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Effect of superconducting electrons on the energy splitting of tunneling systems

Clare C. Yu and A. V. Granato
Department of Physics, University of lllinois at Urbana-Champaign, Urbana, Illinois 61801
(Received 27 June 1985)

We consider the effect of superconducting electrons on the magnitude of the energy splitting of a tunnel-
ing system. A specific example is a hydrogen atom tunneling in niobium. We find that in this case the
splitting is roughly 20% smaller in the normal state than in the superconducting state. This difference in the
splitting should be observable in neutron scattering and ultrasonic measurements.

The interaction between tunneling centers and electrons
has been studied in a variety of contexts such as metallic
glasses,'> NH (Ref. 4) and OH (Ref. 5) impurities in crys-
talline niobium and macroscopic quantum tunneling.® In
metallic glasses the relaxation rate 77! of two-level systems
(TLS) due to a Korringa-type process has been found to be
four orders of magnitude larger than that due to phonon
processes.! However, when the electrons are superconduct-
ing, T7 ! is strongly suppressed? as the number of quasipar-
ticles available for scattering decreases. In this paper we ex-
amine the difference in the energy splitting of TLS when
the electrons are normal and when they are superconduct-
ing. We shall show that the splitting is about 20% smaller
in the normal state. Such changes are not observable in
metallic glasses which have a broad distribution of level
splittings. Consider, however, a hydrogen atom tunneling’
in the vicinity of an oxygen defect® in NbO,H,
(x,y =1074-10"3). This provides a clean system in which
these effects can be observed via neutron scattering® !9 and
ultrasonic measurements.* 3 1112

For both neutron scattering and ultrasonic attenuation, as
well as for other properties, there is a well-developed for-
malism for describing the results in terms of the parameters
of the tunneling system. We start with the Hamiltonian:?

H=Hy+H;, +H ,
Ho=73, €kChoCho T EoS; |
ko

1
Hy=(aS;+vyS)7m , M

_ 1
H' =~ 3 (V8. + ViS)eda,,
kk

+ (EkEk,+A2)

where
n(E)=6(E?—A?)~12,
and
fE)=(1+e FE)~1,
A is the BCS energy gap. The first term in brackets comes

from considering virtual processes in which the intermediate
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where E, is the energy splitting of the TLS, S= %o- is the
pseudospin operator describing the two states of the system,
o are the Pauli matrices, n is the elastic strain field, and »
and y are strain coupling coefficients. Since y just renor-
malizes E,, we will set it to zero without loss of generality.
V) and V describe the couplings between the electrons and
the TLS, c,:(7 and cx, are the electron creation and annihila-
tion operators, N is the number of atoms, and ¢, are elec-
tron energies. Let us set aside the lattice contribution H
for a moment.

We now calculate the change in E, via perturbation
theory in H'. This is the analog of the Knight shift in mag-
netic systems. Let us denote the zeroth-order energy levels
by E ‘j‘:’) = i-i—Eo. First-order perturbation theory gives
E(il) = xV,, i.e., the splitting E is shifted by the same
amount in both normal and superconducting states. We will
ignore such terms. In the normal state second-order pertur-
bation theory yields

V.ZL fk(l"fkr)

E(Z) - (2)
* 2N? E iEo+ek—-ek,
=+ 5(pV.)EoIn(Eo/u) + O (ks T/Eo)?, (3)

where f; is the Fermi function, p is the density of states per
atom at the Fermi surface, u is the Fermi energy, and T is
the temperature. In the superconducting state we find
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)]

I ‘
state is related to the initial state by destroying one quasi-

particle and creating another. In the second term two quasi-
particles are destroyed, and in the third term two quasiparti-
cles are created in going from the initial to the intermediate
state. In the limit A — 0, (4) reduces to the normal state ex-
pression (2).

Let us estimate AE=E, — E_ in both the superconduct-
ing and normal states. We take Ep=2 K, A=1.53 meV,
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w=>5.32¢eV, and (p¥,)=0.15. The values for A and u
are those for Nb. Our value for p V) is typical for metallic
glasses! and agrees with the measured contribution to the
resistivity due to hydrogen impurities in niobium.!> Using
these numbers, we obtain at 7=0 AEy=15 K and
AEsc=1.9 K, where the subscripts denote the normal and
the superconducting state. The fact that AEyN is smaller
than A Esc is in keeping with the observation that the relax-
ation rate of the tunneling systems is higher in the normal
state. Electrons scattering off the hydrogen assist in tunnel-
ing and soften the splitting. When the electrons are paired,
this scattering is inhibited. As the superconducting gap goes
to zero with increasing temperature, the number of quasi-
particles increases and the superconducting splitting continu-
ously approaches the value of the normal state splitting. We
have numerically evaluated (2) at finite temperatures and
found that A Ex does not change below 10 K within the er-
ror of the integral (= +40 mK). It is hard to be more
specific than this because the integral is somewhat sensitive
to the cutoff. Between 10-50 K, A Ey appears to increase
slightly by = 150 mK, though in this temperature range the
effect of phonons should be taken into account more care-
fully. :

For H trapped by an oxygen atom in Nb, the spatial con-
figuration of the tunneling complex has not yet been es-
tablished, but inelastic neutron scattering and ultrasonic
measurements can be described in terms of a TLS formal-
ism. For neutron scattering the relationship between the
inelastic scattering energy and AE is direct, but the mea-
surements must be made on samples with very low OH con-
centration (= 100 ppm), so that the intensities are difficult
to measure. In recent measurements of much improved
sensitivity, there is evidence that changes in AE of this size
have been seen.!* For ultrasonic measurements the rela-
tionship between elastic constant changes and AF is indirect,
but measurement sensitivities better than 107% can be
achieved, so that the effects are easily detected even at low
concentrations.

