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Anderson impurity in a semiconductor
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We study an Anderson impurity in a semiconducting host using the density matrix renormalization group
technique. We use thd =0 one-dimensional Anderson Hamiltonian at half filling as the semiconducting host
since it has a hybridization gap. By varying the hybridization of the host, we can control the size of the
semiconducting gap. We consider chains with 25 sites and we place the Anderson imgwritly U>0) in
the middle of the chain. We dope the half-filled system with one hole and we find two regimes: when the
hybridization of the impurity is small such that the enery¢ to add a hole to the impurity site is less than
A/2, the hole density and the spin are localized near the impurity. When the hybridization of the impurity is
large AE>A/2), the hole and spin density are spread over the lattice. Additional holes avoid the impurity and
are extended throughout the lattice. Away from half filling, the semiconductor with an impurity is analogous to
a double well potential with a very high barrier. We also examine the chemical potential as a function of
electron filling, and we find that the impurity introduces midgap states when the impurity hybridization is
small.[S0163-18206)04836-9

[. INTRODUCTION approach. Since there is a gap, it is somewhat artificial to
define a Kondo temperature, but Ogura and Saso define it by

It is well known that a magnetic Anderson impurity in a Tx=Dexp(—1/pg), wherepg is the flat density of states of
metal is screened by conduction electrons, and a singlet ihie semiconductor outside the gap. Cruz, Phillips, and Castro
formed at low temperatures. However, very little attentionNetd® considered impurities in transpolyacetylene, which is a
has been given to the nature of the ground state when semiconductor due to the Peierls distortion. They modeled
magnetic impurity is in an insulator or a semiconductor. Thathe system by adding an Anderson impurity to the Su-
is the subject of this paper. One might think that a magnetiSchrieffer-Heeger Hamiltoni&nin which the conduction
impurity in an insulator or a semiconductor will not be band was a two-band system with a small energy gap
screened because there is a gap in the density of states. HoWhey found that at low temperatures a Kondo-like resonance
ever, the problem is somewhat more complicated than thigxists at the edges of the gap as long as the gap was smaller
simple expectation. than the Kondo temperature in the gapless system.

Let us briefly review the previous work in this field. With-  All of these considerations focus on whether or not the
off and Fradkir used mean field theory to consider a Kondoimpurity is screened and becomes a singlet at low tempera-
impurity in a system where the density of states goes to zertures. This tacitly assumes that the magnetic moment is lo-
at the Fermi energy with power law behavior, i.e., calized at the impurity site. This is not necessarily true. As
p(€)~|€l", where|e|<D (D is the bandwidthandr = 0, we shall see, if there is a large hybridization between the
1/2, 1, or 2. In this gapless situation they found that thelocalized orbital and the conduction orbital on the impurity
Kondo impurity became a singlet only if the spin exchangesite, the spin and charge are not localized at the impurity site,
J>J., where the critical couplind. was a function of the but are extended throughout the system. The importance of
powerr. Later authors considered a finite energy dgan hybridization is well known in semiconductors. After all, it is
the density of states. Takegaharaal? used Wilson's nu-  hybridization that allows ordinary donor and acceptor impu-
merical renormalization group to argue that the symmetrigities to contribute carriers to a semiconductor. Within the
Anderson impurity is always a magnetic multiplet for any Hartree-Fock approximation, Haldane and Andefsonind
finite gapA, while the asymmetric Anderson impuritias a  that hybridization between thaorbitals of a transition metal
critical value of the gapA. such that the impurity has a impurity and the valence band electrons of the semiconduc-
magnetic ground state if the gap is too big, i.e.Ait-A.. tor allowed nominally different charge states to exist as
Ogura and Sadofound no such qualitative difference be- states in the gap.
tween the symmetric and asymmetric impurities. They have In this paper, we place an Anderson impurity in the
examined the problem using poor man’s scaling, thd 1/ middle of a one-dimensional semiconductor. We use the
expansion, the non-crossing approximation, and quanturk=0 one-dimensional Anderson Hamiltonian at half filling
Monte Carlo. They argued that both the symmetric andas the semiconducting host, since it has a hybridization gap.
asymmetric Anderson impurity remain magnetic if the semi-By varying the hybridizatior\, we can control the size of
conducting gap\ is “large enough;” otherwise, the impu- the semiconducting gap. We consider chains with an odd
rity is screened and forms a singlet at low temperaturesnumber of sites, and we place the substitutional Anderson
“Large enough” means that\=aTy, where T¢ is the impurity in the middle of the chain. The impurity has a posi-
Kondo temperature and the value efvaries between 0.4 tive Coulomb repulsiord,>0 and a positive hybridization
and 2.0, depending on the parameters and the calculationsy. In Sec. Il we present the Hamiltonian, which we study
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using the density matrix renormalization group apprdach.
The advantage of this technique is that it is done in real ~ H=—t> (Cl,Cii1,+Cl 1,Ci0)+ 2 efi)n],
space so that we can evaluate how correlation functions vary 7 7
with distance as well as examine the spin and charge densi-
ties as a function of position. +2> unfinf + X V(i) (cl i, +flc,), (2

