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We investigate whether or not Kondo insulators undergo a magnetic-field-induced metal-insulator transition
in one dimension at half filling using both a density matrix formulation of the numerical renormalization group
and bosonization. Contrary to expectations, the quasiparticle gap never vanishes at any field and no metal-
insulator transition is found. We discuss generalizing our result to the asymmetric Anderson lattice.@S0163-
1829~96!06524-1#

In a strong magnetic field an ordinary narrow gap semi-
conductor becomes metallic when the field is comparable to
the size of the gap. Is this also true for the class of rare earth
compounds known as Kondo insulators, whose insulating
gap is due to interactions between conduction electrons and
localized f electrons?1 Simple arguments2–4 suggest that
such a metal-insulator transition~MIT ! should occur when
the applied magnetic fieldh exceeds the exchange coupling
J but is less than the conduction electron bandwidth. In this
case, one expects thef spins to be completely polarized and
decoupled from the conduction electrons, leaving an incom-
pletely polarized band of metallic conduction electrons. This
scenario is supported by mean field calculations such as
those with slave bosons.2,5 However, here we show that such
expectations are not correct when spin fluctuations are taken
into account.

We have studied the behavior of the insulating gap in a
one-dimensional~1D! Kondo insulator as a function of mag-
netic field. We used bosonization and the density matrix for-
mulation of the numerical renormalization group6,7 to cover
both the weak and strong coupling regimes. We find that the
gap, while greatly reduced by the applied magnetic field,
never vanishes at any value ofh. This unexpected result is
due to spin flip umklapp scattering across the Fermi surface,
which removes degeneracies and keeps the gap open. We
argue that this result also holds for the one-dimensional
asymmetric Anderson lattice where there is no particle-hole
symmetry.

The 1D Kondo lattice has spin-1/2 conduction electrons

that hop from site to site with an on-site spin exchange be-
tween a localf electron and the conduction electron on that
site. Thus the Hamiltonian is

H52t(
i ,s

~cis
† ci11s1H.c.!1(

i
JSW i f •SW ic
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i
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z 1Si f
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where the conduction electron spin density on sitei is
SW ic5(abcia

† (sW /2)abcib , the f -electron spin density is

SW i f5(ab f ia
† (sW /2)ab f ib , sW ab are Pauli matrices, andh.0 is

the external magnetic field, chosen along thez axis. We set
the hopping matrix elementt51 and chooseJ to favor an-
tiferromagnetic ordering (J.0!. To study the Kondo insula-
tor, we restrict ourselves to half filling where the total num-
ber of conduction electronsN equals the number of sites
L.

In order to calculate the insulating gap over a broad range
of J, we have used the density matrix renormalization group
~DMRG! algorithm6–8 to study the strong coupling regime
(J*t) and Abelian bosonization to study the weak coupling
regime (J,t). We first describe the results of our numerical
work.

The DMRG approach is a real space technique which has
proven to be remarkably accurate for the Kondo lattice.8 We
used the finite system method7 with open boundary condi-
tions in which there is no hopping past the ends of the chain.
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We studied lattices of sizeL56, 8, 16, and 32, keeping up to
100 states. The energies were extremely accurate forJ@t,
with typical truncation errors of order 1029 for J510. For
J&t, the f -spin degrees of freedom lead to a large number of
nearly degenerate energy levels. As a result, the accuracy
was significantly reduced, with truncation errors of order
1024 for J50.75.

We consider a system to be insulating when the quasipar-
ticle gapDqp[mN112mN50.9 HeremN5EN2EN21 is the
chemical potential andEN is the ground-state energy with
N electrons. To determineDqp, we calculated the ground-
state energies withN5L and N5L11 conduction
electrons10 for all possible values of the totalSz with h50.
Since the magnetic field term in the Hamiltonian commutes
with the Hamiltonian, we can find the energies in the pres-
ence of a field by adding2hStot

z to the zero field energies.
We then use the lowest energies@EN

min(Stot
z ) and

EN11
min (Stot

z )# as a function ofStot
z to calculateDqp. In the

presence of a field, finite size effects do not limit the size of
the gap because the field can tune the levelsEN andEN11 to
be infinitesimally close. For example, for free electrons on an
eight site lattice, the minimumDqp is zero to within the
roundoff error of 10215. In Fig. 1 we show the quasiparticle
gap as a function ofh. The sawtooth oscillations occur as the
ground states,EN andEN11 , change their polarizations with
increasingh.

Notice that at high fields, the gap is proportional toh.
This occurs when the spins of the half-filled lattice are com-
pletely polarized by the field. To calculateEN11 , we add an
electron whose spin is opposite to the field. The energy re-
quired to do this increases linearly inh, and henceDqp is
proportional toh. This can also be understood in terms of
splitting the up~1! and down (2) spin conduction electron
bands. For fully polarizedf spins, the conduction electron
energies areE6522tcos(k)6(J/42h/2). The two bands are
completely separated at a fieldha5J/214t and so, for
h.ha , Dqp;h. Our expression forha is only an estimate
since thef spins are not fully polarized until the conduction
bands separate.

