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Absence of a magnetic-field-induced metal-insulator transition in Kondo insulators
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We investigate whether or not Kondo insulators undergo a magnetic-field-induced metal-insulator transition
in one dimension at half filling using both a density matrix formulation of the numerical renormalization group
and bosonization. Contrary to expectations, the quasiparticle gap never vanishes at any field and no metal-
insulator transition is found. We discuss generalizing our result to the asymmetric Anderson |88ité3-
182996)06524-1

In a strong magnetic field an ordinary narrow gap semithat hop from site to site with an on-site spin exchange be-
conductor becomes metallic when the field is comparable ttween a localf electron and the conduction electron on that
the size of the gap. Is this also true for the class of rare eartkite. Thus the Hamiltonian is
compounds known as Kondo insulators, whose insulating
gap is due to interactions between conduction electrons and —_ A & &
localized f electrons? Simple arguments* suggest that H= t% (Ci”C'+1”+H'C')+2i IS Se
such a metal-insulator transiticiMIT) should occur when
the applied magnetic fielt exceeds the exchange coupling —hE (S+S7) )

J but is less than the conduction electron bandwidth. In this i ¢ Srh

case, one expects ttiespins t_o be completely pglarlzeq and where the conduction electron spin density on sités
decoupled from the conduction electrons, leaving an incom-. + - i o
pletely polarized band of metallic conduction electrons. ThiS%C:EaBCia((_’:/z)aBCiﬁ’ _the f-electron spin density is
scenario is supported by mean field calculations such a§if=2aﬁffra(o/2)aﬁfiﬁ, o, are Pauli matrices, arfe>0 is
those with slave bosorfs However, here we show that such the external magnetic field, chosen along thaxis. We set
expectations are not correct when spin fluctuations are takeiie hopping matrix elemernt=1 and chooséd to favor an-

into account. tiferromagnetic orderingJ>0). To study the Kondo insula-

We have studied the behavior of the insulating gap in &or, we restrict ourselves to half filling where the total num-
one-dimensionallD) Kondo insulator as a function of mag- ber of conduction electronBl equals the number of sites
netic field. We used bosonization and the density matrix fori.
mulation of the numerical renormalization grédgo cover In order to calculate the insulating gap over a broad range
both the weak and strong coupling regimes. We find that thef J, we have used the density matrix renormalization group
gap, while greatly reduced by the applied magnetic field(DMRG) algorithn?~® to study the strong coupling regime
never vanishes at any value lof This unexpected result is (J=t) and Abelian bosonization to study the weak coupling
due to spin flip umklapp scattering across the Fermi surfacaggime g<t). We first describe the results of our numerical
which removes degeneracies and keeps the gap open. Werk.
argue that this result also holds for the one-dimensional The DMRG approach is a real space technique which has
asymmetric Anderson lattice where there is no particle-holg@roven to be remarkably accurate for the Kondo latfivée
symmetry. used the finite system methodith open boundary condi-

The 1D Kondo lattice has spin-1/2 conduction electrongions in which there is no hopping past the ends of the chain.
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FIG. 1. Typical DMRG result for quasiparticle gap ks Here FIG. 2. DMRG results for minimum quasiparticle gapJsvith
J=2 with L=32. Inset: Typical conduction electron band structureL = 8, 16, and 32. Solid lines are guides to the eye.
for J=0,t=1, andh=2.
field in which the up and down spin conduction bands are not

We studied lattices of siZe=6, 8, 16, and 32, keeping up to completely separated. This fieltl,,, is of order the con-
100 states. The energies were extremely accuratdsar, ~ duction electron bandwidth, i.efi,,~h,~4t. Notice that
with typical truncation errors of order 16 for J=10. For  the minimum does not occur d&t~J or ath~Ag, as one
J=<t, thef-spin degrees of freedom lead to a large number ofMight expect. Figure 2 ShQV\B%n as a function ofl. Fitting
nearly degenerate energy levels. As a result, the accuradhe curves forJ<2 to Ag"~J°, we find thatb increases
was significantly reduced, with truncation errors of orderfrom 2.05 forL=6 to 2.16 forL=32. While the power law
10 4 for J=0.75. form indicates that the gap remains finite fbr0, we must

We consider a system to be insulating when the guasipaturn to Abelian bosonization to draw definitive conclusions
ticle gapquE,LLN+l—,LLN=O.g Here uy=EN—Epn_1 is the  about the weak coupling regimel<{t) in the thermody-
chemical potential andEy is the ground-state energy with namic limit.
N electrons. To determind,,, we calculated the ground- Our strategy for the weak coupling regime is as follows.
state energies withN=L and N=L+1 conduction We start with the partition function exp(8H) and integrate
electrond’ for all possible values of the tot& with h=0.  out thef spins to obtain an effective action for the conduc-
Since the magnetic field term in the Hamiltonian commutedion electrons. After dropping irrelevant terrifs, we
with the Hamiltonian, we can find the energies in the presbosonize the effective Hamiltonian and look for gaps in the
ence of a field by adding-hS;,, to the zero field energies. excitation spectrum. We find that spin excitations are gap-
We then use the lowest energieEE’,I,‘i”(Sfog and less, while charge excitations have a gap. To see why the
ETN. (S2)] as a function ofS%, to calculateA . In the charge gap remains open, note thatfferh,, thef spinsare
presence of a field, finite size effects do not limit the size of?0t cOmpletely polarized because there are zero energy exci-
the gap because the field can tune the leEgjandEy,, to  tations in which anf spin, which initially points up in the