In Sec. Il A we discuss the half-filled case; we find that ' 7
the ground state always has total sfis 0. We also study whereciTo andc;, create and annihilate conduction electrons
the spin-spin correlation functions to see if the impurity spinwith spin o at lattice sitei, andfiTU andf,, create and anni-
persists spatially. We find that the spin correlations decajlate localf electrons. Heré is the hopping matrix element
exponentially with distance due to the presence of the gagor conduction electrons between neighboring sitg$i) is
We compare these results to the metallic case in which Wehe energy of the localized orbital at sitei, U(i) is the
place the Anderson impurity in a free electron host with thépn_sjte Coulomb repulsion of thieelectrons, and/(i) is the
same number of sites as in the semiconducting case. In thg.site hybridization matrix element between electrons in the
metallic case, we find that the spin correlations decay morg grpitals and the conduction band. For simplicity, we ne-
slowly with distance. glect orbital degeneracy. We denote the number of electrons

We would also like to plot the spin as a function of posi- py N, andL is the number of sites in the lattice. U(i),
tion. However, the half-filled case has a singlet ground statg/(j) “ande (i) are taken to be real numbers.
with $=0 on each site. So in Sec. Ill B, we consider the |, grder to find the semiconducting gdn we note that
doped case in which we add a hole to t'he syste.m; this makgfe uniform periodic Anderson Hamiltonian witd(i)=0
the total spinS=1/2. In the doped semiconducting case WeandV(i)=V independent of can be diagonalized exactly in

find two different regimes which are defined by comparing space. We obtain two hybridized bands with energigs
the size of the semiconducting gapto the energyAE to

add a hole to the impurity site. As we shall see in Sec. IlIB, 1
AE is given by ¢ =§{[sf—2t cogka)]+ \[e;+2t cogka)]?+4V?},
1 ()
AE=7I VUG+64v5— UG+ 16V5]. (1)  wherea is the lattice constant. When there are two electrons

per unit cell, the lower band is full while the upper one is
When the hybridization of the impurity site is small €MPty. Thus, the system is insulating whisig=2L. The
(AE<A/2), the spin and charge of the hole are localizedSiZ€ Of the band gap is given by
near the impurity. When the hybridization is large N IRV
(AE>A/2), the spin and charge of the hole are delocalized A= Mo M= ra = 2VETH V2L, )
and reside in the host away from the impurity; a singlet is

formed on the impurity site. Thus, in the SemlcondUCtIngsites and we place the impurity in the center of the chain. We

case, th_e s_pln_and the hole 90 together and ha"? SlmllaHrenote the site at the middle by 0. (For example, for a 25
spatial distributions. In contrast, in the doped metallic case

. . - ite chain,i runs from —12 to +12) For i#0, we set
the charge density of the hole is delocalized for all values OEJ(i):O andV(i)=V. At half filing (Ng=2L), these sites
the Impurity hyt_)rldlzatlonVO. I_—|owe\_/er, the spin density of represent the semiconducting host since there is a hybridiza-
the hole is localized near the impurity for small values of the

hvbridization due to finite size effects. For larae value oftion gap between the conduction band and the fflaand.
yoridizat u inite stz ' ge values ol sett=1; this sets the energy scale. By varying the value

V,, finite size effects no longer dominate; a singlet forms on . . L
}cgsdimpurity site, and the hole and spin densities are delocalf-)f:\é' r‘:‘;‘zsa(‘g)C:YJL?l\;?S)S:IZ\;EO?;Lhdeg?g)p;.::z.Impunty sm-a at

When more than one hole is added to the semiconductor, WE ETJmfir/'lzy &?Phs'?h?r tr;]e .symt?et;:clfcfﬁlsed for WE'Ch
the additional holes avoid the impurity and spread throughigf(r't?_I h I(I) .mml tr |sndc tﬁlcre’ i en (;)J Iher case ‘:’IS
out the lattice. We show that there is an analogy between th gs ?nes (r)nerzn?t/ e Tr?e Béoam onsn?s gf?he sgugogse irF:Soeuera-
barrier in a double well potential and the impurity in the pin sy , ' P P pin op
semiconductor doped away from half filling. Finally, in Sec. tor | are given by

[Il C, we discuss how the chemical potential varies with fill-

In this paper, we consider chains with an odd number of

ing. For smallV,, we find states lying in the middle of the |Z:E2 (CiTTCiT_{_CiTLCiL_i_f?TfiT+fafil_z),
gap. AsV, increases, these states move toward the edges of 25
the gap.
'*ZZ (—1)'(clief -1, (5)

Il. THE 1D ANDERSON HAMILTONIAN
WITH AN IMPURITY

The standard one-dimensional periodic Anderson lattice L=Ei (=D)'(cijcip—fi fip).
has spin-1/2 conduction electrons that hop from site to site.
Each site has a localizedorbital with a Coulomb repulsion The z component of the pseudospin is equal My(2)—L.
U(i) and a hybridizationv(i) between the conduction or- Note that half filling corresponds tb,=0. An |,=1 state
bital and thef orbital. The Hamiltonian is given by can be achieved by adding two electrons. All the energy
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eigenstates of the symmetric Anderson model have a definite
value of S and|. At half filling the ground state is a singlet

both in spin and pseudospin spa&=0, | =0), even when
an impurity is present.
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Ill. RESULTS
A. Half-filled case
In this section we consider the half-filled case. In particu-

