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We have studied a Kondo hole in a one-dimensional Kondo insulator at half-filling using a density matrix
formulation of the numerical renormalization group. The Kondo hole introduces midgap states. The spin
density introduced by the hole is localized in the vicinity of the hole. It resides primarily in thef spins for
small exchange couplingJ and in the conduction spins for largeJ. We present results on the spin gap, charge
gap, and neutral gap. The presence of the Kondo hole reduces the charge gap but not the spin gap relative to
a Kondo insulator without defects. For smallJ, the spin gap is smaller than the charge gap, while for large
J, the spin gap is larger than the charge gap. RKKY interactions are reduced by the Kondo hole as can be seen
in the staggered susceptibility.@S0163-1829~96!05146-6#

I. INTRODUCTION

It is well known that a single Kondo impurity in a metal
gives rise to a narrow resonance at the Fermi energy at low
temperatures. In a Kondo lattice this resonance is replaced by
a narrow renormalizedf band that appears at the Fermi level
at low temperatures and that is associated with the onset of
coherence. Hybridization between this renormalizedf band
and a broadband of conduction electrons gives rise to a gap.
If the electron filling puts the gap at the Fermi energy, the
ground state is that of a narrow gap semiconductor and the
result is a Kondo insulator. Kondo insulators have generated
a great deal of interest both experimentally and
theoretically.1 Introducing disorder is one way to experimen-
tally test whether the gap in materials believed to be Kondo
insulators arises from many-body interactions and the onset
of coherence. There are two ways in which impurities can
have a deleterious effect on the gap. First they break trans-
lational invariance and disrupt the coherence that produced
the gap. Second they produce midgap states. One common
substitutional impurity is a Kondo hole. A Kondo hole is a
nonmagnetic impurity which has a conduction orbital but no
f orbital. Experimentally Kondo holes are made by replacing
Ce ions with La ions. Ce3Bi 4Pt3 is a Kondo insulator. Mea-
surements on~Ce12xLax)3Bi 4Pt3 indicate that introducing
Kondo holes reduces the charge2,3 and spin3,4 gaps. As the
concentration of La ions increases, the specific heat, resistiv-
ity, and thermopower at low temperatures become that of a
metal with a low carrier concentration.2,3

Let us briefly review the theoretical work that has been
done on Kondo holes in Kondo insulators. Sollie and
Schlottmann5 have done calculations on a Kondo hole in an
Anderson lattice with the energy of thef orbital, « f5`, on
the Kondo hole site and a finite value of« f on the other sites.
They calculate the self-energy to second-order perturbation
in the Coulomb repulsionU about the Hartree-Fock solution,
though they do not calculate the self-energy self-consistently
and they neglect its momentum dependence. By examining
the localf -electron density of states, they find midgap states
localized in the vicinity of the hole site. Schlottmann6 found
that these midgap states have magnetic properties which re-
sult in a Curie susceptibility and a Schottky anomaly in the

specific heat. He found that a finite concentration of Kondo
holes does little to reduce the gap, but rather produces an
impurity band inside the gap in thef -electron density of
states. At very low temperatures this impurity band gives a
metallic specific heat linear in temperature and a Pauli-like
susceptibility. Doniach and Fazekas7 used mean field theory
to argue that magnetic interactions between Kondo holes
could lead to antiferromagnetic ordering, though there is no
experimental evidence for such ordering. Wermbter, Sabel,
and Czycholl8 studied the periodic Anderson model in infi-
nite dimensions using self-consistent second-order perturba-
tion theory inU. To calculate the resistivity they used the
coherent potential approximation to treat the Kondo hole
sites. Their resistivity has qualitatively the same temperature
and concentration dependence as that found experimentally.
In short, perturbation theory approaches are in qualitative
agreement with experiment, though technically they are only
valid for smallU, while real materials have largeU. In ad-
dition they do not distinguish between the various types of
gaps, e.g., spin and charge.

