an average V0 and a variance σ 2

0 :17

P (�,V ) = 2P̄

h̄�0
exp

[
− (V − V0)2

2σ 2
0

]
. (5)

The TLS relaxation rate τ−1 is the sum of the direct
phonon relaxation rate τ−1

d , in which the excited TLS decays
to the ground state by emitting a phonon, and the rate τ−1

Arr of
Arrhenius activation over the barrier:

τ−1 = τ−1
d + τ−1

Arr, (6)

τ−1
d =

∑
a=�,t

(
γ 2

a

v5
a

)
E�2

0

2πρh̄4 coth

(
E

2kBT

)
, (7)

τ−1
Arr = τ−1

0 cosh

(
�

2kBT

)
e−V/kBT , (8)

where the sum is over the longitudinal and transverse
phonon modes and τ0 = 2/�0. For SiO2, τ0 = 4 × 10−12 s.
For ωτm � 1, Q−1

rel,TLS ≈ Q−1
0 , where τm is the minimum

relaxation time for a TLS with energy E at temperature T .19
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The Rayleigh and resonant phonon scattering terms are given
by

Q−1
Ray = Bvω3, (9)

Q−1
EO = Q−1

0

2Sκ

π
, (10)

Q−1
res,TLS = 2Q−1

0

∫
V,�

tanh
h̄ω

kBT

(
�0

E

)2

δ(E − h̄ω),

(11)

where Sκ is the step height in the density of states of the
Einstein oscillators that is used to fit the thermal conductivity
κ , and B is a constant.

Q−1 is measured at low frequencies of order 1 MHz. Esti-
mating the order of magnitude of the various contributions at
1 MHz and 1 K using the values of the parameters in Table I for
SiO2 (transverse phonon modes), we find Q−1

rel,TLS ∼ Q−1
0 ∼

6 × 10−4, Q−1
res,TLS ∼ Q−1

0 tanh(h̄ω/2kBT ) ∼ 1 × 10−8, and
Q−1

Ray ∼ 2 × 10−15. Thus TLS relaxation dominates Q−1 at
low temperatures and low frequencies where the plateau in
Q−1 is given by

Q−1
plat = Q−1

0 exp

[
− V 2

0

2σ 2
0

]
. (12)

This replaces Eq. (2), and is obtained by plugging Eq. (4) into
Eq. (3) and noting that the dominant contribution to the integral
in Eq. (3) is for V � V0 due to the exponential dependence of
τ−1

Arr and τ−1
d on V . The factor of exp[−(V0/σ0)2] in P (�,V )

effectively reduces the number of active TLS.
The relaxation time τ in Eq. (4) for Q−1

rel,TLS is exponentially
sensitive to the barrier height V because both the tunneling
matrix element �0 in τd [see Eqs. (1) and (7)] and the thermal
activation time τArr given by Eq. (8) depend exponentially on
V . We assume that stress increases the barrier heights V , thus
increasing the relaxation times τd and τArr, and reducing the

dissipation Q−1 ≈ Q−1
rel,TLS. In our model stress increases the

average barrier height V0 and decreases the variance σ 2
0 in

P (�,V ).
In order to determine the values of the parameters required

to fit Q−1, we need to fit the thermal conductivity κ(T ) and the
specific heat C(T ). The equations for C(T ) and κ(T ) are as
follows. In glasses heat is carried by phonons.21 κ(T ) is given
by

κ(T ) = 1

3

∫ ωD

0
CD(T ,ω)v�(T ,ω)dω, (13)

where ωD is the Debye frequency, and we approximate the
phonon specific heat by the Debye specific heat CD(T ,ω). The
phonon mean-free path � is related to Q by

�(T ,ω) = Q(T ,ω)v/ω = Q(T ,ω)λ/(2π ), (14)

where λ is the phonon wavelength.
The specific heat C(T ) has contributions from the phonons

which we approximate with the Debye specific heat CD ,
from TLS CTLS, and from local modes which we model with
Einstein oscillators CEO:19

