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We study an Anderson impurity in a semiconducting host using the density matrix renormalization group
technique. We use theU50 one-dimensional Anderson Hamiltonian at half filling as the semiconducting host
since it has a hybridization gap. By varying the hybridization of the host, we can control the size of the
semiconducting gapD. We consider chains with 25 sites and we place the Anderson impurity~with U.0) in
the middle of the chain. We dope the half-filled system with one hole and we find two regimes: when the
hybridization of the impurity is small such that the energyDE to add a hole to the impurity site is less than
D/2, the hole density and the spin are localized near the impurity. When the hybridization of the impurity is
large (DE.D/2), the hole and spin density are spread over the lattice. Additional holes avoid the impurity and
are extended throughout the lattice. Away from half filling, the semiconductor with an impurity is analogous to
a double well potential with a very high barrier. We also examine the chemical potential as a function of
electron filling, and we find that the impurity introduces midgap states when the impurity hybridization is
small. @S0163-1829~96!04836-9#

I. INTRODUCTION

It is well known that a magnetic Anderson impurity in a
metal is screened by conduction electrons, and a singlet is
formed at low temperatures. However, very little attention
has been given to the nature of the ground state when a
magnetic impurity is in an insulator or a semiconductor. That
is the subject of this paper. One might think that a magnetic
impurity in an insulator or a semiconductor will not be
screened because there is a gap in the density of states. How-
ever, the problem is somewhat more complicated than this
simple expectation.

Let us briefly review the previous work in this field. With-
off and Fradkin1 used mean field theory to consider a Kondo
impurity in a system where the density of states goes to zero
at the Fermi energy with power law behavior, i.e.,
r(e);ueur , whereueu,D (D is the bandwidth! and r 5 0,
1/2, 1, or 2. In this gapless situation they found that the
Kondo impurity became a singlet only if the spin exchange
J.Jc , where the critical couplingJc was a function of the
power r . Later authors considered a finite energy gapD in
the density of states. Takegaharaet al.2 used Wilson’s nu-
merical renormalization group to argue that the symmetric
Anderson impurity is always a magnetic multiplet for any
finite gapD, while the asymmetric Anderson impurity3 has a
critical value of the gapDc such that the impurity has a
magnetic ground state if the gap is too big, i.e., ifD.Dc .
Ogura and Saso4 found no such qualitative difference be-
tween the symmetric and asymmetric impurities. They have
examined the problem using poor man’s scaling, the 1/N
expansion, the non-crossing approximation, and quantum
Monte Carlo. They argued that both the symmetric and
asymmetric Anderson impurity remain magnetic if the semi-
conducting gapD is ‘‘large enough;’’ otherwise, the impu-
rity is screened and forms a singlet at low temperatures.
‘‘Large enough’’ means thatD>aTK , where TK is the
Kondo temperature and the value ofa varies between 0.4
and 2.0, depending on the parameters and the calculational

approach. Since there is a gap, it is somewhat artificial to
define a Kondo temperature, but Ogura and Saso define it by
TK5Dexp(21/Jr0), wherer0 is the flat density of states of
the semiconductor outside the gap. Cruz, Phillips, and Castro
Neto5 considered impurities in transpolyacetylene, which is a
semiconductor due to the Peierls distortion. They modeled
the system by adding an Anderson impurity to the Su-
Schrieffer-Heeger Hamiltonian6 in which the conduction
band was a two-band system with a small energy gapD.
They found that at low temperatures a Kondo-like resonance
exists at the edges of the gap as long as the gap was smaller
than the Kondo temperature in the gapless system.

All of these considerations focus on whether or not the
impurity is screened and becomes a singlet at low tempera-
tures. This tacitly assumes that the magnetic moment is lo-
calized at the impurity site. This is not necessarily true. As
we shall see, if there is a large hybridization between the
localized orbital and the conduction orbital on the impurity
site, the spin and charge are not localized at the impurity site,
but are extended throughout the system. The importance of
hybridization is well known in semiconductors. After all, it is
hybridization that allows ordinary donor and acceptor impu-
rities to contribute carriers to a semiconductor. Within the
Hartree-Fock approximation, Haldane and Anderson7 found
that hybridization between thed orbitals of a transition metal
impurity and the valence band electrons of the semiconduc-
tor allowed nominally different charge states to exist as
states in the gap.

In this paper, we place an Anderson impurity in the
middle of a one-dimensional semiconductor. We use the
U50 one-dimensional Anderson Hamiltonian at half filling
as the semiconducting host, since it has a hybridization gap.
By varying the hybridizationV, we can control the size of
the semiconducting gap. We consider chains with an odd
number of sites, and we place the substitutional Anderson
impurity in the middle of the chain. The impurity has a posi-
tive Coulomb repulsionU0.0 and a positive hybridization
V0. In Sec. II we present the Hamiltonian, which we study
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using the density matrix renormalization group approach.8

The advantage of this technique is that it is done in real
space so that we can evaluate how correlation functions vary
with distance as well as examine the spin and charge densi-
ties as a function of position.