In this paper we use the density matrix renormalization
group approach9 to study a Kondo hole in a one-dimensional
Kondo lattice. To the best of our knowledge, this is the first
numerical calculation of a Kondo hole in a Kondo lattice.
Our approach is able to explore certain aspects of the prob-
lem that are difficult to access with perturbation theory. For
example, we can go to larger values ofU, i.e., smaller values
of the spin exchangeJ. In addition, unlike analytic tech-
niques used thus far, we can distinguish between various
types of gaps, e.g., spin and charge. We can also study how
Kondo holes can act like magnetic impurities. In our calcu-
lations we find that there is a spin density localized in the
vicinity of the Kondo hole. There is experimental evidence
that nonmagnetic Kondo holes can behave like Kondo impu-
rities. For example, CePd3 is a good metal whose resistivity
decreases with decreasing temperature asT approaches zero.
However, when nonmagnetic La ions are substituted for Ce
ions in Ce12xLaxPd3, the resistivity below 50 K increases
with decreasing temperature in a fashion reminiscent of
Kondo impurities in a metal.10

The paper is organized as follows. In Sec. II we present
the Hamiltonian, which we study using the density matrix
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renormalization group approach.9 We present our results in
Sec. III. In Sec. III A, we discuss the chemical potential as a
function of electron filling. We find that the impurity intro-
duces midgap states which lie in the center of the quasipar-
ticle gap for large values of the exchange couplingJ and
move towards the edges of the gap asJ decreases. In Sec.
III B, we present our results on the spin gap, charge gap, and
neutral gap as a function ofJ. For smallJ (J&3t), the spin
gap is smaller than the charge gap, while for large
J (J*3t), the spin gap is larger than the charge gap. The
presence of a Kondo hole reduces the charge gap but not the
spin gap relative to the undoped Kondo insulator. In Sec.
III C we find that the spin of the Kondo hole resides prima-
rily in the conduction spins for largeJ and primarily in the
f spins for smallJ. This crossover is an unexpected result. In
Sec. III D we discuss the effect of the Kondo hole on the
RKKY interactions. By examining the staggered susceptibil-
ity, we find that the RKKY oscillations are reduced when
compared to a lattice with no Kondo hole. We state our
conclusions in Sec. IV.

II. HAMILTONIAN

The standard one-dimensional Kondo lattice has spin-1/2
conduction electrons that hop from site to site with an on-site
spin exchangeJ( i ) between thef electron and the conduc-
tion electron on that site. In the midst of this chain we place
a Kondo hole which has nof orbital, and hence no on-site
exchange. Thus the Hamiltonian is

H52t(
is

~cis
† ci11s1H.c.!1(

i
J~ i !SW i f •SW ic , ~1!

where the conduction electron spin density on sitei is
SW ic5(abcia

† (sW /2)abcib , andsW ab are Pauli matrices. On the
host lattice the f -electron spin density is
SW i f5(ab f ia

† (sW /2)ab f ib , while on the Kondo hole site

SW i f50 because there is nof electron.t is the hopping matrix
element for the conduction electrons between neighboring
sites. We sett51. The on-site spin exchangeJ( i ) is zero for
the Kondo hole and equal toJ on the rest of the sites. We
choose J to be antiferromagnetic (J.0!. We place the
Kondo hole in the middle of the lattice on sitei5L/2, where
L is the number of sites. We studied lattices of sizeL54, 6,
8, 16, and 24. In the absence of a Kondo hole, the Kondo
insulator corresponds to half-filling where the total number
of conduction electrons,N, equals the number of sites,L.

Even with a Kondo hole, the Hamiltonian has SU~2! spin
symmetry as well as SU~2! charge pseudospin symmetry.11

The components of the pseudospin operatorIW are given by

I z5
1

2(i ~ci↑
† ci↑1ci↓

† ci↓1 f i↑
† f i↑1 f i↓

† f i↓22!,

I15(
i

~21! i~ci↑
† ci↓

† 2 f i↑
† f i↓

† !, ~2!