C(T ) = CD(T ) + CTLS(T ) + CEO(T ), (15)

where

CD = 9
N

V
kB

(
T

�D

)3 ∫ xD

0
dx 4x4 ex

(ex − 1)2
, (16)

CTLS = kBP̄

∫
V,�

x2 ex

(ex + 1)2
= π2

6
n0k

2
BT , (17)

CEO = n0Sck
2
BT

∫ xD

x0

dx
x2ex

(ex − 1)2
, (18)

where x = E/kBT , x0 = h̄�0/kBT , xD = �D/T , N/V is the
number density of formula units, and θ (E) is a step function.
�D is the Debye temperature. n0 is the TLS density of states

TABLE I. Parameters for SiO2, A (200-nm-thick SiN1.15), B (50-nm-thick SiN1.15), and Si3N4.

Quantitiesa SiO2 A B Si3N4
b

ρ (103 kg/m3) 2.2 2.68 2.68 3.18
vL (103 m/s)c 5.8(L) 3.75(T) 11.0 11.7 11.17
�D (K) 342 610 649 446
E0 (K) 43 76 81 56
P̄ (1045/J m3) 0.16 3 10 ∼0.39
Sc 1300 7.0 2.0 7.0∗
Sκ 250 2.5 1.5 2.5∗
B (10−43 s4/m) 1.7× 104 8 6 8∗
γ (eV) 2.24(L) 1.73(T) 5.6 5.6 5.6∗
h̄�0 (K) 12 150 150 150/130
2Q−1

0 /π (10−3) (L) 0.28 68 114 2.13
n0 (1045/J m3) 2.1 448 1490 58.3/56.4
n0 × 10 K/(N/V ) (10−3) 1.31×10−2 1.7 5.6 0.59/0.57
V0 (×104 K) 0 2.3 2.3 2.3/3.05
σ0 (×103 K) 0.445 9 9 9/7.5

aDensity ρ and sound velocity v are from Refs. 4 and 25. �D is calculated from ρ and v.
bParameters marked with ∗ for Si3N4 are estimated from SiN1.15 and SiO2, while those marked with ∼ are estimated from other materials.
Stress-relieved and high-stress values for Si3N4 are separated by/with stress-relieved values given first.
cL (T ) stands for longitudinal (transverse) components. If no data is available, we use vT ≈ vL/2.
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that contributes to the specific heat, and SC is the size of the
step in the density of states due to the Einstein oscillators that
contribute to C(T ).

The dielectric loss tangent tan δ is analogous to the acoustic
dissipation Q−1. At high frequencies and low temperatures
(�1 K), the dominant scattering is resonant scattering of
photons by TLS in which the photon energy matches the TLS
energy splitting. If the electromagnetic intensity J is much less
than the critical intensity Jc, we are below saturation and can
use Eq. (11) with tan δ replacing Q−1

res,TLS, and Q−1
0 replaced

by22

Q−1
0,dielectric = 4π2nep

2

3ε0εr

, (19)

where ne is the density of TLS with electric dipole moments,
p is the electric dipole moment, ω is the angular frequency of
the incident photons, ε0 is the permittivity of the vacuum, and
εr is the dielectric constant. Since the integral in Eq. (11) is
dominated by V � V0, we can make the approximation

tan δ = Q−1
0,dielectric exp

[
− V 2

0

2σ 2
0

]
tanh

(
h̄ω

2kBT

)
(20)

for the barrier height model. For the model, described in
Sec. VII, where the stress modifies the deformation potential
γ , V0 = 0, and

tan δ = Q−1
0,dielectric tanh

(
h̄ω

2kBT

)
. (21)