In Sec. III A we discuss the half-filled case; we find that
the ground state always has total spinS50. We also study
the spin-spin correlation functions to see if the impurity spin
persists spatially. We find that the spin correlations decay
exponentially with distance due to the presence of the gap.
We compare these results to the metallic case in which we
place the Anderson impurity in a free electron host with the
same number of sites as in the semiconducting case. In the
metallic case, we find that the spin correlations decay more
slowly with distance.

We would also like to plot the spin as a function of posi-
tion. However, the half-filled case has a singlet ground state
with Si50 on each site. So in Sec. III B, we consider the
doped case in which we add a hole to the system; this makes
the total spinS51/2. In the doped semiconducting case we
find two different regimes which are defined by comparing
the size of the semiconducting gapD to the energyDE to
add a hole to the impurity site. As we shall see in Sec. III B,
DE is given by

DE5
1

4
@AU0

2164V0
22AU0

2116V0
2#. ~1!

When the hybridization of the impurity site is small
(DE,D/2), the spin and charge of the hole are localized
near the impurity. When the hybridization is large
(DE.D/2), the spin and charge of the hole are delocalized
and reside in the host away from the impurity; a singlet is
formed on the impurity site. Thus, in the semiconducting
case, the spin and the hole go together and have similar
spatial distributions. In contrast, in the doped metallic case,
the charge density of the hole is delocalized for all values of
the impurity hybridizationV0. However, the spin density of
the hole is localized near the impurity for small values of the
hybridization due to finite size effects. For large values of
V0, finite size effects no longer dominate; a singlet forms on
the impurity site, and the hole and spin densities are delocal-
ized.

When more than one hole is added to the semiconductor,
the additional holes avoid the impurity and spread through-
out the lattice. We show that there is an analogy between the
barrier in a double well potential and the impurity in the
semiconductor doped away from half filling. Finally, in Sec.
III C, we discuss how the chemical potential varies with fill-
ing. For smallV0, we find states lying in the middle of the
gap. AsV0 increases, these states move toward the edges of
the gap.

II. THE 1D ANDERSON HAMILTONIAN
WITH AN IMPURITY

The standard one-dimensional periodic Anderson lattice
has spin-1/2 conduction electrons that hop from site to site.
Each site has a localizedf orbital with a Coulomb repulsion
U( i ) and a hybridizationV( i ) between the conduction or-
bital and thef orbital. The Hamiltonian is given by

H52t(
is

~cis
† ci11s1ci11s

† cis!1(
is

« f~ i !nis
f

1(
i
U~ i !ni↑

f ni↓
f 1(

is
V~ i !~cis

† f is1 f is
† cis!, ~2!

wherecis
† andcis create and annihilate conduction electrons

with spins at lattice sitei , and f is
† and f is create and anni-

hilate localf electrons. Heret is the hopping matrix element
for conduction electrons between neighboring sites,« f( i ) is
the energy of the localizedf orbital at sitei , U( i ) is the
on-site Coulomb repulsion of thef electrons, andV( i ) is the
on-site hybridization matrix element between electrons in the
f orbitals and the conduction band. For simplicity, we ne-
glect orbital degeneracy. We denote the number of electrons
by Nel , andL is the number of sites in the lattice.t, U( i ),
V( i ), and« f( i ) are taken to be real numbers.

In order to find the semiconducting gapD, we note that
the uniform periodic Anderson Hamiltonian withU( i )50
andV( i )5V independent ofi can be diagonalized exactly in
k space. We obtain two hybridized bands with energieslk

6

lk
65

1

2
$@« f22t cos~ka!#6A@« f12t cos~ka!#214V2%,

~3!

wherea is the lattice constant. When there are two electrons
per unit cell, the lower band is full while the upper one is
empty. Thus, the system is insulating whenNel52L. The
size of the band gap is given by

D5lk50
1 2lk5p/a

2 52At21V222t. ~4!

In this paper, we consider chains with an odd number of
sites and we place the impurity in the center of the chain. We
denote the site at the middle byi50. ~For example, for a 25
site chain, i runs from 212 to 112.! For iÞ0, we set
U( i )50 andV( i )5V. At half filling (Nel52L), these sites
represent the semiconducting host since there is a hybridiza-
tion gap between the conduction band and the flatf band.
We sett51; this sets the energy scale. By varying the value
of V, we can control the size of the gap. The impurity site at
i50 hasU(0)5U0, V(0)5V0, and« f(0)5« f0.

We primarily consider the symmetric case, for which
« f( i )52U( i )/2. With this choice, the half-filled case has
particle-hole symmetry and there is an SU~2! charge pseu-
dospin symmetry.9 The components of the pseudospin opera-
tor IW are given by

I z5
1

2(i ~ci↑
† ci↑1ci↓

† ci↓1 f i↑
† f i↑1 f i↓

† f i↓22!,

I15(
i

~21! i~ci↑
† ci↓

† 2 f i↑
† f i↓

† !, ~5!

I25(
i

~21! i~ci↓ci↑2 f i↓ f i↑!.

