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Numerical renormalization-group study of a Kondo hole in a one-dimensional Kondo insulator
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We have studied a Kondo hole in a one-dimensional Kondo insulator at half-filing using a density matrix
formulation of the numerical renormalization group. The Kondo hole introduces midgap states. The spin
density introduced by the hole is localized in the vicinity of the hole. It resides primarily irf $@ns for
small exchange couplingand in the conduction spins for large We present results on the spin gap, charge
gap, and neutral gap. The presence of the Kondo hole reduces the charge gap but not the spin gap relative to
a Kondo insulator without defects. For smdllthe spin gap is smaller than the charge gap, while for large
J, the spin gap is larger than the charge gap. RKKY interactions are reduced by the Kondo hole as can be seen
in the staggered susceptibilityS0163-182606)05146-4

[. INTRODUCTION specific heat. He found that a finite concentration of Kondo
holes does little to reduce the gap, but rather produces an
It is well known that a single Kondo impurity in a metal impurity band inside the gap in thé-electron density of
gives rise to a narrow resonance at the Fermi energy at lowtates. At very low temperatures this impurity band gives a
temperatures. In a Kondo lattice this resonance is replaced byetallic specific heat linear in temperature and a Pauli-like
a narrow renormalizefl band that appears at the Fermi level susceptibility. Doniach and FazeKassed mean field theory
at low temperatures and that is associated with the onset &6 argue that magnetic interactions between Kondo holes
coherence. Hybridization between this renormalifedand  could lead to antiferromagnetic ordering, though there is no
and a broadband of conduction electrons gives rise to a gapxperimental evidence for such ordering. Wermbter, Sabel,
If the electron filling puts the gap at the Fermi energy, theand Czychoft studied the periodic Anderson model in infi-
ground state is that of a narrow gap semiconductor and theite dimensions using self-consistent second-order perturba-
result is a Kondo insulator. Kondo insulators have generatetion theory inU. To calculate the resistivity they used the
a great deal of interest both experimentally andcoherent potential approximation to treat the Kondo hole
theoretically! Introducing disorder is one way to experimen- sites. Their resistivity has qualitatively the same temperature
tally test whether the gap in materials believed to be Kondand concentration dependence as that found experimentally.
insulators arises from many-body interactions and the onseét short, perturbation theory approaches are in qualitative
of coherence. There are two ways in which impurities caragreement with experiment, though technically they are only
have a deleterious effect on the gap. First they break transalid for smallU, while real materials have lardé. In ad-
lational invariance and disrupt the coherence that producedition they do not distinguish between the various types of
the gap. Second they produce midgap states. One comma@aps, e.g., spin and charge.
substitutional impurity is a Kondo hole. A Kondo hole is a In this paper we use the density matrix renormalization
nonmagnetic impurity which has a conduction orbital but nogroup approachto study a Kondo hole in a one-dimensional
f orbital. Experimentally Kondo holes are made by replacingkondo lattice. To the best of our knowledge, this is the first
Ce ions with La ions. CgBi ,Pt; is a Kondo insulator. Mea- numerical calculation of a Kondo hole in a Kondo lattice.
surements or{Ce;_,La,)3Bi,Pt; indicate that introducing Our approach is able to explore certain aspects of the prob-
Kondo holes reduces the chafgeand spifi“ gaps. As the lem that are difficult to access with perturbation theory. For
concentration of La ions increases, the specific heat, resistivexample, we can go to larger valueslbfi.e., smaller values
ity, and thermopower at low temperatures become that of af the spin exchangd. In addition, unlike analytic tech-
metal with a low carrier concentratidr. niques used thus far, we can distinguish between various
Let us briefly review the theoretical work that has beentypes of gaps, e.g., spin and charge. We can also study how
done on Kondo holes in Kondo insulators. Sollie andKondo holes can act like magnetic impurities. In our calcu-
Schlottmann have done calculations on a Kondo hole in anlations we find that there is a spin density localized in the
Anderson lattice with the energy of tHeorbital, e;=<, on  vicinity of the Kondo hole. There is experimental evidence
the Kondo hole site and a finite value ©f on the other sites. that nonmagnetic Kondo holes can behave like Kondo impu-
They calculate the self-energy to second-order perturbatiorities. For example, CeRds a good metal whose resistivity
in the Coulomb repulsiokb) about the Hartree-Fock solution, decreases with decreasing temperatur& approaches zero.
though they do not calculate the self-energy self-consistentlidowever, when nonmagnetic La ions are substituted for Ce
and they neglect its momentum dependence. By examiningns in Ce _,La,Pds, the resistivity below 50 K increases
the localf-electron density of states, they find midgap stateswvith decreasing temperature in a fashion reminiscent of
localized in the vicinity of the hole site. Schlottm&rfound  Kondo impurities in a metdf’
that these midgap states have magnetic properties which re- The paper is organized as follows. In Sec. Il we present
sult in a Curie susceptibility and a Schottky anomaly in thethe Hamiltonian, which we study using the density matrix
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renormalization group approahiVe present our results in  The z component of the pseudospin is the charge operator
Sec. lll. In Sec. Il A, we discuss the chemical potential as aand is equal toN¢/2)—L, whereNy, is the total number of
function of electron filling. We find that the impurity intro- electrons including both conduction arfd electrons. An
duces midgap states which lie in the center of the quasipal-,=1 state can be achieved by adding two electrons.