III. PROCEDURE FOR FITTING THE
EXPERIMENTAL DATA

A. SiO2

To fit the data for SiO2 we follow Tielburger et al.17 and set
V0 = 0. Then by fitting the low-temperature plateau of Q−1

using Eqs. (2) and (12), we obtain P̄ γ 2. Fitting Q−1 over
the whole range of temperature yields σ0. The temperature
of the rise in Q−1 determines h̄�0/2. Since V0 and σ0 are
known, we can determine n0 by fitting the specific heat C(T )
which then gives the value of P̄ . P̄ , γ , V0, and σ0 determine
the low-temperature thermal conductivity κ(T ) without any
adjustable parameters. We set the energy Eo of the onset of
the step in the density of states by E0 = �D/(2π × 1.27),19

where �D is the Debye temperature. Fitting C(T ) at higher
temperatures determines the step SC in the density of states due
to local modes (Einstein oscillators). The fit to κ(T ) at high
temperatures gives the step in the density of states Sκ and the
Rayleigh scattering parameter B. Note that P̄ < n0 and Sκ <

SC because not all of the degrees of freedom that contribute to
the specific heat scatter the phonons that are responsible for the
thermal conductivity. No one has tried before to see if one set
of parameters can be used to fit the data for all these quantities.

B. Si3N4

Fitting the data for Si3N4 is complicated by the fact that
measurements of Q−1(T ), κ(T ), and C(T ) have not been made
for the same stoichiometry of silicon nitride. We assume a P̄ γ 2

value (such that Q−1
0 ≈ 10−4–10−3) for Si3N4 and use Eq. (12)

to fit the Q−1(T ) data for low-stress Si3N4 (Ref. 4) to obtain V0

and σ0. Assuming SiN1.15 has the same values of V0 and σ0 as
low-stress Si3N4, we can obtain n0 and P̄ by fitting the C(T )
data of SiN1.15. By fitting the κ(T ) data of SiN1.15, we obtain
P̄ γ 2, and thus γ . Assuming Si3N4 has the same γ as SiN1.15,
we obtain P̄ for Si3N4. If this value is reasonable compared to
the γ values for SiN1.15 and a-SiO2, we stop. Otherwise, we
choose another P̄ γ 2 and repeat the above procedure until we
obtain a reasonable value of P̄ . We then follow the procedure
given in the previous paragraph to fit C(T ) and κ(T ) for SiN1.15

at higher temperatures to obtain the values of B, Sκ , and SC .

IV. RESULTS: FITS TO EXPERIMENTAL DATA

A. SiO2

Our fits to the data for κ(T ), C(T ), and Q−1 for SiO2 and
silicon nitride are shown in Figs. 1, 2, and 3 with the parameters
given in Table I. No one has tried before to see if one set of
parameters can be used to fit the data for all these quantities.
The fits to the SiO2 data show that this can be done.

Fefferman et al.23 have reported that around 10 mK, the
acoustic dissipation of SiO2 is linear in temperature. This linear
temperature dependence is attributed to interactions between
TLS.23 In Fig. 4 we show our fits to the data from Ref. 23. To
obtain these fits we followed Fefferman et al.23 and added a
linear term τint = bT (�0/E)2,24 where b is a constant to the
expression for the relaxation rates in Eq. (6). b is a constant.

B. Si3N4

Fitting the data for Si3N4 is complicated by the fact that
measurements of Q−1(T ), κ(T ), and C(T ) have not been made
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FIG. 1. (Color online) C(T )/T 3 vs T for amorphous SiO2 and
silicon nitride. Experimental data points are shown for 50- and 200-
nm-thick SiN1.15 (Ref. 25) and SiO2. The SiO2 C(T ) data are from
Refs. 1 and 26. The solid lines through the points are theoretical
fits. Our predictions where stress affects V or γ are indicated in the
legend by (V ) and (γ ), respectively. C(T )/T 3 curves for high-stress
and stress-relieved Si3N4 lie on top of each other for the barrier height
model and similarly for the γ model.