For a given value ofJ, we can find the minimum quasi-
particle gap,Dqp

min , as a function ofh from plots similar to
Fig. 1. Roughly speaking, the minimum occurs at the largest

field in which the up and down spin conduction bands are not
completely separated. This field,hmin , is of order the con-
duction electron bandwidth, i.e.,hmin;ha;4t. Notice that
the minimum does not occur ath;J or at h;Dqp as one
might expect. Figure 2 showsDqp

min as a function ofJ. Fitting
the curves forJ<2 to Dqp

min;Jb, we find thatb increases
from 2.05 forL56 to 2.16 forL532. While the power law
form indicates that the gap remains finite forJ.0, we must
turn to Abelian bosonization to draw definitive conclusions
about the weak coupling regime (J,t) in the thermody-
namic limit.

Our strategy for the weak coupling regime is as follows.
We start with the partition function exp(2bH) and integrate
out the f spins to obtain an effective action for the conduc-
tion electrons. After dropping irrelevant terms,12 we
bosonize the effective Hamiltonian and look for gaps in the
excitation spectrum. We find that spin excitations are gap-
less, while charge excitations have a gap. To see why the
charge gap remains open, note that forh<ha , the f spins are
not completely polarized because there are zero energy exci-
tations in which anf spin, which initially points up in the
field, flips down and then back up. This is accompanied by
the spin flip umklapp scattering of conduction electrons
across the Fermi surface, which removes degeneracies at the
Fermi energy and prevents the charge gap from closing.

We write the partition function as a functional integral
over Grassman variablesc and f where c̄5( c̄1 ,c̄2) ~i.e.,
spin up, spin down! and f̄5( f̄1 , f̄2):

Z;E Dc̄DcD f̄Df e2S ~2!

with the actionS given by

S5(
i
E
0

b

dt$c̄i~]t2m!ci1 f̄ i~]t2m f ! f i% ~3!

1E
0

b

dtH$c̄,c, f̄ , f %. ~4!

HereH is the Hamiltonian~1! with the fermion operators
replaced by their corresponding Grassman variables andb is
the inverse temperature. We enforce the constraint of onef

FIG. 1. Typical DMRG result for quasiparticle gap vsh. Here
J52 with L532. Inset: Typical conduction electron band structure
for J50, t51, andh52.

FIG. 2. DMRG results for minimum quasiparticle gap vsJ with
L 5 8, 16, and 32. Solid lines are guides to the eye.
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electron per site by introducing an imaginary chemical po-
tential m f5 ip/2b which eliminates the states with zero or
two f electrons.11

We can writeS5Sc1Scf with

Sc5(
i
E
0

b

dtH c̄i S ]t2m2
h

2
szD ci2t~ c̄ici111H.c.!J ,

Sfc5(
i
E
0

b

dt f̄ i~M01M1! f i , ~5!

where the matricesM0 andM1 are given by

M05]t2m f2
h

2
sz, ~6!

M15
J

4
~ c̄is

zci !s
z1

J

2
$~ c̄is

2ci !s
11H.c.%. ~7!

Since the action is quadratic in thef states, they can be
integrated out to yield an effective action for the conduction
electrons:

Z;E Dc̄Dce2Sc1Tr ln~M01M1!. ~8!

We can expand ln(M01M1) aroundM0 to get terms with 2,
4, 6, . . . ,n fermion fields. If we scale to longer length scales
and lower energy scales, dimensional analysis indicates that,
whenh.J, thenth order vertex scales likeL (n/2)22, where
L is a unit of length. This means that all terms with more
than four fields are irrelevant13 in the RG sense, and that the
fourth order vertex can be approximated by a constant. In the
limit b@h.J, we can write~in a Fourier representation!

Z;E Dc̄Dce2S22S4, ~9!

S25
1

b(
v,s

E
2p

p dk

2p
c̄s~kv!H iv2m1sS J42

h

2D
22tcos~k!J cs~kv!, ~10!

S452
u0
b3 (

vv1v2

E
22p

2p dq

2p

3E
2p

p dk1dk2
~2p!2

c̄1~k1v1!c̄2~k2v2!c1

3~k22q,v22v!c2~k11q,v11v!. ~11!

v, v1 , andv2 are fermion Matsubara frequencies,s561
denotes spin, andu05J2/16h.

When J,t and h.J, thenu0!t; this defines the weak
coupling regime. In this case the important wave vectors are
centered around the four Fermi points6kF6 ~see inset to
Fig. 1!. Because of this we introduce right and left movers
according to@x511(R),(21)(L)#

cxs~k,v!5H cs~xkFs1k,v!, uku<G

0 otherwise,
~12!

whereG is some cutoff!kF that restricts excitations to the
vicinity of the Fermi surface. The Fermi points are deter-
mined by the relation

2sS h22
J

4D52tcos~kFs! ~13!

and around the Fermi points the dispersion relation is linear
in k:

22tcos~xkF61k!'22tcos~kF6!12tsin~kF6!k. ~14!