I25(
i

~21! i~ci↓ci↑2 f i↓ f i↑!.

The z component of the pseudospin is the charge operator
and is equal to (Nel/2)2L, whereNel is the total number of
electrons including both conduction andf electrons. An
I z51 state can be achieved by adding two electrons.

All the energy eigenstates have a definite value ofS and
I . At half-filling with one Kondo hole (N5L and
Nel52L21), the ground state is a pseudospin singlet with
total spinS51/2 (S51/2, I50) for all values ofJ. The spin
gap DS is defined as the energy difference between the
lowest-lying excited spin state and the ground state:

DS5E~S5 3
2 , I50!2E0~S5 1

2 , I50!, ~3!

whereE0 is the energy of the ground state. ForJ@t, the
lowest spin excitation corresponds to forming a triplet be-
tween anf spin and a conduction spin on a site that is not a
Kondo hole, with the remaining sites being the same as in
the ground state. In this limitDS>J.

To find the charge gap, we note that optical experiments
measure the charge gap by measuring the conductivity which
is determined by the current-current correlation function.
The current is related to the charge density through the con-
tinuity equation. Thus the lowest-lying charge excitation is
the lowest excited stateun& with S51/2 such that
^0u(qrqun&Þ0, whererq is theq component of the Fourier-
transformed charge density operator andu0& is the ground
state.12 Notice thatrq is related toIWq

z whereIWq is a Fourier-
transformed vector in pseudospin space given by

I q
z5

1

2(i e2 iqW •rW i~ci↑
† ci↑1ci↓

† ci↓1 f i↑
† f i↑1 f i↓

† f i↓22!,

I q
15(

i
e2 iqW •rW i~21! i~ci↑

† ci↓
† 2 f i↑

† f i↓
† !, ~4!

I q
25(

i
e2 iqW •rW i~21! i~ci↓ci↑2 f i↓ f i↑!.

Using the Wigner-Eckart theorem, one can show that the
(S51/2, I51) states are the only statesun& for which the
charge densityrq has finite matrix elementŝ nurqu0&
with the ground stateu0&. Thus the charge gapDC is the
energy difference between the ground state and the lowest
pseudospin triplet state:11,12

DC5E~S5 1
2 , I51!2E0~S5 1

2 , I50!. ~5!

For a half-filled Kondo insulator without a Kondo hole,
the ground state is a pseudospin and spin singlet (S50,
I50). We can define a neutral singlet gap as the energy
difference between the ground state and the lowest-lying ex-
cited neutral spin singlet state, i.e.,DNS5E(S50,
I50)2Eg(S50, I50).13 When a Kondo hole is present,
we can define a neutral gapDN as the energy difference
between the ground state and the lowest-lying excited neutral
state with the same quantum numbers as the ground state
(S51/2, I50):

DN5E~S5 1
2 , I50!2E0~S5 1

2 , I50!. ~6!

For the half-filled Kondo lattice without a Kondo hole, the
neutral singlet has been found to be an elementary excitation
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consisting of a ‘‘particle’’ and a ‘‘hole,’’ which are
(S51/2, I51/2) excitations.13 In a single-site basis, a
‘‘hole’’ is a site with onef electron and no conduction elec-
trons with quantum numbers (S51/2, I51/2, I z521/2);
this hole is different from a Kondo hole. A ‘‘particle’’ is a
site with onef electron and two conduction electrons with
(S51/2, I51/2, I z511/2). A particle and a hole can be
combined to form a charge excitation (S50, I51) or a neu-
tral singlet excitation (S50, I50). ~Other combinations are
also possible.! When a Kondo hole is added to the lattice,
one can think in terms of a hole or a particle on the Kondo
hole site. A hole on the Kondo hole site has no conduction
electrons, no f electrons, and quantum numbers (S50,
I51/2, I z521/2). A particle on the Kondo hole site has two
conduction electrons, nof electrons, and quantum numbers
(S50, I51/2, I z511/2). A particle~hole! on a Kondo hole
site can be combined with a hole~particle! on an ordinary
Kondo site to form a charge excitation (S51/2, I51) or a
neutral excitation (S51/2, I50). These are the excitations
associated with the charge gap and the neutral gap.@Because
the spin is 1/2 and not zero, we do not call the particle-hole
excitation (S51/2, I50) a neutral singlet, but rather just a
neutral excitation.#