174109-4



HOW STRESS CAN REDUCE DISSIPATION IN GLASSES PHYSICAL REVIEW B 84, 174109 (2011)

10−1 100 101 102 103

Temperature [K]

10−4

10−2

100

102

104

106

κ 
[W

/m
 K

]

  Predicted high−stress Si3N4 (V)
  Predicted stress−relieved Si3N4 (V)
  Predicted high−stress Si3N4 (γ)
  Predicted stress−relieved Si3N4 (γ)
200nm SiN1.15

50nm SiN1.15

a−SiO2

FIG. 2. (Color online) κ(T ) vs T for amorphous SiO2 and silicon
nitride. Experimental data points are shown for 50- and 200-nm-thick
SiN1.15 (Ref. 25) and SiO2. The SiO2 κ(T ) data are from Refs. 27
and 28. The solid lines through the points are theoretical fits. Our
predictions where stress affects V or γ are indicated in the legend
by (V ) and (γ ), respectively. At low temperatures κ(T ) for high-
stress Si3N4 is the same for the V and γ models and similarly for
stress-relieved Si3N4.

for the same stoichiometry of silicon nitride. Assuming that
Q−1 = φ, i.e., with no dissipation dilution, our predictions for
C(T ) and κ(T ) for high-stress and stress-relieved Si3N4 are
shown in Figs. 1 and 2. Around 3 K, κ(T ) for stress-relieved
Si3N4 is about an order of magnitude higher than for SiO2, and
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FIG. 3. (Color online) Dissipation Q−1 vs T for stress-relieved
Si3N4 measured at 3.5387 MHz (open squares) (Ref. 4), high-stress
Si3N4 measured at 1.526 445 MHz (open triangles) (Ref. 4), and
amorphous SiO2 (open circles) measured at 11.4 kHz (Ref. 17).
Solid lines are theoretical fits using the model where stress reduces
barrier height. Dashed lines are our theoretical predictions associated
with reducing γ . Dissipation dilution factor A = 1 in the theoretical
curves.
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FIG. 4. (Color online) Acoustic dissipation Q−1 vs temperature
for SiO2 at various frequencies. The data for SiO2 at 11.4 kHz is from
Ref. 17, while the rest of the SiO2 data is from Ref. 23. The fits to the
SiO2 data with the linear term bT are given by dashed lines, while
the fits without the linear term added are shown as dotted lines.

high-stress Si3N4 could be even higher, which is consistent
with low dissipation and a long phonon mean-free path.

From Table I, we see that our fits to C(T ) for SiN1.15±0.05

require surprisingly large values of n0, the TLS density
of states; n0 = 4.5 × 1047/J m3 for 200-nm-thick films and
n0 = 1.5 × 1048/J m3 for 50-nm-thick films, which are two
and three orders of magnitude larger than values for amorphous
SiO2, respectively. This accounts for the high specific heat
below 5 K.

Our model fits the Q−1 data very well. At low temperatures
(T < 0.1 K), Q−1 ∼ T 3, and we predict that Q will increase by
up to an order of magnitude from 400 to 100 mK in both stress-
relieved and high-stress Si3N4. To obtain an upper bound for
the change in barrier height due to stress, we ignore dissipation
dilution. In this case from Table I we see that the mean barrier
height for high-stress Si3N4 is V0 = 3.05 × 104 K ∼ 2.6 eV,
which is about 33% higher than V0 = 2.3 × 104 K ∼ 2 eV
for stress-relieved Si3N4. These values are comparable to the
bond energies of Si3N4.29 This increase in V0 is consistent with
our hypothesis that stress increases the barrier heights. To see
that these numbers are reasonable, note that the difference
�V0 in mean barrier height V0 due to stress is 7500 K. The
applied stress is estimated to be about 70 K/atom. n0 × 10
K/(N/V) in Table I implies that 0.06% or 1 in 1700 atoms are
fluctuating defects. If the stress is distributed nonuniformly so
that each atom contributes, say, 6% of its stress to the defect,
then 70 K/atom × 1700 atoms × 6% = 7100 K ∼ �V0.