The z component of the pseudospin is equal to (Nel/2)2L.
Note that half filling corresponds toI z50. An I z51 state
can be achieved by adding two electrons. All the energy
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eigenstates of the symmetric Anderson model have a definite
value ofS and I . At half filling the ground state is a singlet
both in spin and pseudospin space (S50, I50), even when
an impurity is present.

Since Takegaharaet al.2,3 have emphasized the difference
between a symmetric and an asymmetric Anderson impurity,
we also consider an asymmetric Anderson impurity in a sym-
metricU50 Anderson lattice. We find no qualitative differ-
ence between the symmetric case and the asymmetric case.

We compare our results for the semiconductor to the me-
tallic case in which we place the Anderson impurity in the
center of a one-dimensional free electron host with the same
number of sites as in the semiconducting case. The Hamil-
tonian for the metallic case is given by

H5H01H imp , ~6!

where the free electron tight-binding HamiltonianH0 is
given by

H052t(
is

~cis
† ci11s1ci11s

† cis! ~7!

and the impurity HamiltonianH imp is given by

H imp5(
s

« f~0!n0s
f 1U~0!n0↑

f n0↓
f

1(
s

V~0!~c0s
† f 0s1 f 0s

† c0s!. ~8!

For future reference, it is convenient to define the effec-
tive spin exchange couplingJeff . This comes from consider-
ing a single Anderson impurity in a metal. When the hybrid-
ization term is small @pr(« f1U)V2/(e f1U)!1 and
pr(« f)V

2/e f!1#, the single impurity Anderson Hamil-
tonian can be mapped into the Kondo Hamiltonian10

HK5JeffSW
f
•sW0

c , ~9!

wheresW0
c is the spin density of the conduction electrons at the

impurity site and Jeff is given by the Schrieffer-Wolff
transformation:10

Jeff52
2uVu2U

e f~e f1U !
. ~10!

Note that for the symmetric case wheree f52U/2,
Jeff58V2/U.

We use the density matrix renormalization group
~DMRG! method8 to calculate the ground state as well as to
determine the spin-spin correlation functions, and the spin
and charge densities in the ground state. The DMRG ap-
poach is a real space technique which has proven to be re-
markably accurate for one-dimensional systems such as the
Kondo and Anderson lattices.11,12 We use the finite system
method with open boundary conditions in which there is no
hopping past the ends of the chain. We study lattices with 25
sites, keeping up to 120 states with typical truncation errors
of order 1027 for the semiconductor. For the metal we keep
up to 130 states with typical truncation errors of order
1026.

III. RESULTS

A. Half-filled case

In this section we consider the half-filled case. In particu-
lar, we want to see how far the impurity spin persists by
studying the spin-spin correlation functions. We compare the
gapped semiconducting case with the gapless metallic case.
We find that the spin correlations fall off much faster in the
presence of a gap.

To model the semiconductor, we use Anderson lattice
chains with 25 sites andNel52L550 ~2 electrons per site or
one electron per orbital!. The Hamiltonian is given by Eq.
~2! with U5e f50 for iÞ0, andU0.0 ande f052U0/2 for
the symmetric impurity site withi50. We sett51. For
V51, the semiconducting gapD;0.83 for a 25 site chain
with open boundary conditions.13 We initially setU058 and
V051 at the impurity site.

We model the half-filled metal with the tight-binding
Hamiltonian of Eqs.~6,7,8!. In this case,Nel526. We set
t51 and place the impurity at the center at sitei50 with the
same values ofU0 andV0 that we used for the semiconduc-
tor.

For both the metallic and semiconducting cases, we find
that the ground state hasI50 andS50. We show the spin-
spin correlation functions for both cases in Fig. 1. We plot
the correlationŝSz

c(R)Sz
f(0)& between thez component of

the f spin at the impurity site and thez component of the
spin of the conduction electrons in the lattice versus the dis-
tanceR from the impurity. Figure 1~a! is a linear plot. The
metallic case clearly shows Friedel oscillations. The bias of
the data for the metal toward negative values of the correla-
tions is a finite size effect; we show in the appendix that the
leading term in perturbation theory for^Sz

c(R)Sz
f(0)& goes as

21/L. Figure 1~b! is a linear-log plot of the absolute value of
the same correlations; we have removed the oscillations by
plotting every other point. Here we see that in the metallic
case the correlations between the impurityf spin and the
conduction spins, which are responsible for the compensa-
tion of the magnetic moment, decay very slowly. In contrast,
in the semiconducting case the decay is much faster due to
the presence of a gap in the excitation spectrum. If we as-
sume that the correlations fall off exponentially and fit the
plots in Fig. 1~b! to the form exp(2R/j), then the correlation
length j/a;1.9 for the metal andj/a;0.49 for the semi-
conductor.

We attribute the fact that the spin correlations decay much
faster in the semiconductor than in the metal due to the pres-
ence of semiconducting gap. To check this, we can change
the size of the gap in the semiconductor by varyingV. This
should change the spin-spin correlation length. This is con-
firmed in Fig. 2 where we plot the spin-spin correlation func-
tions for the semiconducting case for two different values of
V in a linear-log plot withU058. ForV50.4,D;0.16, and
j/a;0.95; for V51, D;0.83, andj/a;0.49.13 Thus, we
see that asV and hence the gapD increase, the correlation
length decreases as expected.