Since Takegaharet al?® have emphasized the difference lar, we want to see how far the impurity spin persists by
between a symmetric and an asymmetric Anderson impuritystudying the spin-spin correlation functions. We compare the
we also consider an asymmetric Anderson impurity in a symgapped semiconducting case with the gapless metallic case.
metricU=0 Anderson lattice. We find no qualitative differ- We find that the spin correlations fall off much faster in the
ence between the symmetric case and the asymmetric caseresence of a gap.

We compare our results for the semiconductor to the me- To model the semiconductor, we use Anderson lattice
tallic case in which we place the Anderson impurity in the chains with 25 sites anl=2L =50 (2 electrons per site or
center of a one-dimensional free electron host with the sam@ne electron per orbital The Hamiltonian is given by Eq.
number of sites as in the semiconducting case. The Hamil2) with U=¢;=0 fori+#0, andU,>0 andesy=—U,/2 for

tonian for the metallic case is given by
H:HO—i_Himpa (6)

where the free electron tight-binding Hamiltonidt, is
given by

Ho=~t2 (¢),Gis10F Cli1oCio) Y
and the impurity Hamiltoniam;,,, is given by

HimpZE Sf(o)ﬂ{)gﬁ—U(O)n{nn{)l

o

+ 2 V(0)(Ch,fort F,Con)- ®

the symmetric impurity site witi=0. We sett=1. For
V=1, the semiconducting gafy~0.83 for a 25 site chain
with open boundary conditiors.We initially setU,=8 and
V=1 at the impurity site.

We model the half-filled metal with the tight-binding
Hamiltonian of Egs.(6,7,8. In this caseNg=26. We set
t=1 and place the impurity at the center at $ite0 with the
same values ofJ; andV, that we used for the semiconduc-
tor.

For both the metallic and semiconducting cases, we find
that the ground state hds-0 andS=0. We show the spin-
spin correlation functions for both cases in Fig. 1. We plot
the correlationg SS(R)S!(0)) between thez component of
the f spin at the impurity site and the component of the
spin of the conduction electrons in the lattice versus the dis-
tanceR from the impurity. Figure (a) is a linear plot. The
metallic case clearly shows Friedel oscillations. The bias of

For future reference. it is convenient to define the effecihe data for the metal toward negative values of the correla-

tive spin exchange couplind,g. This comes from consider-
ing a single Anderson impurity in a metal. When the hybrid-

ization term is small [7p(e;+U)V?/(e+U)<1 and

mp(ef) V2 e;<1], the single impurity Anderson Hamil-

tonian can be mapped into the Kondo Hamiltorifan

Hy=JesS' S5, (9)

tions is a finite size effect; we show in the appendix that the
leading term in perturbation theory f¢8:(R) S;(O)) goes as
—1/L. Figure Xb) is a linear-log plot of the absolute value of
the same correlations; we have removed the oscillations by
plotting every other point. Here we see that in the metallic
case the correlations between the impuifityspin and the
conduction spins, which are responsible for the compensa-
tion of the magnetic moment, decay very slowly. In contrast,

wheresy is the spin density of the conduction electrons at thel the semiconducting case the decay is much faster due to

impurity site andJe is given by the Schrieffer-Wolff
transformation:

e 2|V|2u 10

M el 1o
Note that for the symmetric case where=—U/2,
Jei=8V2/U.

the presence of a gap in the excitation spectrum. If we as-
sume that the correlations fall off exponentially and fit the
plots in Fig. 1b) to the form exp{-R/¢), then the correlation
length ¢/a~1.9 for the metal and/a~0.49 for the semi-
conductor.

We attribute the fact that the spin correlations decay much
faster in the semiconductor than in the metal due to the pres-
ence of semiconducting gap. To check this, we can change

We use the density matrix renormalization groupthe size of the gap in the semiconductor by varyingThis
(DMRG) method to calculate the ground state as well as toshould change the spin-spin correlation length. This is con-
determine the spin-spin correlation functions, and the spifirmed in Fig. 2 where we plot the spin-spin correlation func-
and charge densities in the ground state. The DMRG aptons for the semiconducting case for two different values of
poach is a real space technique which has proven to be rét in a linear-log plot withU,=8. ForV=0.4,A~0.16, and
markably accurate for one-dimensional systems such as th#a~0.95; forV=1, A~0.83, and¢/a~0.4912 Thus, we
Kondo and Anderson latticé$}> We use the finite system see that a§/ and hence the gap increase, the correlation
method with open boundary conditions in which there is ndength decreases as expected.
hopping past the ends of the chain. We study lattices with 25 We varied the hybridizatiorV, at the impurity site to
sites, keeping up to 120 states with typical truncation errorstudy the effect on the spin-spin correlation functions at half
of order 10 7 for the semiconductor. For the metal we keepfilling for both the metallic and the semiconducting cases. In
up to 130 states with typical truncation errors of orderthe semiconducting case, we find that changdifiagrom 0.5