V. DISSIPATION OF STRESS-RELIEVED Si3N4

Why is Q−1 in stress-relieved Si3N4 an order of magnitude
lower than SiO2?

One might naively expect stiffer materials to have less
dissipation by looking at Eq. (2) and noticing that stiffer
materials will have a higher speed v of sound. This is certainly
true if we compare Si3N4 and SiO2. A measure of the stiffness
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of a material is the Young’s modulus E. Silicon nitride has
E = 300 GPa and v = 11.7 km/s, while SiO2 is less stiff
and has E = 66 GPa and v = 5.8 km/s. (We use longitudinal
speeds of sound.) However, P̄ γ 2 can vary from material
to material and seems to be larger in stiffer materials. For
example, PMMA is much softer than SiO2 with a Young’s
modulus E between 1.8 and 3.1 GPa. P̄ γ 2 for PMMA is
about an order of magnitude smaller than the value for
SiO2,19 but the values of their low-temperature dissipation
Q−1 are comparable. (P̄ γ 2 ∼ 0.16 × 107 J/m3 for PMMA,
and 1.6 × 107 J/m3 for SiO2.)

As another example, consider SiO2 and GeO2. GeO2 is
softer than SiO2; the Young’s modulus E = 45 GPa for GeO2

and E = 66 GPa for SiO2 but the two materials have very
comparable values of the dissipation plateau at 1 K: Q−1 ∼
4 × 10−4 for GeO2 and Q−1 ∼ 5 × 10−4 for SiO2.2 P̄ γ 2 =
1.6 × 107 J/m3 for SiO2 is double that of GeO2, which has
P̄ γ 2 = 0.86 × 107 J/m3,19 while ρv2 ∼ 37 × 106 J/m3 for
SiO2, which is about 50% larger than ρv2 ∼ 24 × 106 J/m3

for GeO2. In short, the only way to determine the correct value
of P̄ and γ is to measure thermal conductivity, specific heat,
and dissipation for samples of silicon nitride with the same
stoichiometry. Stiffness alone is not enough to determine the
parameters entering into the expression for the dissipation, or
to account for the reduction in dissipation of stress-relieved
Si3N4.

So we are still left with the question of why the dissipation
of Si3N4 is an order of magnitude less than SiO2. The reason
is that the atomic bonds are more constrained in Si3N4. The
competition between degrees of freedom and bond constraints
is the reason why some materials are good glass formers and
others are not.30 Each m-fold coordinated atom provides m/2
constraints from fixed bond lengths, and (2m − 3) constraints
from fixed bond angles.30 Since Si3N4 has three- and fourfold
coordinated atoms, there are 5 4

7 constraints per atom, which
exceeds the three degrees of freedom per atom. This is more
constrained than SiO2, which has 3 2

3 constraints per atom. This
increase in the number of constraints reduces the number of
defects (TLS) and produces unrelieved stress that increases the
average barrier height, thus decreasing C(T ) and Q−1, as well
as increasing κ(T ).

VI. DIELECTRIC LOSS

As we mentioned in the Introduction, the dielectric loss
tangent tan δ is analogous to the acoustic dissipation Q−1.
So if stress reduces Q−1, it should also reduce tan δ.
We can estimate the effect of stress on tan δ using the
expression in the Appendix. For SiO2 with nep

2 = 1.46 ×
10−4,22 V0 = 0, and εr = 3.9, Q−1

0,dielectric exp[−V 2
0 /(2σ 2

0 )] =
Q−1

0,dielectric ∼ 5 × 10−4. For Si3N4 with εr = 731, and assum-
ing ne is given by P̄ in Table I, p = 1 D, and using
the values for V0 and σ0 from Table I, Q−1

0,dielectric ∼ 7 ×
10−5 and Q−1

0,dielectric exp[−V 2
0 /(2σ 2

0 )] ∼ 3 × 10−6 for stress-
relieved Si3N4 and 2 × 10−8 for high-stress Si3N4. Thus
stress-relieved Si3N4 has the potential to lower the dielectric
loss by two orders of magnitude, and high-stress Si3N4 could
have dielectric loss that is up to four orders of magnitude lower
than SiO2.