ticle gap for large values of the exchange couplihgnd All the energy eigenstates have a definite valu&aind
move towards the edges of the gapJadecreases. In Sec. |. At half-filing with one Kondo hole N=L and

[l B, we present our results on the spin gap, charge gap, anM,=2L—1), the ground state is a pseudospin singlet with
neutral gap as a function df For smallJ (J=<3t), the spin  total spinS=1/2 (S=1/2,1=0) for all values ofl. The spin
gap is smaller than the charge gap, while for largegap Ag is defined as the energy difference between the
J (J=3t), the spin gap is larger than the charge gap. Thdowest-lying excited spin state and the ground state:
presence of a Kondo hole reduces the charge gap but not the

spin gap relative to the undoped Kondo insulator. In Sec. As=E(S=3, 1=0)—Ey(S=3, 1=0), 3

I C we find that t_he spi_n of the Kondo holg res_ide_s prima-  here E, is the energy of the ground state. Fbet, the

rily in the conduction spins for largé and primarily in the |ovest spin excitation corresponds to forming a triplet be-
f spins for small. This crossover is an unexpected result. Iy, aan anf spin and a conduction spin on a site that is not a

Sec. |lID we discuss the effect of the Kondo hole on they qnqq hole, with the remaining sites being the same as in
RKKY interactions. By examining the staggered susceptibil-, ground state. In this limitg=J.

ity, we find that thg RKKY oscillations are reduced when ' 14 find the charge gap, we note that optical experiments
compared to a lattice with no Kondo hole. We state our,

, , measure the charge gap by measuring the conductivity which
conclusions in Sec. IV. is determined by the current-current correlation function.
The current is related to the charge density through the con-
Il. HAMILTONIAN tinuity equation. Thus the lowest-lying charge excitation is

The standard one-dimensional Kondo lattice has spin-l/%-(‘;?E lowest excited staten) with S=1/2 such that

. X . . . pgln)#0, wherep,, is theq component of the Fourier-
co_nductlon eIect_rons that hop from site to site with an On'S't%ransqfo?med charge dgnsity operator 40l is the ground
spin exchangd(i) between thef electron and the conduc- 12 : ) . S )
tion electron on that site. In the midst of this chain we placeState:~ Notice thatp, is related tol ; wherel 4 is a Fourier-
a Kondo hole which has nb orbital, and hence no on-site transformed vector in pseudospin space given by
exchange. Thus the Hamiltonian is

1 -
lé:EEi e 'O ri(cl e+l o+ 1 —2),
H:‘tiz (c?aci+1g+H.c.>+Z I)Si-Se, @

. . . o 15=> e @ n(—1)i(chef — 1), 4
where the conduction electron spin density on Sités a Z (=Dienc ~fifi) @
§ic=2aﬁcfa(&/2)aﬁciﬁ, and(;aﬁ are Pauli matrices. On the
host lattice the f-electron spin  density is