We use the density matrix renormalization group
~DMRG! algorithm9 to calculate the ground state and the first
few excited states of the Kondo lattice. This real-space tech-
nique has proved to be remarkably accurate for one-
dimensional systems such as the Kondo and Anderson
lattices.12,14 We used the finite system method9 with open
boundary conditions in which there is no hopping past the
ends of the chain. We kept up to 140 states per block. The
results were extremely accurate forJ@t, with typical trun-
cation errors of order 10210 for J510. ForJ&t, the f -spin
degrees of freedom lead to a large number of nearly degen-
erate energy levels. As a result, the accuracy was signifi-
cantly reduced, with truncation errors of order 1024 for
J50.5.

III. RESULTS

A. Chemical potential vs filling

We study how the chemical potential varies with electron
filling. We consider a 16-site Kondo lattice with the Kondo
hole on site 8. We vary the electron filling and define the
chemical potential by

m~N!5E0~N!2E0~N21!, ~7!

whereE0(N) is the ground state energy withN electrons.
Our results are shown in Fig. 1, where we have scaled the
chemical potential byJ. When the Kondo hole is absent,
there is a jump in the chemical potential that is centered
about half-filling (N516). This is the quasiparticle gap
which is defined as the difference of chemical potentials

DQP5m~N11!2m~N!. ~8!

From Fig. 1, we see that the Kondo hole introduces states in
the gap for largeJ. The chemical potential of these midgap
states corresponds to the energy of adding a particle or a hole
to the half-filled system. To understand why these midgap
states have a chemical potential so close to zero, note that for

J@t, an on-site spin singlet forms between thef spin and the
conduction electron spin on each host lattice site.~‘‘Host
lattice site’’ refers to an ordinary Kondo site which does not
have a Kondo hole.! When we put zero, one, or two conduc-
tion electrons on the Kondo hole site, the associated elec-
trons or holes will be localized in the vicinity of the impu-
rity, and the energies of these three states will be nearly
degenerate. This means that the chemical potential corre-
sponding to adding a particle or a hole to a half-filled system
is close to zero. This is indeed what we see forJ510. As
J decreases, these midgap states move toward the edges of
the gap as the associated states become less localized.

B. Gaps

We have calculated the spin, charge, and neutral gaps as a
function ofJ for L58, 16, and 24 at half-filling (N5L). Our
results are shown in Fig. 2. For comparison we show the
corresponding values of the gaps when there is no Kondo
hole.13 The value of the spin gap is not affected much by the
presence of the Kondo hole. However, the Kondo hole re-
duces the charge gap and the neutral gap by roughly a factor
of 2 for largeJ.

Without a Kondo hole the spin gap is smaller than the
charge gap for all values ofJ. However, when there is a
Kondo hole, the spin gap is larger than the charge gap for
J*3 and smaller than the charge gap forJ&3. To under-
stand this behavior for smallJ, note that the midgap states
move to the edges of the gap asJ decreases and the charge
excitations become less localized. As a result, the Kondo
hole has less of an effect on the system and it behaves much
like the unperturbed Kondo insulator with the spin gap less
than the charge gap. To understand the largeJ behavior, note
that whenJ@t, we can describe the eigenstates in terms of
simple on-site states. Each ordinary Kondo site can be in a
singlet state involving thef electron and a conduction elec-
tron with an energy of23J/4, a spin-triplet state with energy