10°8.

to 10, while keeping the semiconducting gap constant, does
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FIG. 1. c-spin—f-spin correlation functions for a symmetric
Anderson impurity in a metal and a semiconducting hdst () at
half filling. The correlations are between thespin of the impurity
and the spins of the conduction electroRds the distance from the
impurity site. L=25,t=1, Vy=1, U,=8). Solid lines are guides
to the eye.(a) Linear plot. Notice the Friedel oscillations in the
metallic case(b) Linear-log plot. In the semiconducting case the

correlation functions die off very quickly, due to the presence of the

gap.

not change the qualitative behavior of the correlation func
tions. Similarly, in the metallic case we find that changing
V, from 0.1 to 10 does not change the qualitative behavior o

the correlation functions.

We also examined an asymmetric Anderson impurity in &

semiconductor at half filling withL =25, Ng=50, t=1,
V=1,U=0,Uy=16, ande;y;=—0.5. We found no qualita-
tive difference in the spin-spin correlation functions \&s

varied between 0.1 and 10. In fact, the behavior of the cor
relation functions was very similar to that found in the sym-

metric case.

B. Doped case
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FIG. 2. c-spin—f-spin correlation functions for a symmetric
Anderson impurity in a semiconducting host at half filing. The
correlations are between tliespin of the impurity and the spins of
the conduction electron® is the distance from the impurity site.
(L=25,Ng=50,t=1, Vy=1, Uy=8). The correlation length in-
creases a¥ (and the gapdecreases. Solid lines are guides to the
eye.

in the ground state is 1/2 since there is an odd number of
electrons. This corresponds to a quasiparticle excitation of
the half-filled system. Again, we sét1, V=1, andU=0

in the host. By fixingV, we set the value of the gap
A=0.83 in the semiconducting case. We initially consider a
symmetric Anderson impurity wittJ =8 and we vary,.

One can think of changiny, as corresponding to changing
the effective Kondo couplingles= SVS/UO, although this
picture is only valid for smalV,.

We study the hole density and the spin density versus site.
(Here the hole density refers to the number of holes per site
measured relative to the half-filled casélaively, we can
think of two possibilities: the hole can be localized in the
impurity site or it can be delocalized and spread out in the
rest of the chain. The results for the semiconducting case
appear in Fig. 3. We can clearly identify two regimes in the
semiconductor.

(i) LargeV,: the hole and the spin density are delocalized
and reside in the host. On the impurity site the hole and spin
{density are zero, which means that the impurity hasf an
electron and a conduction electron combined in a singlet
state.

(i) SmallV,: the spin density is localized at the impurity
site, while the hole density is localized on the impurity site
and its nearest neighbors.

_ To understand what determines whether or not the hole is
localized, we must compare the energy of adding a delocal-
ized hole to the host versus the energy of adding a hole to the
impurity. Removing an electron from the semiconductor
costs roughly half the gapA(2). To estimate the energy of
putting a hole on the impurity, we consider the Hamiltonian

If we plot the spin and charge density as a function ofof an isolated single site Anderson impurity:
position in the half-filled case, we find that the spin is zero
and the charge density is 2 at every site. In order to obtain
more interesting positional information, we dope our system
of 25 sites by adding a hole. We pNt,=49 in the semicon-
ducting case anlll,= 25 in the metallic case. The total spin

Ho

Uo
nI—T(anDﬂLVo; (crf,+flc,).

(11)

f
Uon;
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FIG. 3. A symmetric Anderson impurity in a half-filled semi-
conductor doped with one holé€a) Hole density versus site))
Spin density versus site. For laryg, both the hole and the spin are
spread out over the lattice. For sm¥| they are localized near the
impurity which is on sitei=0. L=25, Ng=49, t=1, V=1,
Uy=8. Solid lines are guides to the eye.
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FIG. 4. Kinetic energy €t(c] ¢, 1,+¢l 1,C,)) of a bond
between site and sitei +1 versus sita for a hole in a semicon-
ductor with a symmetric Anderson impurity. =25, Ng=49,
t=1,V=1, Uy=8. Notice that the bonds connecting the impurity
site have the largest magnitude of the kinetic energy for the smallest
values ofV,. Solid lines are guides to the eye.