St=Zasf1,(0/2)4fi5, while on the Kondo hole site

Si1=0 because there is rfoelectront is the hopping matrix  Using the Wigner-Eckart theorem, one can show that the
element for the conduction electrons between neighborings=1/2 |=1) states are the only statés) for which the
sites. We set=1. The on-site spin exchangéi) is zero for  charge densityp, has finite matrix elementgn|p,/0)
the Kondo hole and equal tb on the rest of the sites. We yith the ground staté0). Thus the charge gapc is the

chooseJ to be antiferromagnetic J&-0). We place the energy difference between the ground state and the lowest
Kondo hole in the middle of the lattice on site:L/2, where  pseudospin triplet stafé:*2

L is the number of sites. We studied lattices of dize4, 6,
8, 16, and 24. In the absence of a Kondo hole, the Kondo Ac=E(S=3, 1=1)—Ey(S=3, 1=0). (5
insulator corresponds to half-filling where the total number
of conduction electronsy, equa|s the number of sitels, For a half-filled Kondo insulator without a Kondo hOIe,
Even with a Kondo hole, the Hamiltonian has @WUspin ~ the ground state is a pseudospin and spin singiet(,
symmetry as well as S3) charge pseudospin symmetfy. 1=0). We can define a neutral singlet gap as the energy
The components of the pseudospin opera'itere given by difference between the ground state and the lowest-lying ex-
cited neutral spin singlet state, i.e.Ays=E(S=0,
1 I=0)—E4(S=0, I=0).2® When a Kondo hole is present,
IZ=§E_ (C?Tciﬁcﬁciﬁ—fﬁfmﬂtfafu—Z), we can define a neutral gapy as the energy dn_‘ference
! between the ground state and the lowest-lying excited neutral
state with the same quantum numbers as the ground state

=2 e 1N~ 1)i(¢; ¢y — fi Fip).

i S=1/2,1=0):
=3 (-1l -1, @ )
AN=E(S=3, 1=0)—E(S=3, 1=0). (6)
| = Z (— 1)i(Ci1Cm— fi fip). For the half-filled Kondo lattice without a Kondo hole, the

neutral singlet has been found to be an elementary excitation
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consisting of a “particle” and a “hole,” which are

(S=1/2, 1=1/2) excitations? In a single-site basis, a
“hole” is a site with onef electron and no conduction elec-
trons with quantum numbersSE1/2, 1=1/2, | ,=—1/2); 05 |
this hole is different from a Kondo hole. A “particle” is a
site with onef electron and two conduction electrons with
(S=1/2,1=1/2,1,=+1/2). A particle and a hole can be
combined to form a charge excitatioB£€0,1=1) or a neu-

0.0 |
E—8J=10, No hole

E(N)-E(N-1)/J

tral singlet excitation $=0, | =0). (Other combinations are G—oJ=1
also possible.When a Kondo hole is added to the lattice, 054 A_A3€ j:;5
one can think in terms of a hole or a particle on the Kondo —mJ=10

hole site. A hole on the Kondo hole site has no conduction *——% J=1, No hole

electrons, nof electrons, and quantum number§S=0, ) . . .
I=1/2,1,=—1/2). A particle on the Kondo hole site has two 12.0 14.0 1'6\-10 18.0 20.0
conduction electrons, nb electrons, and quantum numbers

(.S:O’ 1=1/2,1,= + 1/2)'.A partlcle(ho_le) ona Kondo_ hole FIG. 1. Chemical potential scaled Bys number of conduction
site can _be combined with a ho(_par_tlcle on an ordinary electrons, N. The scaled chemical potential is defined by
Kondo site .to form a charge excitatio®€ 1/2, | =1)_or.a uw=[E(N)—E(N—1)]/J. t=1, L=16, and the Kondo hole is on
neutral excitation $=1/2,1=0). These are the excitations gjie j=g. Open boundary conditions are used. The midgap states
associated with the charge gap and the neutral [fgTause associated with large move toward the edges of the gap &s
the spin is 1/2 and not zero, we do not call the particle-holejecreases. For comparison, we show the chemical potential for the
excitation §=1/2,1=0) a neutral singlet, but rather just a case of no Kondo hole witti=1 andJ=10. The solid lines are
neutral excitatior]. guides to the eye.