FIG. 1. Chemical potential scaled byJ vs number of conduction
electrons, N. The scaled chemical potential is defined by
m5@E(N)2E(N21)#/J. t51, L516, and the Kondo hole is on
site i58. Open boundary conditions are used. The midgap states
associated with largeJ move toward the edges of the gap asJ
decreases. For comparison, we show the chemical potential for the
case of no Kondo hole withJ51 andJ510. The solid lines are
guides to the eye.
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J/4, a ‘‘hole’’ state with no conduction electrons
(S51/2, I51/2, I z521/2), or a ‘‘particle’’ state with 2
conduction electrons (S51/2, I51/2, I z51/2). The par-
ticle and hole states have zero energy. The Kondo hole can
have one conduction electron (S51/2, I50), be in a ‘‘hole’’
state with no electrons (S50, I51/2, I521/2), or be in a
‘‘particle’’ state with two conduction electrons (S50,
I51/2, I z51/2). These three Kondo hole states have zero
energy. In the ground state, the Kondo hole has one conduc-
tion electron and every site of the host lattice is a singlet
when J@t. The lowest spin excitation consists of a single
host site with a spin triplet, with the remaining sites being in
their ground state configuration; this givesDS'J.13,15,16The
lowest charge excitation (S51/2, I51) consists of a hole
~particle! on the Kondo hole site and a particle~hole! on a
host site. Since one singlet is destroyed, this results in
DC'3J/4. Notice that these estimates indicate that the spin
gap is greater than the charge gap for largeJ. The low-lying
eigenstates consist of linear combinations of these local ex-
citations. These simple estimates of the gaps work very well

for J@t; e.g., forJ5100 andL524 we find numerically that
DS599.9 andDN>DC>74.0, and forJ510 andL524 we
find DS59.40 andDN>DC>6.57.

C. Where the spin resides

At half-filling (N5L) a Kondo lattice with a single
Kondo hole has a total spinS51/2. WhenJ@t, the Kondo
hole has one conduction electron and every site of the host
lattice is a singlet in the ground state. Thus the spin-1/2
resides in the conduction orbital of the Kondo hole. This can
be seen in Fig. 3~a! where we plot thez component of the
conduction spin versus site. AsJ decreases, the spin 1/2 is no
longer predominantly in the conduction orbitals. Rather it is
primarily in the f orbitals of the sites neighboring the Kondo
hole. ForJ51, as Fig. 3~b! shows, thez components of the
f spins on the nearest-neighbor sites are polarized and have
most of the spin. Thef spins on neighboring sites farther
away from the Kondo hole have RKKY oscillations with an
envelope that decays exponentially, indicating that the spin is
localized in thef orbitals for smallJ. Notice that for large
J, e.g.,J510, the spin density has very little amplitude in
the f spins. We can fit the absolute value of thez component

FIG. 2. ~a! Spin and charge gaps vsJ for L58, 16, and 24 sites
with open boundary conditions. The Kondo hole is on sitei5L/2.
t51. For comparison, we show the spin and charge gaps without a
Kondo hole forL524. ~b! Neutral gap vsJ for L58, 16, and 24
sites with open boundary conditions. The Kondo hole is on site
i5L/2. t51. For comparison, we show the neutral singlet gap for a
Kondo insulator without a Kondo hole forL524. The solid lines
are guides to the eye.

FIG. 3. ~a! z component of the conduction spin vs site for
J51 andJ510 for a 24-site lattice with the Kondo hole on site
i512. ~b! z component of thef spin vs site forJ51 andJ510 for
a 24-site lattice with the Kondo hole on sitei512. Notice that the
amplitude of the RKKY oscillations fall off exponentially for
J51. The solid lines are guides to the eye.

15 920 54CLARE C. YU



u^0uSz
f(r )u0&u of the f spins to the form exp(2r/j), wherer is

the distance from the Kondo hole andj is the localization
length. In Fig. 4 we plot the localization lengthj versusJ.