The lowest energy state is the lowest state with
S=0, | =0 for any choice of parameters. In general, we find

EQ< Y2 124 pl0o Ol 12 12 EO0, (12)
The difference in energf E between the two lowest states is
AE=EY2 V2_ 00 (13)

For largeV, (16V2>U3/4), one gets\E~V, and for small

Vo, AE~6VZ/U. This differenceAE represents the energy
cost to put the hole at the impurity site. If, on the other hand,
the hole goes to the host, the energy cost is roughly equal to
half the gap Q(/2). Therefore, wherAE<<A/2, the hole
should go to the impurity site, meaning that the impurity
should be in theS=1/2, I=1/2 state withS,=1/2 and
I,=—1/2. According to this criteria, the crossover should

Since this is a symmetric impurity, we can classify the stategccur whenAE=A/2. For the values of the parameters that

by their value ofS andl. We find
2 (S=0, 1=0) states withEE%=—
2 (S=1/2,1=1/2) states

2
with EY2 V2= — %t%\/%ﬁv’{

U
1(S=1, 1=0) state withE°= — 70,

1(S=0, I=1) state withE®*=0.

Here, the first superscript & indicates the value o and
the second one indicates the valueloh that state. For a

we use, this crossover correspondd/p-1.25. ForV, less
than 1.25, the hole and the spin density should be localized at
the impurity site because th®=1/2, 1=1/2 state is more
favorable, but wherV, is greater than 1.25, the impurity
should be in thes=0, | =0 state and the hole and the spin
density should be spread out over the lattice. This is consis-
tent with the numerical results, since fgg=1 the hole is
localized while forVy=2 it is spread out over the lattice. In
the crossover region @Vy<2) the values of the hole and
spin densities on the impurity site are intermediate between
those found forVy=1 andV,=2. However, this gradual
crossover may be a finite size effect, since we have only
looked at lattices up to 25 sites long.

Figure 3 shows that for smaW, (V,<1.25), the hole
density is localized on the impurity as well as its nearest
neighbor sites. This can be understood as follows: the hole
density likes to be localized at the impurity according to the
criteria explained above. However, electrons on neighboring
sites optimize their kinetic energy by hopping into the hole

single impurity, thd =0 states have two electrons, while the on the impurity site. Thus, the hole spreads to the two nearest

|=1/2 states can have three electromg=(+1/2) or one
electron (,= —1/2).

neighbor sites of the impurity. This is confirmed in Fig. 4
which shows the kinetic energy of the bonds between sites as
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FIG. 5. Thez component of the total spin in tHeorbitals and in 051
the conduction orbitals for a symmetric Anderson impurity in a
half-filled semiconductor(solid symbols,V=1, N.,=49) doped 0.4 r
with a hole versusV,. The circles are for the totaf spin >
[SL:EiSQ(i)] and the squares are for the total conduction spin ® 937
[SS==;Si(i)]. L=25,t=1, andU,=8. Solid lines are guides to 5
the eye. O o02:
£
a function of position. Notice that the bonds connecting the c% 0.1
impurity site have the largest magnitude of the kinetic energy
for the smallest values &f,. We have looked at the conduc- 0.0 1
tion andf-electron density on the sites neighboring the im-
purity. We find that when the hole resides on these sites, it is 0Les 50 50 15.0
primarily in the f orbital where the energy cost is zero, be- Site

causeeg;(i #0)=—U/2=0 on these sites. The electrons on
these sites are in the c_onduction orbitals where they can take ;5 g A symmetric Anderson impurity in a half-filled metal
advantage of the kinetic energy. _ doped with one holeta) hole density versus sitéb) spin density

Let us discuss what dictates where the spin of the holgersys site. The hole is never localized at the impurity siteQ),
resides. When the impurity hybridizatiot, is large, a sin-  pyt the spin density is localized for smally. L=25, Ng= 25,
glet forms between the conduction spin and thepin onthe  t=1, U,=8. Solid lines are guides to the eye.
impurity site. Thus the impurity has no net spin, and the spin
of the hole resides in the host. Will it reside primarily in the metallic host, the chemical potential is zero at half filling,
f orbitals or in the conduction orbitals? To answer this, weand there is no energy cost in adding a delocalized hole to
note that if the hybridizatiorv of the host is not too large, the metal. Thus, one expects that the hole will always be
then optimizing the kinetic energy of the conduction elec-spread out and extended throughout the metal. In Fig. 6, we
trons dominates over optimizing the hybridization energy ofshow the numerical results. We see that the hole density
the host. In order to allow both up and down spin conductiorbehaves as expected: it is spread out over the lattice for every
electrons to hop freely from site to site, the average spin ofet of parameters that we examined. For lavgethe large
the conduction electrons on each site is zero. Thus, the spin-site hybridization favors a singlet state at the impurity and
of the hole must be spread primarily over therbitals of the  the spin density is spread out over the lattice. In this case the
host lattice. spin is in the conduction spins because there art orbitals

On the other hand, when the impurity hybridizatddpis  in the metallic host. However, for small values &, the
small, the hybridization on the host sites has priority. Thisspin density becomes localized at the impurity. We attribute
favors the formation of singlets on the host sites. As a resulthis to finite size effects, since we expect a singlet at the
the spin of the hole will be localized primarily on the impu- impurity site in an infinite metallic lattice. We can under-
rity site. In order to minimize the kinetic energy of the con- stand how finite size effects affect the behavior of the spin
duction electrons, the spin will primarily reside in theor-  density in the following way. If the size of the lattice is such
bital of the impurity. This occurs at the expense of thethat the spacing between discrete energy levels of the metal-
hybridization energy of the impurity, but that is permissible lic host becomes comparable to or larger tldap, then the
since this is the smallest energy in the problem. The arguexchange interaction is too weak to mix the noninteracting
ments of the last two paragraphs indicate that the spin of theonduction energy levels enough to form a singlet with the
hole will be primarily in thef orbitals for the range of pa- f spin. In this case, there will be a magnetic moment on the
rameters that we studied. This is shown in Fig. 5. impurity site. We can check this explanation by comparing