We use the density matrix renormalization group
(DMRG) algorlthr‘r? to calculate the grOUnd state and the firSt\]>t1 an on-site Spin Sing|et forms between fhm"] and the
few excited states of the Kondo lattice. This real-space techconduction electron spin on each host lattice sitéost
nique has proved to be remarkably accurate for onetattice site” refers to an ordinary Kondo site which does not
dimensional systems such as the Kondo and Andersofave a Kondo hol@ When we put zero, one, or two conduc-
lattices'*** We used the finite system mettlodith open tion electrons on the Kondo hole site, the associated elec-
boundary conditions in which there is no hopping past therons or holes will be localized in the vicinity of the impu-
ends of the chain. We kept up to 140 states per block. Theity, and the energies of these three states will be nearly
results were extremely accurate fd¥t, with typical trun-  degenerate. This means that the chemical potential corre-
cation errors of order 10 for J=10. ForJ=t, the f-spin  sponding to adding a particle or a hole to a half-filled system
degrees of freedom lead to a large number of nearly degens close to zero. This is indeed what we see Jer10. As
erate energy levels. As a result, the accuracy was signifij decreases, these midgap states move toward the edges of

cantly reduced, with truncation errors of order f0for  the gap as the associated states become less localized.
J=0.5.

B. Gaps
Ill. RESULTS

) _ N We have calculated the spin, charge, and neutral gaps as a
A. Chemical potential vs filling function ofJ for L=8, 16, and 24 at half-fillingl{=L). Our
We study how the chemical potential varies with electronresults are shown in Fig. 2. For comparison we show the
filling. We consider a 16-site Kondo lattice with the Kondo corresponding values of the gaps when there is no Kondo
hole on site 8. We vary the electron filling and define thehole™ The value of the spin gap is not affected much by the

chemical potential by presence of the Kondo hole. However, the Kondo hole re-
duces the charge gap and the neutral gap by roughly a factor
#(N)=Eg(N)—Eo(N—1), (7)  of 2 for largeJ.

Without a Kondo hole the spin gap is smaller than the
charge gap for all values of. However, when there is a
Kondo hole, the spin gap is larger than the charge gap for

=3 and smaller than the charge gap fo3. To under-
tand this behavior for small, note that the midgap states
move to the edges of the gap &glecreases and the charge
excitations become less localized. As a result, the Kondo
_ _ hole has less of an effect on the system and it behaves much
Agp=w(N+1)=p(N). ® like the unperturbed Kondo insulator with the spin gap less
From Fig. 1, we see that the Kondo hole introduces states ithan the charge gap. To understand the Idrgehavior, note
the gap for largel. The chemical potential of these midgap that whenJ>t, we can describe the eigenstates in terms of
states corresponds to the energy of adding a particle or a hotémple on-site states. Each ordinary Kondo site can be in a
to the half-filled system. To understand why these midgagsinglet state involving thé electron and a conduction elec-
states have a chemical potential so close to zero, note that ftnon with an energy of- 3J/4, a spin-triplet state with energy

where Eq(N) is the ground state energy witk electrons.
Our results are shown in Fig. 1, where we have scaled th
chemical potential byl. When the Kondo hole is absent,
there is a jump in the chemical potential that is centere
about half-filing (N=16). This is the quasiparticle gap
which is defined as the difference of chemical potentials
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. _ . FIG. 3. (@) z component of the conduction spin vs site for
FIG. 2. (@) Spin and charge gaps vsior L=8, 16, and 24 sites J=1 andJ=10 for a 24-site lattice with the Kondo hole on site

with open boundary conditions. The Kondo hole is on &itd_/2. i=12. (b) z component of thé spin vs site forJ=1 andJ= 10 for

t=1. For comparison, we show the spin and charge gaps without a . . . . .
P ’ P g€ gap a 24-site lattice with the Kondo hole on site 12. Notice that the
Kondo hole forL=24. (b) Neutral gap vs) for L=8, 16, and 24 . o .