This crossover from conduction spins tof spins asJ de-
creases is shown in Fig. 5 where we plot the total conduction
spin ( iSz

cond and the totalf spin ( iSz
f of the lattice versus

J. The crossover occurs aroundJ'4t. This is not a finite-
size effect because the curves for an 8-site lattice are indis-
tinguishable from those shown for a 24-site lattice. We can
understand why this crossover occurs in the following way.
As we discussed earlier, for largeJ, the spin is primarily in
the conduction orbital of the Kondo hole. ForJ&4t, it is
energetically favorable for both up and down spin conduc-
tion electrons to hop freely. Putting the spin-1/2 in the con-
duction spins would polarize the conduction electrons and
impede their hopping due to the Pauli exclusion principle.

For example, suppose the spin-1/2 is entirely in the conduc-
tion orbital on the Kondo hole site withSz51/2. Then an-
other spin-up electron cannot hop onto or past the Kondo
hole. If the polarization were spread over many sites, then
the kinetic energy cost would be reduced. We might hope to
reduce the hopping energy cost to zero in an infinite lattice
by spreading the spin polarization over the conduction orbit-
als of the entire lattice. However, because of the gaps, the
polarization is localized in the vicinity of the Kondo hole and
therefore costs a finite amount of energy. In fact, this energy
cost is greater than the spin gap for smallJ. The evidence for
this is in the lowest-lying spin excitation (S53/2, I50)
which defines the upper edge of the spin gap. In this state the
f electrons contain slightly more than all of the spin
(( iSz

f51.58 and( iSz
cond520.08 for J51) which implies

that the energy cost to polarize the conduction electrons in
the spin-up direction is greater than the spin gap. On the
other hand, polarizing thef electrons just costs exchange
energy which is less important than the kinetic energy for
J&4t. So the spin 1/2 resides primarily in thef spins. To see
why the crossover occurs atJ'4t, note that we can write the
Hamiltonian as

H52t(
is

~cis
† ci11s1H.c.!1(

i

J~ i !

4
~sW i f !ab•~sW ic!gd

3 f ia
† f ibcig

† cid , ~9!

where we sum over repeated Greek indices. The hopping
term and the exchange term are comparable whenJ'4t. For
J&4t, the exchange energy dominates and singlets form on
every site of the host lattice, leaving the spin 1/2 in the
conduction orbital of the Kondo hole.

D. Susceptibility

At zero temperature the uniform susceptibilityx(q50) is
zero because there is a spin gap between the ground state and
the lowest spin excitations. The ground state is anS51/2
doublet whose energy is linear in a uniform magnetic field
due to Zeeman splitting. Thusx(q50)52]2E/]H250.

However, the staggered susceptibilityx(q) is finite. To
calculate the susceptibilityx(q), we apply a small staggered
magnetic fieldhz5h0cos(qr) which couples to both thef
spins and the conduction spins. The magnitudeh0 lies be-
tween 1026t and (531024)t. Whenh0 is this small, the plot
of S(q) versush0 is a straight line whose slope is the sus-
ceptibility x(q). @S(q) is the Fourier transform of
^0uSz( i )u0&.# We use periodic boundary conditions with
qn52pn/L.

The staggered susceptibilityx(q52kF) is a measure of
the RKKY coupling betweenf spins. (kF is the Fermi wave
vector of the noninteracting conduction electrons.! At half-
filling 2kFa5p and the RKKY coupling favors antiferro-
magnetic alignment of thef spins. Since the Kondo hole is
missing anf spin, we expect the RKKY oscillations, and
hencex(q52kF), to be diminished by the presence of a
Kondo hole. In addition the Kondo hole breaks translational
invariance and allows the system to respond at wave vectors
other than the wave vectors of the staggered field. This will
also reducex(q52kF) relative to its value in lattice without
a Kondo hole.