We now consider the metallic case. It is easy to compard.s with the energy level spacing. For a 25 site metallic
the energy of adding the hole to the host versus the finitéattice with open boundary conditions, the typical energy
energy AE of localizing the hole on the impurity. For a level spacing is 0.24. We can compare this with=0.1
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which hasJez=0.01, and withVy=1 which hasl=1. As 0.40
we can see in Fig. (6), these two cases have a local mag-
netic moment. Th&/y=2 case is borderline and has a small
magnetic moment at the impurity site. The influence of finite
size effects can be seen by putting a symmetric Anderson
impurity with Vo=2 andU =8 in the middle of a seven site
lattice. We find that the spin density on the impurity site is
roughly twice that found for a 25 site latti¢see Fig. €)].
Finally, we note that finite size effects do not affect our
results for a semiconductor because the semiconducting gap
is much larger than the energy level spacing. For example, a
25 site symmetric Anderson lattice with open boundary con-
ditions withU=0 andV=1 has a typical energy level spac- 0.00
ing of 0.01, which is much smaller than the semiconducting -15.0
gap of A=0.83. Similarly ifV is changed to 0.4, the energy
level spacing is still approximately 0.01, which is much FIG. 7. Hole density versus site for a symmetric Anderson im-
smaller tham=0_.15. ) . .. purity in a half-filled semiconductor doped with two holés=1,

We also examined the_ asyr_nmetnc Anderson impurity iNa;_1 y,=8,L=25N,=48, andS,=0. ForV,=0.1 and 1.0, one
semiconductor doped with either one hole or one particlg,ge is localized in the vicinity of the impurity and the other is
with L=25,Ng=49,t=1,V=1,Uy=16,e0=—0.5. The spread out over the host lattice. PFég=0.1 and 1.0, the ground
behavior of the spin and charge densities at sM&l state is nearly degenerate; the data shown are for the triplet state;
(Vo=0.1) and at large/, (Vo=10) is very similar to that the data for the singlet state are identical. Mge=2.0 and 10.0, a
found for the symmetric Anderson impurity. singlet forms at the impurity site, and the two holes are spread over

We will devote the rest of this section to discussing thethe rest of the lattice. Fov,=2.0 and 10.0, the ground state is a
fact that the impurity provides a large potential barrier andnondegenerate singlet.
effectively divides the lattice in two as the system is doped
away from half filling. As a result, we can think of the semi- no impurity is indeed equal of the energy of adding a second
conductor as a symmetric double well potential. There ardiole to a 25-site semiconductor with an impurity in the
several examples of where this occurs. For example, consideniddle. Our double well scenario is further confirmed by the
what happens when we add two holes to a half-filled semifact that the energy associated with adding the second hole is
conductor with a symmetric Anderson impurity. As before,the same foWy=0.1 andV,=1 within our accuracy. This is
we sett=1, V=1, andU=0 in the host. We place the consistent with having a very high barrier for both cases.
Anderson impurity in the center of a 25 site lattice with  So putting a hole in the right potential well or the left well
U,=8, and we varyW,. Adding two holes corresponds to or taking a linear combination of these two cases results in
Ng=48. For smalV, the ground state consists of two statesstates which have energies that are nearly degenerate. This
which are degenerate within the accuracy of ourexplains the degeneracy of the ground sta®@ne state is a
calculation* In one state the system is a singlet and in thespatially symmetric linear combination in which the spins of
other it is a triplet. This near degeneracy is not the result ofhe two holes form a singlet that is antisymmetric in spin
finite size effects or boundary conditions since we find thisspace. The other state is a spatially asymmetric state with a
degeneracy for smaller lattice sizes as well as for the case dfiplet that is symmetric in spin space.
periodic boundary conditions. By examining the hole density On the other hand, for largé,, we find that both holes go
versus site as shown in Fig. 7, we find that one hole is localinto the host lattice and a singlet forms between fthadec-
ized on the impurity site and its two nearest neighbors, whildron and the conduction electron on the impurity site. This
the other hole is spread over the lattice. We cannot put twainglet acts like a potential barrier, but since having two
holes on the impurity because that would involve removingholes on one side of the barrier versus having one hole on
the f electron from the impurity which would cost an energy each side are not degenerate states, the ground state is non-
of Uy/2. As a result, the additional hole avoids the impurity degenerate. In fact, the ground state of the whole system is a
and its two nearest neighbors, and spreads over the host.dinglet. However, if we keefy, large but have one hole
resides primarily in thef orbitals where the energy rather than two holes, the singlet on the impurity acts like a
ef(i)=-U/2=0. very high barrier which divides the wave function for the