. . . . .. amplitude of the RKKY oscillations fall off exponentially for
sites with open boundary conditions. The Kondo hole is on site; - -
. . . J=1. The solid lines are guides to the eye.
i=L/2.t=1. For comparison, we show the neutral singlet gap for a
Kondo insulator without a Kondo hole fdr=24. The solid lines

. for J>t; e.g., fordJ=100 andL =24 we find numerically that
are guides to the eye.

Ag=99.9 andAy=A=74.0, and forJ=10 andL =24 we

. ) find Ag=9.40 andA\=A-=6.57.
J/4, a *“hole” state with no conduction electrons S NTEC

(S=1/2, 1=1/2, 1,=—-1/2), or a “particle” state with 2
conduction electronsS=1/2, 1=1/2, 1,=1/2). The par-
ticle and hole states have zero energy. The Kondo hole can At half-filling (N=L) a Kondo lattice with a single
have one conduction electroB8£ 1/2,1=0), be in a “hole”  Kondo hole has a total spii=1/2. WhenJ>t, the Kondo
state with no electronsS=0, |=1/2,1=—1/2), or be in a hole has one conduction electron and every site of the host
“particle” state with two conduction electronsSEO, lattice is a singlet in the ground state. Thus the spin-1/2
|=1/2, 1,=1/2). These three Kondo hole states have zerdesides in the conduction orbital of the Kondo hole. This can
energy. In the ground state, the Kondo hole has one condube seen in Fig. @& where we plot the component of the

tion electron and every site of the host lattice is a singleconduction spin versus site. A=lecreases, the spin 1/2 is no
when J>t. The lowest spin excitation consists of a singlelonger predominantly in the conduction orbitals. Rather it is
host site with a spin triplet, with the remaining sites being inprimarily in thef orbitals of the sites neighboring the Kondo
their ground state configuration; this givag~J.>>*>1®The  hole. ForJ=1, as Fig. 8) shows, thez components of the
lowest charge excitationS=1/2, |=1) consists of a hole f spins on the nearest-neighbor sites are polarized and have
(particle) on the Kondo hole site and a partigleole) on a  most of the spin. Thed spins on neighboring sites farther
host site. Since one singlet is destroyed, this results imway from the Kondo hole have RKKY oscillations with an
A-~3J/4. Notice that these estimates indicate that the spienvelope that decays exponentially, indicating that the spin is
gap is greater than the charge gap for latlg&he low-lying  localized in thef orbitals for smallJ. Notice that for large
eigenstates consist of linear combinations of these local ex}, e.g.,J= 10, the spin density has very little amplitude in
citations. These simple estimates of the gaps work very wellhe f spins. We can fit the absolute value of theomponent

C. Where the spin resides
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For example, suppose the spin-1/2 is entirely in the conduc-
tion orbital on the Kondo hole site witB,=1/2. Then an-
other spin-up electron cannot hop onto or past the Kondo
hole. If the polarization were spread over many sites, then
10 ¢ 1 the kinetic energy cost would be reduced. We might hope to
reduce the hopping energy cost to zero in an infinite lattice
by spreading the spin polarization over the conduction orbit-
als of the entire lattice. However, because of the gaps, the
polarization is localized in the vicinity of the Kondo hole and
therefore costs a finite amount of energy. In fact, this energy
cost is greater than the spin gap for sndallThe evidence for

0 : > this is in the lowest-lying spin excitationSE 3/2, 1 =0)
which defines the upper edge of the spin gap. In this state the
f electrons contain slightly more than all of the spin