We varied the hybridizationV0 at the impurity site to
study the effect on the spin-spin correlation functions at half
filling for both the metallic and the semiconducting cases. In
the semiconducting case, we find that changingV0 from 0.5
to 10, while keeping the semiconducting gap constant, does
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not change the qualitative behavior of the correlation func-
tions. Similarly, in the metallic case we find that changing
V0 from 0.1 to 10 does not change the qualitative behavior of
the correlation functions.

We also examined an asymmetric Anderson impurity in a
semiconductor at half filling withL525, Nel550, t51,
V51,U50,U0516, and« f0520.5. We found no qualita-
tive difference in the spin-spin correlation functions asV0
varied between 0.1 and 10. In fact, the behavior of the cor-
relation functions was very similar to that found in the sym-
metric case.

B. Doped case

If we plot the spin and charge density as a function of
position in the half-filled case, we find that the spin is zero
and the charge density is 2 at every site. In order to obtain
more interesting positional information, we dope our system
of 25 sites by adding a hole. We putNel549 in the semicon-
ducting case andNel525 in the metallic case. The total spin

in the ground state is 1/2 since there is an odd number of
electrons. This corresponds to a quasiparticle excitation of
the half-filled system. Again, we sett51, V51, andU50
in the host. By fixingV, we set the value of the gap
D50.83 in the semiconducting case. We initially consider a
symmetric Anderson impurity withU058 and we varyV0.
One can think of changingV0 as corresponding to changing
the effective Kondo couplingJeff58V0

2/U0, although this
picture is only valid for smallV0.

We study the hole density and the spin density versus site.
~Here the hole density refers to the number of holes per site
measured relative to the half-filled case.! Naively, we can
think of two possibilities: the hole can be localized in the
impurity site or it can be delocalized and spread out in the
rest of the chain. The results for the semiconducting case
appear in Fig. 3. We can clearly identify two regimes in the
semiconductor.

~i! LargeV0: the hole and the spin density are delocalized
and reside in the host. On the impurity site the hole and spin
density are zero, which means that the impurity has anf
electron and a conduction electron combined in a singlet
state.

~ii ! SmallV0: the spin density is localized at the impurity
site, while the hole density is localized on the impurity site
and its nearest neighbors.

To understand what determines whether or not the hole is
localized, we must compare the energy of adding a delocal-
ized hole to the host versus the energy of adding a hole to the
impurity. Removing an electron from the semiconductor
costs roughly half the gap (D/2). To estimate the energy of
putting a hole on the impurity, we consider the Hamiltonian
of an isolated single site Anderson impurity:

H05U0n↑
f n↓

f 2
U0

2
~n↑

f 1n↓
f !1V0(

s
~cs

† f s1 f s
†cs!.

~11!

FIG. 1. c-spin–f -spin correlation functions for a symmetric
Anderson impurity in a metal and a semiconducting host (V51) at
half filling. The correlations are between thef spin of the impurity
and the spins of the conduction electrons.R is the distance from the
impurity site. (L525, t51, V051, U058). Solid lines are guides
to the eye.~a! Linear plot. Notice the Friedel oscillations in the
metallic case.~b! Linear-log plot. In the semiconducting case the
correlation functions die off very quickly, due to the presence of the
gap.

FIG. 2. c-spin–f -spin correlation functions for a symmetric
Anderson impurity in a semiconducting host at half filling. The
correlations are between thef spin of the impurity and the spins of
the conduction electrons.R is the distance from the impurity site.
(L525, Nel550, t51, V051, U058). The correlation length in-
creases asV ~and the gap! decreases. Solid lines are guides to the
eye.
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Since this is a symmetric impurity, we can classify the states
by their value ofS and I . We find

2 ~S50, I50! states withE6
0052

U0

4
6
1

2
AU0

2

4
116V0

2,

2 ~S51/2, I51/2! states

with E6
1/2 1/252

U0

4
6
1

2
AU0

2

4
14V0

2,

1~S51, I50! state withE1052
U0

2
,

1~S50, I51! state withE0150.

Here, the first superscript ofE indicates the value ofS and
the second one indicates the value ofI in that state. For a
single impurity, theI50 states have two electrons, while the
I51/2 states can have three electrons (I z511/2) or one
electron (I z521/2).

The lowest energy state is the lowest state with
S50, I50 for any choice of parameters. In general, we find

E2
00,E2

1/2 1/2,E10,E01,E1
1/2 1/2,E1

00. ~12!

The difference in energyDE between the two lowest states is

DE[E2
1/2 1/22E2

00. ~13!