be infinitesimally close. For example, for free electrons on arji€!d; flips down and then back up. This is accompanied by
eight site lattice, the minimund, is zero to within the the spin flip umklapp scattering of conduction eIe;ctrons
roundoff error of 1015, In Fig. 1 we show the quasiparticle 2€r0SS the Fermi surface, which removes degeneracies at the

gap as a function di. The sawtooth oscillations occur as the F&rMi energy and prevents the charge gap from closing.

ground statesE andEy. ;, change their polarizations with V& Write the partition function as a functional integral

increasingh. over Grassman variables and f wherec=(c, ,c_) (i.e,,
Notice that at high fields, the gap is proportionaltto ~ SPin up, spin downandf=(f, ,f_):
This occurs when the spins of the half-filled lattice are com-
pletely polarized by the field. To calcuIaE_QHl, we add an ZNJ DeDeDf Dfe=S 2)
electron whose spin is opposite to the field. The energy re-
quired to do this increases linearly m and henced, is
proportional toh. This can also be understood in terms of
splitting the up(+) and down () spin conduction electron 8 o
bands. For fully polarized spins, the conduction electron S=> f dr{ci(d,— m)ci+fi(d,— up)fi} ®)
energies ar& .. = — 2tcosk) = (J/4—h/2). The two bands are i Jo
completely separated at a fiel,=J/2+4t and so, for
h>h,, Aqp~h. Our expression foh, is only an estimate
since thef spins are not fully polarized until the conduction
bands separate.
For a given value ofl, we can find the minimum quasi- Here H is the Hamiltonian(1) with the fermion operators
particle gap, A", as a function oh from plots similar to  replaced by their corresponding Grassman variablesBaisd

qp
Fig. 1. Roughly speaking, the minimum occurs at the largesthe inverse temperature. We enforce the constraint offone

with the actionS given by

B —
+j drH{c,c,f,f}. (4)
0
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electron per site by introducing an imaginary chemical po-wherel is some cutoff<k that restricts excitations to the
tential us=1im/2B which eliminates the states with zero or vicinity of the Fermi surface. The Fermi points are deter-
two f electrons' mined by the relation

We can writeS=S.+ S.; with

B h _
SCIE_ J' dT[?i(é’T_,lL_EO’Z)Ci_t(CiCiJrl‘FH.C.) ,

i 0

h J
—S(E— Z) =2tcogkegg) (13

and around the Fermi points the dispersion relation is linear
s in k:
Sie= 2>, f drfi(Mo+Mpf;, (5)
e g Jo O T — 2tcoq xKe- +K)~ — 2tcog ke )+ 2tsin(ke. )k, (14)
where the matriceM, andM; are given by Using (13), one can show thatt8in(k--)=v is independent
of the spin index. Linear bands around the Fermi points are a
Mo=0,— pi— Eo_z 6) good approximation as long as the magnetic field is some-
R R what smaller than &+ J/2 (where the free electron bands
split). With linear bands we can apply bosonization. In
preparation for this we write the real space Hamiltonian cor-

J __ J
—_ . . _ T +
Mi=g(ciofe)o*+ S{(cioci)o +H.cl. @) responding to Eqg9)—(11) as follows:

4
Since the action is quadratic in thfe states, they can be : _
integrated out to yield an effective action for the conduction H=—vg >, dXifro(X) X1 dxifys(X)
electrons: xS

ZMJDFDCG_Sc+Tr|n(M0+M1). (8) +U0§ fdX{PX,Jr(X)PX,f(X)+2PX,+(X)P(7X),7(X)

T t
We can expand Iiy+M,) aroundM, to get terms with 2, =24 () (=), + (X)) (X}, (15
4, g’l' .- 1 fermion fleldls. ”dV.V"-‘ SC"’."e t? Ionglger. 'e.”th ‘:‘Calfﬁvtvhere ¥, are fermion operators correspondingdg, and
and lower energy scales, dimensional analysis indicates that, _lﬁ;slﬁxs- We note two important aspects of Hamil-

whenh>J, thenth order vertex scales like(™?~2, where Pxs_ : . :
. ) . i tonian(15): (i) A kwar ttering term, which normall
L is a unit of length. This means that all terms with more onian(15): (i) A backward scattering term, ch normally

. . . opens a spin galf;’®is absent. This term is present when
than four fields are irrelevahtin the RG sense, and that the | . o L
fourth order vertex can be approximated by a constant. In thh_o’ but is destroyed by the magnetic field, yielding gapless

e - . . gpin excitations.(ii) Umklapp scattering across the Fermi
limit 5=h>J, we can write(in a Fourier representatipn surface, described by the last term, is not eliminated by the

magnetic field. These scattering events survive the magnetic
Z~J DcDce %25, (9 field because the Fermi points satiskf —kr = and
kF~—kg* = for h<h, (see inset of Fig. l These um-
1 » dk__ J h klapp processes are responsible for keeping the charge gap
Szz—Z f Z_CS(kw)(iw_M+s(Z_§) open.
Bus J-m2m The above considerations can be made explicit by
bosonizing**® the Hamiltonian(15) which, in this case,
—2tcos(k)]cs(kw), (10 separates into commuting spin and charge parts. These are
expressed in terms of Bose field§e,(x),I1,(y)]
=i8,,0(x—y), whereu, v stand for spspin or ¢ (charge.