FIG. 4. Spin localization lengtlj vs J for a 24-site lattice with (2;S;=1.58 ands;S{™"= —0.08 forJ=1) Wh_'Ch implies _
open boundary conditiong is deduced by fitting(0|S!(r)|0)| to that th_e energy cost to polarize the conductl_on electrons in
the form exp(r/¢) wherer is the distance from the hole. The error the spin-up direction is greater than the spin gap. On the
bars are the standard deviation of the fit. The error bars are smallé@ther hand, polarizing thé electrons just costs exchange

than the size of the points for allexcept]=0.75. The solid lineis ~ energy which is less important than the kinetic energy for
a guide to the eye.=1. J=<4t. So the spin 1/2 resides primarily in thiespins. To see

why the crossover occurs 3#=4t, note that we can write the
Hamiltonian as

15

Jit

|(0|Sl(r)|0)| of thef spins to the form expfr/£), wherer is

the distance from the Kondo hole ardis the localization JGi) . R

length. In Fig. 4 we plot the localization lengthversusJ. H=—t2 (c,Cii1,+H.C)+ 2 2 (0i)ap (Tic)ys
This crossover from conduction spins taspins asl de- 7 '

creases is shown in Fig. 5 where we plot the total conduction X fiTafchiTyci&, 9)

spin =;S°" and the totalf spin 3;S! of the lattice versus

J. The crossover occurs aroude=4t. This is not a finite-

size effect because the curves for an 8-site lattice are indi : )

tinguishable from those shown for a 24-site lattice. We card~4t. the exchange energy dominates and singlets form on

understand why this crossover occurs in the following way €VeY Site of the host lattice, leaving the spin 1/2 in the

As we discussed earlier, for large the spin is primarily in conduction orbital of the Kondo hole.

the conduction orbital of the Kondo hole. Fdk4t, it is

energetically favorable for both up and down spin conduc- D. Susceptibility

tion electrons to hop freely. Putting the spin-1/2 in the con- At zero temperature the uniform susceptibiliggg=0) is

duction spins would polarize the conduction electrons anGero because there is a spin gap between the ground state and

impede their hopping due to the Pauli exclusion principlethe lowest spin excitations. The ground state isSanl/2

doublet whose energy is linear in a uniform magnetic field

due to Zeeman splitting. Thyg(q=0)= — ¢°E/dH?*=0.
However, the staggered susceptibiliggq) is finite. To

0.6 calculate the susceptibility(q), we apply a small staggered

04l P magnetic fieldh,=hycos@r) which couples to both thé

’ spins and the conduction spins. The magnithgdies be-
02} ] tween 10 %t and (5x 10~ #)t. Whenh,, is this small, the plot
00 s T of S(q) versushy is a straight line whose slope is the sus-

ceptibility x(q). [S(q) is the Fourier transform of

where we sum over repeated Greek indices. The hopping
Jerm and the exchange term are comparable wiredt. For

0.8

02 - ] (0]S,(1)|0).] We use periodic boundary conditions with
¢ 'Sz"szm q,=2mn/L.
0471 o—os, g The staggered susceptibility(q=2kg) is a measure of
06| A8 ] the RKKY coupling betweerl spins. kg is the Fermi wave
vector of the noninteracting conduction electron&t half-
08, 2 7 6 8 10 filling 2kea=7 and the RKKY coupling favors antiferro-
Jit magnetic alignment of thé spins. Since the Kondo hole is

missing anf spin, we expect the RKKY oscillations, and
FIG. 5. Total f spin [SI=3;S/(i)], total conduction spin Nencex(q=2kg), to be diminished by the presence of a
[Seond=5,55°")()], and the differenceS,— S vs J/t for a 24-  Kondo hole. In addition the Kondo hole breaks translational
site lattice. Corresponding curves for an 8-site lattice are indistininvariance and allows the system to respond at wave vectors
guishable from those shown. Notice that where the spin 1/2 residegther than the wave vectors of the staggered field. This will
crosses over froni spins to conduction spins asincreases. The also reducey(g=2Kkg) relative to its value in lattice without
solid lines are guides to the eye. a Kondo hole.
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100 —& , ‘ ‘ . charge gap. However, for large the spin gap is larger than
the charge gap because the energy to change a singlet into a
©—®L=4, Kondo hole . . .
80 | B L-6 Kondo ol ] triplet is Ag~J while the energy to transfer an electron or a