For largeV0 (16V0
2@U0

2/4), one getsDE;V0 and for small
V0, DE;6V0

2/U. This differenceDE represents the energy
cost to put the hole at the impurity site. If, on the other hand,
the hole goes to the host, the energy cost is roughly equal to
half the gap (D/2). Therefore, whenDE,D/2, the hole
should go to the impurity site, meaning that the impurity
should be in theS51/2, I51/2 state withSz51/2 and
I z521/2. According to this criteria, the crossover should
occur whenDE5D/2. For the values of the parameters that
we use, this crossover corresponds toV0;1.25. ForV0 less
than 1.25, the hole and the spin density should be localized at
the impurity site because theS51/2, I51/2 state is more
favorable, but whenV0 is greater than 1.25, the impurity
should be in theS50, I50 state and the hole and the spin
density should be spread out over the lattice. This is consis-
tent with the numerical results, since forV051 the hole is
localized while forV052 it is spread out over the lattice. In
the crossover region (1,V0,2) the values of the hole and
spin densities on the impurity site are intermediate between
those found forV051 andV052. However, this gradual
crossover may be a finite size effect, since we have only
looked at lattices up to 25 sites long.

Figure 3 shows that for smallV0 (V0,1.25), the hole
density is localized on the impurity as well as its nearest
neighbor sites. This can be understood as follows: the hole
density likes to be localized at the impurity according to the
criteria explained above. However, electrons on neighboring
sites optimize their kinetic energy by hopping into the hole
on the impurity site. Thus, the hole spreads to the two nearest
neighbor sites of the impurity. This is confirmed in Fig. 4
which shows the kinetic energy of the bonds between sites as

FIG. 3. A symmetric Anderson impurity in a half-filled semi-
conductor doped with one hole:~a! Hole density versus site,~b!
Spin density versus site. For largeV0, both the hole and the spin are
spread out over the lattice. For smallV0 they are localized near the
impurity which is on site i50. L525, Nel549, t51, V51,
U058. Solid lines are guides to the eye.

FIG. 4. Kinetic energy (2t^cis
† ci11s1ci11s

† cis&) of a bond
between sitei and sitei11 versus sitei for a hole in a semicon-
ductor with a symmetric Anderson impurity.L525, Nel549,
t51, V51, U058. Notice that the bonds connecting the impurity
site have the largest magnitude of the kinetic energy for the smallest
values ofV0. Solid lines are guides to the eye.
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a function of position. Notice that the bonds connecting the
impurity site have the largest magnitude of the kinetic energy
for the smallest values ofV0. We have looked at the conduc-
tion and f -electron density on the sites neighboring the im-
purity. We find that when the hole resides on these sites, it is
primarily in the f orbital where the energy cost is zero, be-
cause« f( iÞ0)52U/250 on these sites. The electrons on
these sites are in the conduction orbitals where they can take
advantage of the kinetic energy.

Let us discuss what dictates where the spin of the hole
resides. When the impurity hybridizationV0 is large, a sin-
glet forms between the conduction spin and thef spin on the
impurity site. Thus the impurity has no net spin, and the spin
of the hole resides in the host. Will it reside primarily in the
f orbitals or in the conduction orbitals? To answer this, we
note that if the hybridizationV of the host is not too large,
then optimizing the kinetic energy of the conduction elec-
trons dominates over optimizing the hybridization energy of
the host. In order to allow both up and down spin conduction
electrons to hop freely from site to site, the average spin of
the conduction electrons on each site is zero. Thus, the spin
of the hole must be spread primarily over thef orbitals of the
host lattice.

On the other hand, when the impurity hybridizationV0 is
small, the hybridization on the host sites has priority. This
favors the formation of singlets on the host sites. As a result,
the spin of the hole will be localized primarily on the impu-
rity site. In order to minimize the kinetic energy of the con-
duction electrons, the spin will primarily reside in thef or-
bital of the impurity. This occurs at the expense of the
hybridization energy of the impurity, but that is permissible
since this is the smallest energy in the problem. The argu-
ments of the last two paragraphs indicate that the spin of the
hole will be primarily in thef orbitals for the range of pa-
rameters that we studied. This is shown in Fig. 5.

We now consider the metallic case. It is easy to compare
the energy of adding the hole to the host versus the finite
energyDE of localizing the hole on the impurity. For a

metallic host, the chemical potential is zero at half filling,
and there is no energy cost in adding a delocalized hole to
the metal. Thus, one expects that the hole will always be
spread out and extended throughout the metal. In Fig. 6, we
show the numerical results. We see that the hole density
behaves as expected: it is spread out over the lattice for every
set of parameters that we examined. For largeV0, the large
on-site hybridization favors a singlet state at the impurity and
the spin density is spread out over the lattice. In this case the
spin is in the conduction spins because there are nof orbitals
in the metallic host. However, for small values ofV0, the
spin density becomes localized at the impurity. We attribute
this to finite size effects, since we expect a singlet at the
impurity site in an infinite metallic lattice. We can under-
stand how finite size effects affect the behavior of the spin
density in the following way. If the size of the lattice is such
that the spacing between discrete energy levels of the metal-
lic host becomes comparable to or larger thanJeff , then the
exchange interaction is too weak to mix the noninteracting
conduction energy levels enough to form a singlet with the
f spin. In this case, there will be a magnetic moment on the
impurity site. We can check this explanation by comparing
Jeff with the energy level spacing. For a 25 site metallic
lattice with open boundary conditions, the typical energy
level spacing is 0.24. We can compare this withV050.1

FIG. 5. Thez component of the total spin in thef orbitals and in
the conduction orbitals for a symmetric Anderson impurity in a
half-filled semiconductor~solid symbols,V51, Nel549) doped
with a hole versusV0. The circles are for the totalf spin
@Sz

f5( iSz
f( i )# and the squares are for the total conduction spin

@Sz
c5( iSz

c( i )#. L525, t51, andU058. Solid lines are guides to
the eye.