VII. ALTERNATIVE MODEL: REDUCED COUPLING γ

BETWEEN TLS AND PHONONS

Our proposal that stress reduces the internal friction by in-
creasing barrier heights can be made quantitatively consistent
with the data. However, there are other possible explanations.
One is that stress decreases the TLS-phonon coupling γ , and
does not change the barrier height distribution. Figs. 1, 2, and
3 show the results of this approach with V0 = 0, σ0 = 9000 K,
P̄ = 4.3 × 1043/J m3, and γ = 0.37 (3.96) eV for high-stress
(stress-relieved) Si3N4. The rest of the parameters are given
in Table I for Si3N4. The Q−1 fit to stress-relieved Si3N4

is reasonably good, but poor for high-stress Si3N4 at high
temperatures, indicating that this model does not work as
well as our hypothesis that stress increases barrier heights if
dissipation dilution plays no role. However, it is possible that
some other set of values for the parameters could improve the
fit to the dissipation of high-stress Si3N4. The predicted C(T )
and κ(T ) resulting from decreasing γ is shown in Figs. 1 and
2 for both high-stress and stress-relieved Si3N4. Reducing γ

produces a thermal conductivity that is about the same as that
of the barrier height model up to about 4 K and then, at high
temperatures, is greater than that of the barrier height model
by an order of magnitude or more. The specific heat associated
with reducing γ is about two orders of magnitude lower than
that of the barrier height model at low temperatures. If stress
reduces γ , the dielectric loss will be the same for high-stress
and stress-relieved Si3N4 with Q−1

0,dielectric ∼ 7 × 10−5. The
dielectric loss for SiO2 will be the same as in the barrier height
model.

The way to differentiate between these models and to
determine the role of dissipation dilution is to measure C(T ),
κ(T ), Q−1, and tan δ for high-stress and stress-relieved Si3N4,
and determine consistent values of the parameters P̄ , γ , V0,
and σ0. If dissipation dilution is the sole cause of the reduction
of dissipation by externally applied stress in high-stress Si3N4,
the thermal conductivity, specific heat, and dielectric loss of
high-stress and stress-relieved samples of silicon nitride should
be the same.

VIII. SUMMARY

We have proposed three possible explanations for the
reduction in dissipation due to external and internal stress.
These explanations are dissipation dilution, stress increases
the tunneling barrier V0, and stress decreases the TLS-phonon
coupling γ . We have used quantitative fits to show that these
models are plausible. The only way to determine the respective
roles of these effects is to determine the parameters experimen-
tally by measuring the dissipation, thermal conductivity, and
specific heat on samples with the same stoichiometry.

It is perhaps useful to view our work in the context of the
history to two-level systems and glasses at low temperatures.
The original model of two-level systems was proposed
by Anderson, Halperin, and Varma, and independently, by
W. A. Phillips. It assumed a flat distribution of the asymmetry
energy and the tunneling barrier height of two-level systems.
This has been an enormously useful model for fitting the low-
temperature thermal conductivity, specific heat, dissipation,
etc. Tielburger, Merz, Ehrenfels, and Hunklinger used a

174109-6



HOW STRESS CAN REDUCE DISSIPATION IN GLASSES PHYSICAL REVIEW B 84, 174109 (2011)