St hole from the Kondo hole to another site which had a singlet
is Ac~3J/4. We found that the Kondo hole reduced the size
of the charge gap relative to the charge gap of a Kondo
insulator without defects. This agrees qualitatively with
experiment® However, we found that the Kondo hole did
not reduce the size of the spin gap relative to an undoped
Kondo insulator, whereas neutron scattering and susceptibil-
ity measurements indicate a reduction of the spintfaphis
. . indicates that a finite concentration of interacting Kondo
holes is needed to reduce the spin gap. One possible scenario
is that magnetic interactions between the Kondo holes lead to
FIG. 6. Staggered susceptibility(qa=2ksa=) vs J for ~ lOw-energy spin excitations that would reduce the spin gap.
L=4 and 6 at half-filling with periodic boundary conditions. The If there are enough Kondo holes, they could have
Kondo hole is on sitei=L/2. For comparison we also show antiferromagnetic or spin glass order. In these cases there
x(ga=2kga= ) for lattices without a Kondo hole. would be no spin gap.
At half-filling there are an odd number of spins and the
As J approaches zero, numerical noise can induce spurground state ha$§=1/2. This spin 1/2 is localized in the
ous antiferromagnetic ordering of the lattice because theicinity of the Kondo hole. It is primarily in thé spins for
states with and without long range order are very close irsmall J and in the conduction spins for large The cross-
energy. Because of this, we only study short chéfiosr and  over occurs aj~4t where the kinetic energy is comparable
six siteg which we can diagonalize exactly. In Fig. 6 we plot to the exchange energy. The presence of the Kondo hole
the staggered susceptibility(qa=2kga=m) versusJ for  reduces RKKY oscillations as can be seen in the staggered
lattices with and without a Kondo hole at half-fillitg.As  susceptibilityy(qa=2kg= ).
expected, our results show that the staggered susceptibility is Putting Kondo holes into Kondo insulators can be done
greatly reduced by the presence of a Kondo hole. This reexperimentally by replacing Ce ions with La ions. It should
flects the suppression of RKKY oscillations. As the latticebe possible to look in real materials for some of the effects
gets longer, we expect that the effect of a single Kondo holdisted above, e.g., midgap states and reduced RKKY oscilla-
will be diluted andy(q) will approach the value of an un- tions. Our results are valid for a dilute concentration of non-

x(qa=m)

doped Kondo insulator. interacting Kondo holes, i.e., for Kondo holes whose separa-
tion is much greater than the localization length of
IV. CONCLUSIONS excitations in the vicinity of the Kondo holes. However, hav-

ing a larger concentration of Kondo holes introduces effects

We have studied a Kondo hole in the middle of a one-that we have not considered here such as impurity bands and
dimensional Kondo lattice at half-filling using the density interactions between the Kondo hofeé.
matrix renormalization group technique. The Kondo hole in-
troduces midgap states which move from the middle of the
guasiparticle gap to the edges as the exchange coupling
goes from large values to small values. As «, the chemi- We would like to thank HerveCarruzzo, Mariana Guer-
cal potential of these midgap states goes to zero which corero, Jon Lawrence, and Steve White for helpful discussions.
responds to the degeneracy of states with zero, one, and twidhis work was supported in part by an allocation of com-
conduction electrons on the Kondo hole site. We presenteduter time from the University of California, Irvine, and by
results on the spin gap, charge gap, and neutral gap as@NR Grant Nos. N000014-91-J-1502 and NO00014-96-1-
function of J. For smallJ the spin gap is smaller than the 0905.
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"When we applied a staggered fielg={ ) to a four-site lattice

with a Kondo hole on sitd =2, the field pointed up at the
Kondo hole and down on the nearest-neighbor sites. Since the
net spinS=1/2 is in the conduction orbital on the Kondo hole
for largeJ, the ground state h&& = +1/2 forJ=2.7. For small

J the net spin resides primarily in thiespins near the Kondo
hole. To align with the staggered field, thespins on the nearest
neighbors to the Kondo hole point down. So the ground state has
S,=—1/2 forJ<2.6. A similar crossover in the component of

the spin of the ground state occurs for6.