FIG. 6. A symmetric Anderson impurity in a half-filled metal
doped with one hole:~a! hole density versus site,~b! spin density
versus site. The hole is never localized at the impurity site (i50),
but the spin density is localized for smallV0. L525, Nel525,
t51, U058. Solid lines are guides to the eye.
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which hasJeff50.01, and withV051 which hasJeff51. As
we can see in Fig. 6~b!, these two cases have a local mag-
netic moment. TheV052 case is borderline and has a small
magnetic moment at the impurity site. The influence of finite
size effects can be seen by putting a symmetric Anderson
impurity with V052 andU58 in the middle of a seven site
lattice. We find that the spin density on the impurity site is
roughly twice that found for a 25 site lattice@see Fig. 6~b!#.
Finally, we note that finite size effects do not affect our
results for a semiconductor because the semiconducting gap
is much larger than the energy level spacing. For example, a
25 site symmetric Anderson lattice with open boundary con-
ditions withU50 andV51 has a typical energy level spac-
ing of 0.01, which is much smaller than the semiconducting
gap ofD50.83. Similarly ifV is changed to 0.4, the energy
level spacing is still approximately 0.01, which is much
smaller thanD50.15.

We also examined the asymmetric Anderson impurity in a
semiconductor doped with either one hole or one particle
with L525, Nel549, t51, V51, U0516, « f0520.5. The
behavior of the spin and charge densities at smallV0
(V050.1) and at largeV0 (V0510) is very similar to that
found for the symmetric Anderson impurity.

We will devote the rest of this section to discussing the
fact that the impurity provides a large potential barrier and
effectively divides the lattice in two as the system is doped
away from half filling. As a result, we can think of the semi-
conductor as a symmetric double well potential. There are
several examples of where this occurs. For example, consider
what happens when we add two holes to a half-filled semi-
conductor with a symmetric Anderson impurity. As before,
we set t51, V51, andU50 in the host. We place the
Anderson impurity in the center of a 25 site lattice with
U058, and we varyV0. Adding two holes corresponds to
Nel548. For smallV0, the ground state consists of two states
which are degenerate within the accuracy of our
calculation.14 In one state the system is a singlet and in the
other it is a triplet. This near degeneracy is not the result of
finite size effects or boundary conditions since we find this
degeneracy for smaller lattice sizes as well as for the case of
periodic boundary conditions. By examining the hole density
versus site as shown in Fig. 7, we find that one hole is local-
ized on the impurity site and its two nearest neighbors, while
the other hole is spread over the lattice. We cannot put two
holes on the impurity because that would involve removing
the f electron from the impurity which would cost an energy
of U0/2. As a result, the additional hole avoids the impurity
and its two nearest neighbors, and spreads over the host. It
resides primarily in the f orbitals where the energy
« f( i )52U/250.

The impurity site with the hole localized in its vicinity
acts like an nearly infinite potential barrier to the second hole
and effectively divides the lattice in two. Thus, the energy
associated with adding the second hole should be equal to
that of adding a hole to a 22-site semiconductor (t51,
V51, andU50) with no impurity but with a break (t50)
in the middle. We can think of this semiconductor as a sym-
metric double well potential with a nearly infinite barrier.
Each potential well corresponds to an 11-site semiconductor.
Within the limits of our accuracy, we find that the energy of
putting one hole in an 11-site half-filled semiconductor with

no impurity is indeed equal of the energy of adding a second
hole to a 25-site semiconductor with an impurity in the
middle. Our double well scenario is further confirmed by the
fact that the energy associated with adding the second hole is
the same forV050.1 andV051 within our accuracy. This is
consistent with having a very high barrier for both cases.

So putting a hole in the right potential well or the left well
or taking a linear combination of these two cases results in
states which have energies that are nearly degenerate. This
explains the degeneracy of the ground state.15 One state is a
spatially symmetric linear combination in which the spins of
the two holes form a singlet that is antisymmetric in spin
space. The other state is a spatially asymmetric state with a
triplet that is symmetric in spin space.

On the other hand, for largeV0, we find that both holes go
into the host lattice and a singlet forms between thef elec-
tron and the conduction electron on the impurity site. This
singlet acts like a potential barrier, but since having two
holes on one side of the barrier versus having one hole on
each side are not degenerate states, the ground state is non-
degenerate. In fact, the ground state of the whole system is a
singlet. However, if we keepV0 large but have one hole
rather than two holes, the singlet on the impurity acts like a
very high barrier which divides the wave function for the
hole into two pieces~see Fig. 3!. Since having the hole on
one side of the impurity versus the other are nearly degener-
ate configurations, the ground state is nearly degenerate and
both states have spin 1/2.