S,=— u_g > fzﬂ dq The spin component istip=uy/27)
B wwqwy 7277277
1 1
7 dkydky,__ _ He== jdx[)\ Oy X 2+—H2x], 16
Xf— (217r)220+(k1w1)0—(k2w2)0+ w20 e xl X)) Asp X[ (10

where
X(ky—Q,w;— w)C_(k;+ 0,01+ ). (11

. . [ue—3U,
w, wy, and w, are fermion Matsubara frequenciess =1 Vo= (Vp—3Ug)(vp+Ug), Ag= VT 0 (17)
denotes spin, and,=J%/16h. P FoRORTR T sp ve+Up

WhenJ<t andh>J, thenuy<t; this defines the weak DiagonalizingH
coupling regime. In this case the important wave vectors arfnear gapless
centered around the four Fermi pointskq-. (see inset to
Fig. 1). Because of this we introduce right and left movers e(K)=/(vi—3Ug) (ve+Ug) K. (18)
according td y=+1(R),(—1)(L)]

sp Dy a canonical transformation leads to a
spectrum for the spin excitations:

On the other hand, the Hamiltoniad. for the charge
12 sector has a cosine term arising from spin-flip umklapp scat-
tering across the Fermi surface:

CS(XkFS+ k,(l)), |k|$r

Crs(k @)= 0 otherwise,
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Ve . o for the half-filled one-dimensional asymmetric Anderson lat-
Hc:7f dx{(dxpc(X))*+ me(X)} tice, which lacks particle-hole symmetry. If we start in the
mixed valence regime, the external field Zeeman splits the
2uq 1 f band away from the Fermi energy and into the Kondo
+ WJ dxcodV8mh; Yo(x), (19 regime, where our Kondo lattice calculations are valid. This
can be shown using the Schrieffer-Wolff transformation.

wherea is a cutoff related to the lattice spacing and DMRG calculations on small asymmetric Anderson lattices
s (L=<8) also do not find a MIT’
_ _ v+ 30, . . . o
ve=V(vp+3Ug)(ve—Tg), A=\ ——=— (20 . Although our calculations were done in one dimension, it
vE—Ug is interesting to note that recent resistivity and Hall measure-

ments on CgBi4Pt; in pulsed fields up to 61 T do not see
rthe signatures expected for a transition from a semiconductor
to a good metal® This material acts like a semimetal or a
dirty metal at the lowest temperaturéb<(5 K) and highest
fields (h>50 T), even though the field exceeds the experi-
‘mentally deduced value of the gap €37 K).1°

To summarize, 1D Kondo insulators do not undergo a
magnetic-field-induced MIT due to strong spin flip scattering
across the Fermi surface. A large field can significantly re-
duce but not close the insulating gap. We suggest that the
absence of a field-induced MIT applies also to the 1D asym-
r%etric Anderson model.

Since Uy=J%/327h is always positive, the coefficient of
¢c(X) in the argument of the cosine term is always smalle
than \/87. In this regime'® the cosine term is relevant and
opens a gap for the charge excitations. No broken symme-
try is associated with this charge gap. Following the renor
malization group procedure in Ref. 14, we find that for
h>J (andJ<t), the gap goes a& ~exp(—Aveh/F?), where
A is a real positive constant. The factbr? in the exponent
shows that pairs of spin flips dominate, e.g. fapin, which
initially points up in the field, flips down, and then back up.
As already noted, wheh~4t, i.e., right before the two
conduction bands separate, the spectrum is quadratic a
bosonization no longer applies. The charge gap should in- We thank Greg Boebinger, Kazuo Ueda, Zack Fisk, Mari-
crease in this case because the processes responsible for #ma Guerrero, Christopher Mudry, Jon Lawrence, Andy Mil-
opening of the gagumklapp spin flip scattering across the lis, Steve White, and Sue Coppersmith for helpful discus-
Fermi surfacg are enhanced by the increased density ofsions. We also thank Greg Boebinger for sending us his data
states at the band edges. Thus we conclude that an exterrifore publication. This work was supported in part by ONR
magnetic field, however strong, fails to induce a MIT. Grant No. N000014-91-J-1502, Los Alamos National Labo-
The Kondo Hamiltonian1) has particle-hole symmetry. ratory, and an allocation of computer time from the Univer-
However, we argue that there is also no field-induced MITsity of California, Irvine.
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