Gaussian distribution of the barrier height to extend the model
to fit the dissipation over a broader temperature range. Yu and
Freeman represented higher energy excitations with Einstein
modes to fit the thermal conductivity and specific heat at
higher temperatures. Our paper moves the model forward
one more step in two ways. First, we show that one set
of parameters can be used to fit dissipation, specific heat,
and thermal conductivity at both low and high temperatures.
Second, we extend the model to include the effect of stress
on two-level systems. We propose that stress reduces the
effective number of two-level systems, either by increasing
the tunneling barrier height or by decreasing the TLS-phonon
coupling. As a result, stress would decrease the dissipation
and dielectric loss as well as increase the thermal conductivity,
which could have important practical applications. Examples
include substrates for integrated circuits where cooling is
crucial, and superconducting qubits where low dielectric noise
is important.

ACKNOWLEDGMENTS

We would like to thank Jeevak Parpia, Daniel McQueen,
and Frances Hellman for helpful discussions and for providing
their experimental data on silicon nitride. We thank Peter
Saulson and David Cardamone for helpful discussions. C.C.Y.
thanks the Aspen Center for Physics (supported by NSF Grant
No. 1066293) for their hospitality during which part of this
paper was written. This work was supported in part by IARPA
under Grant No. W911NF-09-1-0368, and by ARO Grant No.
W911NF-10-1-0494.

APPENDIX

In this Appendix we show the calculations involved in our
estimate of dissipation dilution. We also show the sensitivity
of our fits to the values of the parameters.

1. Estimation of the contribution of dissipation dilution

In dissipation dilution7 materials made stiffer by externally
applied stress without increasing their loss have a higher Q. If
we write a complex Young’s modulus E = E0(1 + iφ), where
φ is the internal friction and E0 is a constant, then Q−1 =
Aφ(ω0), where A is due to dissipation dilution and ω0 is the
resonant frequency.5,7,32

We can estimate the contribution of dissipation dilution
to the reduction in dissipation of high-stress silicon nitride
by noting that the experimental geometry is that of a thin-film
square resonator.4 The energy of the resonator consists of three
parts: the kinetic energy K , the energy Vs from stressing the
material, and the elastic energy Vel. In this case5

A = Vel

Vs + Vel
≈ Vel

Vs

(A1)

since, as we shall show, Vel � Vs . We can make the approxi-
mation

Vel

Vs

=
(

f0,stress relieved

f0,high stress

)2

, (A2)

where f0 is the fundamental frequency of the resonator. The en-
ergy of a square thin-film resonator has three contributions:33

H = K + Vs + Vel, (A3)

K = 1

2

∫ Lx

0

∫ Ly

0
ρ [u̇(x,y)]2 dx dy, (A4)

Vs = 1

2

∫ Lx

0

∫ Ly

0
T

[(
∂u

∂x

)2

+
(

∂u

∂y

)2
]

dx dy, (A5)

Vel = 1

2

∫ Lx

0

∫ Ly

0
EI

[ (
∂2u

∂x2

)2

+
(

∂2u

∂y2

)2

+ 2ν

(
∂2u

∂x2

) (
∂2u

∂y2

)
+ 2(1 − ν)

(
∂2u

∂x∂y

)2 ]
dx dy,

(A6)

where u(x,y) is the displacement perpendicular to the x-y
plane, Lx = Ly = L are the length of the sides, ρ is the mass
per unit area, and E is the Young’s modulus. T is the tensile
force per unit length given by T = Sd, where S is the stress.
I = d3/12(1 − ν), where d is the thickness of the plate and
ν is Possion’s ratio, which is 0.24 for silicon nitride.34 The
equation of motion for u(x,y) is

ρ
d2u(x,y)

d2t
= −EI

[
∂4

∂x4
+ ∂4

∂y4
+ 2

∂2

∂x2

∂2

∂y2

]
u(x,y)