The relationship between the observed elastic constant
change and the tunnel splitting depends upon the magnitude
and distribution of strains acting on the TLS.!5"!8 At high
enough temperatures the measurements contain a ‘‘reso-
nance’” and a relaxation contribution to the elastic con-
stants. The latter refers to the relaxation back to thermal
equilibrium of the tunneling centers which have been per-
turbed by the sound wave. The former depends on the cur-
vature of the energy levels as a function of strain, and does
not necessarily refer to the absorption of a phonon with en-
ergy equal to the tunnel splitting. At low enough tempera-
tures, only the resonance contribution remains. By making
measurements in both the normal and superconducting
states these contributions can be isolated, and the three
parameters AE, «, and n which completely specify the TLS
states can be determined separately. This has been done’
for the OH system in Nb, but not yet at low enough tem-
peratures to determine Esc— En. For a second system of
hydrogen trapped by oxygen in niobium produced by
quenching (perhaps OH,), a change in the low-temperature
resonance has been observed,’ showing the existence of a
change in the tunnel splitting. However, for this system the
number of energy levels involved is not yet known, so that
the magnitude of the tunnel splitting has not yet been deter-
mined. In what follows an outline of the formalism describ-
ing the relation between the elastic constant change and the

tunnel splitting is given to define the optimum conditions
for observing the effect. The result is that measurements
should be made at low temperature in specimens containing
low concentrations of oxygen and hydrogen.

. A change in AE will cause a change 8C in the elastic con-
stant, which, by definition, is given by

d°F
an?’

where F is the free energy. Taking H; into account, the to-
tal tunnel splitting € is given by

Qo= (AEX+a2p})V? | 6)

5C = )

The free energy is given by

F=kgTfInZ , ¢))
where

Z=3 exp(—E/ksT) ,

and the sum is over the energy levels at a single site. Here
f denotes the concentration of TLS. For k3T << AE, only

the ground state @ _ = — 5 (AE?+a?n?)Y? is populated, so
that F= £ _ and
ﬂ - — _f&z___AEz—_ 8)
C 2C (AE +aig)?

Here C is the (Cy1— C12)/2 elastic constant. At finite tem-
peratures Eq. (8) must be multiplied by tanhQ/2kpT.
Equation (8) shows how the elastic constant change depends
upon the strains acting on the TLS.

There are two important limiting cases for strain distribu-
tions which might be expected. The first is one for which
the same tunneling configuration appears throughout the
sample and the local strain field dominates over random
strain fields. In this case the distribution may be taken to
be a delta function, and Eq. (8) gives the relation between
8C/C and the splitting (curve A in Fig. 1). In the other
case only random strains act on the TLS and a Lorentzian
distribution may be used:'®

S U )
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() T n*+nj

Let x =AE/ano. Then we obtain

8C> faA 2 1|1 '
N _ 1+4 Ll-
<C ano( ) tan [Al Al, x>1
= Jad (A'2~1)tanh"[~l7 -4, x<1, Qo
wCmo A
where
1
2= ,
x2—1

and A= — 42 Curve B in Fig. 1 shows (8) averaged over
P(m). Here ( ) denotes an average over P(7). For small
strains (amo << AE),

<§éc—>z - 22‘2AE an

for both distributions. This is inversely proportional to AE,
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FIG. 1. Elastic constant change at zero temperature for a TLS as
a function of the tunnel splitting. The elastic constant change
(8C/C) is normalized by fa/mCng, and the tunnel splitting AE is
normalized by ang. Curve A is for a delta-function strain distribu-
tion, curve B is for a Lorentzian distribution, and curve C is the
small strain asymptote.

because decreasing the splitting increases the curvature (5)
which determines the elastic constant. For large strains the
change in the elastic constant goes to zero for a delta-
function distribution, since the curvature becomes small,
while for a Lorentzian distribution the change remains finite
even for large my, since there are always some states with
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large curvature contributing. Since the strain » is deter-
mined by the oxygen content, one sees from the above that
optimum conditions for measurements are obtained when
(a) amo < AE (low oxygen content), (b) the hydrogen con-
centration is comparable to the oxygen concentration
fu=fo, and (c) the temperature is low (kT << AE).
This then suggests measurements in Nb samples with less
than 100 ppm of oxygen at temperatures << 2 K.

For a moderate strain mo=10"3, Eq. (10) gives
(38C/C)y=—3.2%x10"* in the normal state and
(8C/C)sc= —2.7%107% in the superconducting state. We
have taken Eqo=2 K, =100 meV, C = 6.3 eV/atom, and
the concentration f = 10~*. The change in the elastic con-
stant is = 5x 1075, If the experiment is done at 10 MHz
using an interferometric method in which an elastic constant
change is detected as a frequency change with
8f/f=8C/2C, this corresponds to a change of =250 Hz
which certainly should be observable. In the optimum case
of small strain; Eq. (11) implies that the frequency change
would be =660 Hz. Thus, the presence of a moderate
strain substantially reduces the frequency change, because it
broadens the distribution of splittings. This implies that

. quantitative results require a measurement of the internal

strain.

In conclusion, we have shown that tunnel splitting of a
TLS is renormalized by electrons. In the case of a hydrogen
atom tunneling in a niobium host, the splitting in the nor-
mal state is about 20% smaller than in the superconducting
state. This should have observable consequences in neu-
tron scattering and ultrasonic experiments.
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