Using ~13!, one can show that 2tsin(kF6)[vF is independent
of the spin index. Linear bands around the Fermi points are a
good approximation as long as the magnetic field is some-
what smaller than 4t1J/2 ~where the free electron bands
split!. With linear bands we can apply bosonization. In
preparation for this we write the real space Hamiltonian cor-
responding to Eqs.~9!–~11! as follows:

H52vF(
xs

E dxcxs
† ~x!x i ]xcxs~x!

1u0(
x
E dx$rx,1~x!rx,2~x!12rx,1~x!r~2x!,2~x!

22cx,1
† ~x!cx,2

† ~x!c~2x!,1~x!c~2x!,2~x!%, ~15!

wherecxs are fermion operators corresponding tocxs and
rx,s5cxs

† cxs . We note two important aspects of Hamil-
tonian~15!: ~i! A backward scattering term, which normally
opens a spin gap,14,15 is absent. This term is present when
h50, but is destroyed by the magnetic field, yielding gapless
spin excitations.~ii ! Umklapp scattering across the Fermi
surface, described by the last term, is not eliminated by the
magnetic field. These scattering events survive the magnetic
field because the Fermi points satisfykF

R12kF
L25p and

kF
R22kF

L15p for h<ha ~see inset of Fig. 1!. These um-
klapp processes are responsible for keeping the charge gap
open.

The above considerations can be made explicit by
bosonizing14,15 the Hamiltonian ~15! which, in this case,
separates into commuting spin and charge parts. These are
expressed in terms of Bose fields@fm(x),Pn(y)]
5idmnd(x2y), wherem,n stand for sp~spin! or c ~charge!.
The spin component is (ũ0[u0/2p)

Hsp5
1

2
vspE dxH lsp„]xfsp~x!…21

1

lsp
Psp

2 ~x!J , ~16!

where

vsp5A~vF23ũ0!~vF1ũ0!, lsp[AvF23ũ0
vF1ũ0

. ~17!

DiagonalizingHsp by a canonical transformation leads to a
linear gapless spectrum for the spin excitations:

e~k!5A~v f23ũ0!~vF1ũ0!uku. ~18!

On the other hand, the HamiltonianHc for the charge
sector has a cosine term arising from spin-flip umklapp scat-
tering across the Fermi surface:
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Hc5
vc
2 E dx$„]xwc~x!…21pc

2~x!%

1
2u0

~2pa!2
E dxcos„A8plc

21/4wc~x!…, ~19!

wherea is a cutoff related to the lattice spacing and

vc5A~vF13ũ0!~vF2ũ0!, lc[AvF13ũ0
vF2ũ0

. ~20!

Since ũ05J2/32ph is always positive, the coefficient of
wc(x) in the argument of the cosine term is always smaller
thanA8p. In this regime,16 the cosine term is relevant and
opens a gapD for the charge excitations. No broken symme-
try is associated with this charge gap. Following the renor-
malization group procedure in Ref. 14, we find that for
h.J ~andJ,t), the gap goes asD;exp(2AvFh/J

2), where
A is a real positive constant. The factorJ22 in the exponent
shows that pairs of spin flips dominate, e.g., anf spin, which
initially points up in the field, flips down, and then back up.

As already noted, whenh;4t, i.e., right before the two
conduction bands separate, the spectrum is quadratic and
bosonization no longer applies. The charge gap should in-
crease in this case because the processes responsible for the
opening of the gap~umklapp spin flip scattering across the
Fermi surface! are enhanced by the increased density of
states at the band edges. Thus we conclude that an external
magnetic field, however strong, fails to induce a MIT.

The Kondo Hamiltonian~1! has particle-hole symmetry.
However, we argue that there is also no field-induced MIT

for the half-filled one-dimensional asymmetric Anderson lat-
tice, which lacks particle-hole symmetry. If we start in the
mixed valence regime, the external field Zeeman splits the
f band away from the Fermi energy and into the Kondo
regime, where our Kondo lattice calculations are valid. This
can be shown using the Schrieffer-Wolff transformation.
DMRG calculations on small asymmetric Anderson lattices
(L<8) also do not find a MIT.17

Although our calculations were done in one dimension, it
is interesting to note that recent resistivity and Hall measure-
ments on Ce3Bi 4Pt3 in pulsed fields up to 61 T do not see
the signatures expected for a transition from a semiconductor
to a good metal.18 This material acts like a semimetal or a
dirty metal at the lowest temperatures (T,5 K! and highest
fields (h.50 T!, even though the field exceeds the experi-
mentally deduced value of the gap (D;37 K!.19

To summarize, 1D Kondo insulators do not undergo a
magnetic-field-induced MIT due to strong spin flip scattering
across the Fermi surface. A large field can significantly re-
duce but not close the insulating gap. We suggest that the
absence of a field-induced MIT applies also to the 1D asym-
metric Anderson model.
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