+ T

[
∂2

∂x2
+ ∂2

∂y2

]
u(x,y). (A7)
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2 x P

FIG. 5. (Color online) Acoustic dissipation Q−1 vs temperature
for various values of the deformation potential γ and the TLS
density of states P̄ . The black squares are the SiO2 data measured at
11.4 kHz from Tielburger et al.17 The black solid line is the fit using
the values in Table I with P̄ = 0.16 × 1045/J m3, longitudinal γ =
2.24 eV, and transverse γ = 1.9 eV. The dotted blue line comes from
using values of γ that are half as large, while the dashed blue line
comes from multiplying the values of γ by 2. The red dot-dashed line
is the result of using a value of P̄ that is half as large, while the solid
red line with open circles uses a value of P̄ that is twice as large.
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FIG. 6. (Color online) Acoustic dissipation Q−1 vs temperature
for various values of the width σ of the distribution of the barrier
height V , the energy level spacing h̄�0, and the measuring frequency
f . The black squares are the SiO2 data measured at 11.4 kHz from
Tielburger et al.17 The black solid line is the fit using the values in
Table I with σ = 445 K, �0 = 12 K, and f = 11.4 kHz. The red
dotted line uses half that value of σ , while the red dashed line uses
twice the value of σ . The blue dotted line with diamonds uses half
the value of �0, and the blue solid line with circles uses twice the
value of �0. The magenta circles are for half the frequency and the
magneta up triangles are for twice the frequency f .

By assuming a solution of the form u(x,y) = u0 exp[ikxx +
ikyy − iωt], we find the dispersion relation:

ω =
√

T

ρ
k2 + EI

ρ
k4, (A8)

where k2 = k2
x + k2

y . With the boundary condition u(0,y) =
u(L,y) = u(x,0) = u(x,L) = 0, the fundamental mode
corresponds to kx = ky = 2π/L giving the fundamental reso-
nant frequency:

f0 = ω0

2π

=
√

2S

ρ0

(
1

L

)2

+ 4E

12(1 − ν2)ρ0

(
2πd

L

)2 (
1

L

)2

, (A9)

where ρ0 = ρ/d.
We can estimate the fundamental resonant frequencies

of a square thin-film resonator made of high-stress and
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High stress Si3N4 experiment

σ=7500 K, V0=30,500 K

  V0 X 120%

  V0 X  80%

σ X 120%
σ X 80%

FIG. 7. (Color online) Acoustic dissipation Q−1 vs temperature
for various values of σ and and V0. The black squares are the
experimental data points for high-stress Si3N4 from Ref. 4. The black
solid line shows the fit to the data. We have varied σ and V0 by 20%
above and below the fit values to show the sensitivity of the fit to
the values of the parameters. The values of the other parameters are
given in Table I.

stress-relieved Si3N4 using values from Ref. 4: S = 1.2 GPa for
high-stress silicon nitride, d = 30 nm, and L = 255 μm. The
Young’s modulus is E = 300 GPa,34 and the mass density
is ρ0 = 3180 kg/m3. We estimate f0 ∼ 3.4 MHz for the
high-stress resonator compared with the experimental value of
1.526 445 MHz.4 For the hypothetical stress-relieved resonator
with S = 0, we estimate f0 ∼ 17 kHz. This gives a ratio of
(f0,high stress/f0,stress relieved) ∼ 200. Thus from Eqs. (A1) and
(A2) A ∼ 2.5 × 10−5, i.e., Q is enhanced up to a factor of
40 000 by dissipation dilution. However, experimentally,4 the
Q of high-stress silicon nitride is increased by a factor of order
150 by external stress. The full enhancement of 40 000 is not
realized, probably due to external sources of dissipation, e.g.,
clamping losses.

2. Sensitivity of fits to parameters

To show the sensitivity of our fits to the parameters P̄ , γ ,
σ , �, and the frequency f , we show in Figs. 5, 6, and 7 how
the dissipation would change if we varied these parameters by
a factor of 2 from the values that we quoted in Table I in the
paper.
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