The impurity site with the hole localized in its vicinity hole into two piecegsee Fig. 3. Since having the hole on
acts like an nearly infinite potential barrier to the second holene side of the impurity versus the other are nearly degener-
and effectively divides the lattice in two. Thus, the energyate configurations, the ground state is nearly degenerate and
associated with adding the second hole should be equal taoth states have spin 1/2.
that of adding a hole to a 22-site semiconductoe(, It is easy to generalize these trends to cases where more
V=1, andU=0) with no impurity but with a breakt0)  than one hole is doped into a half-filled system. For small
in the middle. We can think of this semiconductor as a sym-,, the first hole resides in the vicinity of the impurity, and
metric double well potential with a nearly infinite barrier. the additional holes avoid the impurity and are extended
Each potential well corresponds to an 11-site semiconductothroughout the lattice. For largé,, a singlet forms on the
Within the limits of our accuracy, we find that the energy of impurity site; the holes avoid the impurity and are extended
putting one hole in an 11-site half-filled semiconductor withthroughout the lattice. For both large and smdl, the

o—eV,10
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ate. This means that the chemical potential corresponding to
No imburi A adding a particle or a hole to a half-filled system is close to
04y o—ov:)=l1n:)pumy 1 zero. This is indeed what we see fgg=0.1.
= o2f
< IV. CONCLUSIONS
W oof
= In this paper, we have studied an Anderson impurity in a
I -02} one-dimensional semiconductor. Although we primarily con-
centrated on a symmetric Anderson impurity, we found no
04 f qualitative difference in behavior between an asymmetric
impurity in the mixed valence regime and a symmetric im-
08 0 o5 P =0 540 purity in the Kondo regime. In the undoped half-filled case,

N we found spin-spin correlation functions that decay rapidly
with distance due to the gap in the excitation spectrum. This

FIG. 8. The chemical potential = E(N) — E(N—1) versus the is in contrast with the metallic case in which a much slower

electron fillingN for t=1, Uy=8, V=1, andL =25. The impurity decay is seen. . | hni bl
is located in the middle of the symmetric Anderson lattice. The case Because DMRG is a real space technique, we were able to

of no impurity is shown for comparison. Solid lines are guides to9° _be¥°”d the qugstion of whether or not the magnetiq im-
the eye. purity is screened in the presence of a gap in the density of

states. In the case of doping with & 1/2 hole, we found

that a large on-site hybridizatiow, led to the formation of a

ground state js nearly degenerate when the number of e)§"|nglet on the impurity site and the delocalization of the spin
tended holes is odd. For example, when there are four hole&qd charge density throughout the lattice. For sigllthe
andV, is small, one hole resides in the vicinity of the impu-

itv- th ining three hol d th ¢ fthmagnetic moment of the hole was localized on the impurity
rty, tneé remaining threée holes are spread over the rest ot e 4 the charge density was concentrated on the impurity
lattice, and the ground state is nearly degenerate.

and its nearest neighbors. The criteria for defining these two
regimes was whether it costs more energy to put the hole on
the impurity site or to spread it throughout the lattice. This is
) ) _ ) _ different from the criteria used by Ogura and Sseho

In this section, we study how the chemical potential variegound that the impurity remained a magnetic multiplet if the
with electron filling. As in the previous sections, we ConSidersemiconducting gap was greater than some fraction of the
a symmetric Anderson lattice with=1, U=8, V=1, and  Kondo temperaturd . It is somewhat artificial to define a
L:.25 with the impurity site in the middle of the lattice. We kondo temperature since there is a gap at the Fermi energy,
define the chemical potential by but let us define it by Tx=Dexp(1/empo), Where
po=2/7t is the density of states at the Fermi energy for free
electrons with open boundary conditions, addé-4t is an
estimate of the conduction electron bandwidth. Then we can
compare our results with those of Ogura and Saé¢e find
whereE(N) is the ground state energy wibh electrons. Our that the charge and spin density of the hole are localized for
results are shown in Fig. 8. When the impurity is absentA>Ty, and are extended fak<T,. This agrees qualita-
there is a jump in the chemical potential that is centeredively with Ogura and SasbBy the same criterion, our re-
about half filing (N=50). This is the quasiparticle gap. sults are consistent with those of Cruz, Phillips, and Castro
From Fig. 8, we see that there are states in the gap for smalet if we interpret the presence of a Kondo-like resonance
V. The chemical potential of these midgap states correat the gap edge in their work with singlet formation at the
sponds to the energy of adding a particle or a hole to thémpurity site.
half-filled system. These midgap states move to the edges of Strictly speaking our results are valid only fdr=0.
the gap as/, increases. Indeed, they appear to merge wittHowever, it is interesting to speculate on what happens at
the gap edges fov,=2. The fact that the impurity does not finite temperatures when there is one hole doped into the
seem to affect the chemical potential for large valuegpis  half-filled system. Since there are an odd number of spins,
consistent with the delocalization of the hole density and itghe system will always have a magnetic moment. The ques-
spin which we saw in the last section. The presence of midtion is where does the moment reside. First, consider the case
gap states for small values ¥f, is consistent with the local- of large impurity hybridizatiorVy where it costs less energy
ization of the hole and its spin. To see this, suppose thdao spread the hole throughout the lattice than to localize it on
Vy<V. Then thef orbital on the impurity decouples from the impurity site A/2<AE). It is a common expectation that
the rest of the lattice. In addition the large hybridizatddn the localf spin on the impurity site will not be screened at
favors having one conduction electron and drelectron on  temperatures less than the gap. However, our results indicate
each of the host sites. As a result, when we put 0, 1, or 2hat this is not always the case. At low temperatures
conduction electrons on the impurity site, the associated pafT<A/2<AE) a singlet forms on the impurity site even
ticles or holes will be localized in the vicinity of the impu- though there is a gap in the density of states. The spin and
rity, and the energies of these states will be nearly degenecharge densities of the hole spread over the rest of the lattice.