It is easy to generalize these trends to cases where more
than one hole is doped into a half-filled system. For small
V0, the first hole resides in the vicinity of the impurity, and
the additional holes avoid the impurity and are extended
throughout the lattice. For largeV0, a singlet forms on the
impurity site; the holes avoid the impurity and are extended
throughout the lattice. For both large and smallV0, the

FIG. 7. Hole density versus site for a symmetric Anderson im-
purity in a half-filled semiconductor doped with two holes.t51,
V51,U058, L525,Nel548, andSz50. ForV050.1 and 1.0, one
hole is localized in the vicinity of the impurity and the other is
spread out over the host lattice. ForV050.1 and 1.0, the ground
state is nearly degenerate; the data shown are for the triplet state;
the data for the singlet state are identical. ForV052.0 and 10.0, a
singlet forms at the impurity site, and the two holes are spread over
the rest of the lattice. ForV052.0 and 10.0, the ground state is a
nondegenerate singlet.
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ground state is nearly degenerate when the number of ex-
tended holes is odd. For example, when there are four holes
andV0 is small, one hole resides in the vicinity of the impu-
rity; the remaining three holes are spread over the rest of the
lattice, and the ground state is nearly degenerate.

C. Chemical potential versus filling

In this section, we study how the chemical potential varies
with electron filling. As in the previous sections, we consider
a symmetric Anderson lattice witht51, U58, V51, and
L525 with the impurity site in the middle of the lattice. We
define the chemical potential by

m~N!5E~N!2E~N21!, ~14!

whereE(N) is the ground state energy withN electrons. Our
results are shown in Fig. 8. When the impurity is absent,
there is a jump in the chemical potential that is centered
about half filling (N550). This is the quasiparticle gap.
From Fig. 8, we see that there are states in the gap for small
V0. The chemical potential of these midgap states corre-
sponds to the energy of adding a particle or a hole to the
half-filled system. These midgap states move to the edges of
the gap asV0 increases. Indeed, they appear to merge with
the gap edges forV0>2. The fact that the impurity does not
seem to affect the chemical potential for large values ofV0 is
consistent with the delocalization of the hole density and its
spin which we saw in the last section. The presence of mid-
gap states for small values ofV0 is consistent with the local-
ization of the hole and its spin. To see this, suppose that
V0!V. Then thef orbital on the impurity decouples from
the rest of the lattice. In addition the large hybridizationV
favors having one conduction electron and onef electron on
each of the host sites. As a result, when we put 0, 1, or 2
conduction electrons on the impurity site, the associated par-
ticles or holes will be localized in the vicinity of the impu-
rity, and the energies of these states will be nearly degener-

ate. This means that the chemical potential corresponding to
adding a particle or a hole to a half-filled system is close to
zero. This is indeed what we see forV050.1.

IV. CONCLUSIONS

In this paper, we have studied an Anderson impurity in a
one-dimensional semiconductor. Although we primarily con-
centrated on a symmetric Anderson impurity, we found no
qualitative difference in behavior between an asymmetric
impurity in the mixed valence regime and a symmetric im-
purity in the Kondo regime. In the undoped half-filled case,
we found spin-spin correlation functions that decay rapidly
with distance due to the gap in the excitation spectrum. This
is in contrast with the metallic case in which a much slower
decay is seen.

Because DMRG is a real space technique, we were able to
go beyond the question of whether or not the magnetic im-
purity is screened in the presence of a gap in the density of
states. In the case of doping with anS51/2 hole, we found
that a large on-site hybridizationV0 led to the formation of a
singlet on the impurity site and the delocalization of the spin
and charge density throughout the lattice. For smallV0, the
magnetic moment of the hole was localized on the impurity
site, and the charge density was concentrated on the impurity
and its nearest neighbors. The criteria for defining these two
regimes was whether it costs more energy to put the hole on
the impurity site or to spread it throughout the lattice. This is
different from the criteria used by Ogura and Saso,4 who
found that the impurity remained a magnetic multiplet if the
semiconducting gapD was greater than some fraction of the
Kondo temperatureTK . It is somewhat artificial to define a
Kondo temperature since there is a gap at the Fermi energy,
but let us define it by TK5Dexp(21/Jeffr0), where
r052/p2t is the density of states at the Fermi energy for free
electrons with open boundary conditions, andD54t is an
estimate of the conduction electron bandwidth. Then we can
compare our results with those of Ogura and Saso.4 We find
that the charge and spin density of the hole are localized for
D.TK , and are extended forD,TK . This agrees qualita-
tively with Ogura and Saso.4 By the same criterion, our re-
sults are consistent with those of Cruz, Phillips, and Castro
Neto5 if we interpret the presence of a Kondo-like resonance
at the gap edge in their work with singlet formation at the
impurity site.