FIG. 4. Spin localization lengthj vs J for a 24-site lattice with
open boundary conditions.j is deduced by fittingu^0uSz

f(r )u0&u to
the form exp(2r/j) wherer is the distance from the hole. The error
bars are the standard deviation of the fit. The error bars are smaller
than the size of the points for allJ exceptJ50.75. The solid line is
a guide to the eye.t51.

FIG. 5. Total f spin @Sz
f5( iSz

f( i )#, total conduction spin
@Sz

cond5( iSz
cond( i )#, and the difference (Sz

f2Sz
cond) vs J/t for a 24-

site lattice. Corresponding curves for an 8-site lattice are indistin-
guishable from those shown. Notice that where the spin 1/2 resides
crosses over fromf spins to conduction spins asJ increases. The
solid lines are guides to the eye.
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As J approaches zero, numerical noise can induce spuri-
ous antiferromagnetic ordering of the lattice because the
states with and without long range order are very close in
energy. Because of this, we only study short chains~four and
six sites! which we can diagonalize exactly. In Fig. 6 we plot
the staggered susceptibilityx(qa52kFa5p) versusJ for
lattices with and without a Kondo hole at half-filling.17 As
expected, our results show that the staggered susceptibility is
greatly reduced by the presence of a Kondo hole. This re-
flects the suppression of RKKY oscillations. As the lattice
gets longer, we expect that the effect of a single Kondo hole
will be diluted andx(q) will approach the value of an un-
doped Kondo insulator.

IV. CONCLUSIONS

We have studied a Kondo hole in the middle of a one-
dimensional Kondo lattice at half-filling using the density
matrix renormalization group technique. The Kondo hole in-
troduces midgap states which move from the middle of the
quasiparticle gap to the edges as the exchange couplingJ
goes from large values to small values. AsJ→`, the chemi-
cal potential of these midgap states goes to zero which cor-
responds to the degeneracy of states with zero, one, and two
conduction electrons on the Kondo hole site. We presented
results on the spin gap, charge gap, and neutral gap as a
function of J. For smallJ the spin gap is smaller than the

charge gap. However, for largeJ, the spin gap is larger than
the charge gap because the energy to change a singlet into a
triplet is DS;J while the energy to transfer an electron or a
hole from the Kondo hole to another site which had a singlet
is DC;3J/4. We found that the Kondo hole reduced the size
of the charge gap relative to the charge gap of a Kondo
insulator without defects. This agrees qualitatively with
experiment.2,3 However, we found that the Kondo hole did
not reduce the size of the spin gap relative to an undoped
Kondo insulator, whereas neutron scattering and susceptibil-
ity measurements indicate a reduction of the spin gap.3,4 This
indicates that a finite concentration of interacting Kondo
holes is needed to reduce the spin gap. One possible scenario
is that magnetic interactions between the Kondo holes lead to
low-energy spin excitations that would reduce the spin gap.
If there are enough Kondo holes, they could have
antiferromagnetic7 or spin glass order. In these cases there
would be no spin gap.

At half-filling there are an odd number of spins and the
ground state hasS51/2. This spin 1/2 is localized in the
vicinity of the Kondo hole. It is primarily in thef spins for
small J and in the conduction spins for largeJ. The cross-
over occurs atJ'4t where the kinetic energy is comparable
to the exchange energy. The presence of the Kondo hole
reduces RKKY oscillations as can be seen in the staggered
susceptibilityx(qa52kF5p).

Putting Kondo holes into Kondo insulators can be done
experimentally by replacing Ce ions with La ions. It should
be possible to look in real materials for some of the effects
listed above, e.g., midgap states and reduced RKKY oscilla-
tions. Our results are valid for a dilute concentration of non-
interacting Kondo holes, i.e., for Kondo holes whose separa-
tion is much greater than the localization length of
excitations in the vicinity of the Kondo holes. However, hav-
ing a larger concentration of Kondo holes introduces effects
that we have not considered here such as impurity bands and
interactions between the Kondo holes.6–8
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