C. Chemical potential versus filling

m(N)=E(N)—E(N-1), (14



8564 CLARE C. YU AND M. GUERRERO 54

At intermediate temperatured (2<T<AE), the gap effec- tion of computer time from the University of California, Ir-
tively disappears due to thermally activated electrons, and iine.
is likely that the hole spreads over the host lattice while the

impurity site has a singlet. At high temperatures APPENDIX
(A/2<AE<T), the spin and charge of the hole sit on both i , i
the impurity and lattice sites. In this appendix, we show that to zeroth order in pertur-

Next consider the case of small impurity hybridization bation theory in a ;f)eriodic system, .the spin-spin correlation
V, where it costs more energy to spread the hole throughodtnction (0|S;(R)S,(0)|0)=—1/4L in a half-filled one-
the lattice than to localize it on the impurity site dimensional metal with an odd number of sites and an
(A/2>AE). At low (T<AE<A/2) and intermediate tem- Anderson impurity at. the centdiThus there is an even num-
peratures AE<T<A/2), the spin and charge densities of Per of eIe;ctronQ.lO) is the ground state of the unperturbed
the hole are localized in the vicinity of the impurity site. Hamiltonian. To construct the ground state, we note that

Again at high temperature\E <A/2<T), the hole sits on there is one electron in theorbital of the impurity, and one
both the impurity and lattice sites. conduction electron on each site. Since there are an odd
We compared our semiconducting results with those of umber of sites, there are an odd number of conduction
metal. When we put a hole into the half-filled metal, we find SPINS. If we think of filling the states in the conduction band
that a singlet forms ¥/, is large. Fo/, small, the magnetic with conduction electrons, one of the states has an unpaired
moment of the hole is localized on thieorbital of the impu-  SPIN- In the ground state the unpaired conduction spin can
rity due to finite size effects. The charge density of the holdom @ singlet or a triplet with thé spin. These two states
is extended for all values 0¥, since it always costs less &re degenerate since there are no interactions to zeroth order.

energy to put the hole in an extended wave function than teince we know that the ground state t#&s0 in the pres-

localize it in the vicinity the impurity. ence of interactions, we will choose the smgle_t as the ground
We found that the impurity in a semiconductor dopedst_ate, though we would get the same result_ if we chose the

away from half filling acts like a barrier in a symmetric triplet as the ground state. Thus, we can write

double well potential. WheW, is large, a singlet forms on

the impurity site. This singlet acts like a barrier that divides

the lattice in two. The holes in the system avoid the impurity

a}nd spread over the rest of the Iattipe. Wh&p’s small, .the |0)= i[”flc)_Hch)]- (A1)

first hole goes onto the impurity which acts like a barrier and J2

divides the lattice for the rest of the holes. These additional

holes spread over the two halves of the lattice. When the

number of delocalized holes is odd, the ground state is nearly ) _

degenerate for both large and small value/gf Whererlc) denotes an ug spin and a down conduction
Finally, we studied the chemical potential as a function ofSP'": , ,

electron filling. We found that midgap states appear for small 1 "€ operator for the component of the conduction spin

values ofV, and correspond to the localization of a hole or©" & SitéR s

particle on the impurity site. A¥, increases, these midgap

states move towards the edges of the gap, which is associated

with the delocalization of the hole. 1 _

It may be possible to look for some of the effects that we SY(R)= oL > e*'<k1*k2>R(clﬂck2T—clllckzl),
have described in dilute magnetic semiconduct®ior ex- ko
ample, NMR could be used to determine if the spin-spin (A2)

correlation length decreases as the semiconducting gap
increases! However, our calculation has neglected certain

features of those materials such as laggictors and inter- Kis a good quantum number because the system has periodic

actions between impurities. We have also neglected lon oundary conditions. To zeroth order, the only contribution

range Coulomb interactions and the associated screening p(0|S;(R)S}(0)|0) comes from thex, =k, =k term of the
fects which, for example, come into play between an accepg'um- One can show that the other terms in the sum cancel
tor ion and the hole it contributes to the valence band. This iQUt: Thus, to lowest order,

a subject for future study.
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