Strictly speaking our results are valid only forT50.
However, it is interesting to speculate on what happens at
finite temperatures when there is one hole doped into the
half-filled system. Since there are an odd number of spins,
the system will always have a magnetic moment. The ques-
tion is where does the moment reside. First, consider the case
of large impurity hybridizationV0 where it costs less energy
to spread the hole throughout the lattice than to localize it on
the impurity site (D/2,DE). It is a common expectation that
the local f spin on the impurity site will not be screened at
temperatures less than the gap. However, our results indicate
that this is not always the case. At low temperatures
(T,D/2,DE) a singlet forms on the impurity site even
though there is a gap in the density of states. The spin and
charge densities of the hole spread over the rest of the lattice.

FIG. 8. The chemical potentialm5E(N)2E(N21) versus the
electron fillingN for t51, U058, V51, andL525. The impurity
is located in the middle of the symmetric Anderson lattice. The case
of no impurity is shown for comparison. Solid lines are guides to
the eye.
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At intermediate temperatures (D/2,T,DE), the gap effec-
tively disappears due to thermally activated electrons, and it
is likely that the hole spreads over the host lattice while the
impurity site has a singlet. At high temperatures
(D/2,DE!T), the spin and charge of the hole sit on both
the impurity and lattice sites.

Next consider the case of small impurity hybridization
V0 where it costs more energy to spread the hole throughout
the lattice than to localize it on the impurity site
(D/2.DE). At low (T,DE,D/2) and intermediate tem-
peratures (DE,T,D/2), the spin and charge densities of
the hole are localized in the vicinity of the impurity site.
Again at high temperatures (DE,D/2!T), the hole sits on
both the impurity and lattice sites.

We compared our semiconducting results with those of a
metal. When we put a hole into the half-filled metal, we find
that a singlet forms ifV0 is large. ForV0 small, the magnetic
moment of the hole is localized on thef orbital of the impu-
rity due to finite size effects. The charge density of the hole
is extended for all values ofV0 since it always costs less
energy to put the hole in an extended wave function than to
localize it in the vicinity the impurity.

We found that the impurity in a semiconductor doped
away from half filling acts like a barrier in a symmetric
double well potential. WhenV0 is large, a singlet forms on
the impurity site. This singlet acts like a barrier that divides
the lattice in two. The holes in the system avoid the impurity
and spread over the rest of the lattice. WhenV0 is small, the
first hole goes onto the impurity which acts like a barrier and
divides the lattice for the rest of the holes. These additional
holes spread over the two halves of the lattice. When the
number of delocalized holes is odd, the ground state is nearly
degenerate for both large and small values ofV0.

Finally, we studied the chemical potential as a function of
electron filling. We found that midgap states appear for small
values ofV0 and correspond to the localization of a hole or
particle on the impurity site. AsV0 increases, these midgap
states move towards the edges of the gap, which is associated
with the delocalization of the hole.

It may be possible to look for some of the effects that we
have described in dilute magnetic semiconductors.16 For ex-
ample, NMR could be used to determine if the spin-spin
correlation length decreases as the semiconducting gap
increases.17 However, our calculation has neglected certain
features of those materials such as largeg factors and inter-
actions between impurities. We have also neglected long
range Coulomb interactions and the associated screening ef-
fects which, for example, come into play between an accep-
tor ion and the hole it contributes to the valence band. This is
a subject for future study.
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APPENDIX

In this appendix, we show that to zeroth order in pertur-
bation theory in a periodic system, the spin-spin correlation
function ^0uSz

c(R)Sz
f(0)u0&521/4L in a half-filled one-

dimensional metal with an odd number of sites and an
Anderson impurity at the center.~Thus there is an even num-
ber of electrons.! u0& is the ground state of the unperturbed
Hamiltonian. To construct the ground state, we note that
there is one electron in thef orbital of the impurity, and one
conduction electron on each site. Since there are an odd
number of sites, there are an odd number of conduction
spins. If we think of filling the states in the conduction band
with conduction electrons, one of the states has an unpaired
spin. In the ground state the unpaired conduction spin can
form a singlet or a triplet with thef spin. These two states
are degenerate since there are no interactions to zeroth order.
Since we know that the ground state hasS50 in the pres-
ence of interactions, we will choose the singlet as the ground
state, though we would get the same result if we chose the
triplet as the ground state. Thus, we can write

u0&5
1

A2
@ u↑ f↓c&2u↓ f↑c&], ~A1!

where u↑ f↓c& denotes an upf spin and a down conduction
spin.

The operator for thez component of the conduction spin
on a siteR is

Sz
c~R!5

1

2L (
k1 ,k2

e2 i ~k12k2!R~ck1↑
† ck2↑2ck1↓

† ck2↓!.

~A2!

k is a good quantum number because the system has periodic
boundary conditions. To zeroth order, the only contribution
to ^0uSz

c(R)Sz
f(0)u0& comes from thek15k25kF term of the

sum. One can show that the other terms in the sum cancel
out. Thus, to lowest order,

^0uSz
c~R!Sz

f~0!u0&52
1

4L
. ~A3!

Even though we have derived Eq.~A3! for a periodic
lattice, we expect a similar relation to hold for a chain
with open boundary conditions, i.e., we expect
^0uSz

c(R)Sz
f(0)u0&52b/L to lowest order, where the con-

stantb is of order unity.
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