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1Õf noise in electron glasses

Kirill Shtengel* and Clare C. Yu†

Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697-4575
~Received 13 January 2003; published 22 April 2003!

We show that 1/f noise is produced in a three-dimensional electron glass by charge fluctuations due to
electron hopping between isolated sites and a percolating network at low-temperatures. The low-frequency
noise spectrum goes asv2a with a slightly larger than 1. This result together with the temperature dependence
of a and the noise amplitude are in good agreement with the recent experiments. These results hold true both
with a flat, noninteracting density of states and with a density of states that includes the Coulomb interactions.
In the latter case, the density of states has a Coulomb gap that fills in with increasing temperature. For a large
Coulomb gap width, this density of states gives a dc conductivity with a hopping exponent of'0.75 which has
been observed in recent experiments. For a small Coulomb gap width, the hopping exponent'0.5.
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I. INTRODUCTION

Low-frequency 1/f noise1–3 is found in a wide variety of
conducting systems such as metals, semiconductors, tu
junctions,4 and even superconducting quantum interfere
devices.5,6 Yet the microscopic mechanisms are still not w
understood. One example is an electron glass which is
insulator where electrons are localized by a strong rand
potential. A special case of this is a Coulomb glass in wh
the electrons interact with one another via a long-range C
lomb potential. Doped semiconductors and strongly dis
dered metals provide examples of electron glasses. Exp
mental studies on doped silicon inversion layers have sh
that low-frequency 1/f noise is produced by hoppin
conduction.7 Since the systems are glassy, electron hopp
can occur on very long time scales which can produce lo
frequency noise. In this paper, we show that the resul
noise spectrum goes asf 2a, where f is frequency and the
temperature-dependent exponenta.1.

Shklovskiı̆has suggested that 1/f noise is caused by fluc
tuations in the number of electrons in an infinite percolat
cluster.8 These fluctuations are caused by slow exchange
electrons between the infinite conducting cluster and
small isolated donor clusters. Subsequently, Kogan
Shklovskiı̆ combined a more rigorous calculation with n
merical simulations and found a noise spectrum wherea was
considerably lower than 1.9 Furthermore, below a minimum
frequency of order 1–100 Hz, the noise spectral density s
rated and became a constant independent of frequency. T
calculations were valid only in the high-temperature regi
where the impurity band was assumed to be occupied
formly and the long-range Coulomb correlations were ess
tially neglected. Since then there have been attempts to
clude the effects of correlations.

In particular, Kozub suggested a model,10 in which elec-
tron hops within isolated pairs of impurities produce fluctu
tions in the potential seen by other hopping electrons
contribute to the current. While leading to 1/f -type noise
within some frequency range, this model also shows lo
frequency noise saturation due to the exponentially sm
probability of finding anisolated pair of sites with a long
0163-1829/2003/67~16!/165106~8!/$20.00 67 1651
nel
e
l
an
m
h
u-
r-
ri-
n

g
-
g

g
of
e
d

u-
eir
e
i-

n-
n-

-
at

-
ll

tunneling time. Moreover, the noise magnitude is predic
to increase as the temperatureT→0 in contradiction with the
recent experimental findings of Massey and Lee.11 This, in
part, led Massey and Lee to the conclusion that the sin
particle picture is inconsistent with the observed noise
havior. A different approach was proposed by Kogan12 who
considered intervalley transitions as the source of the h
ping conduction noise. Unfortunately, this approach do
not seem to be analytically traceable and is not easily ge
alizable.

In this paper, we extend Kogan and Shklovski˘’s
approach9 by including the energy dependence of the ho
ping as well as the effects of electron-electron interactions
the single-particle density of statesg(«). This is essentially a
mean-field approximation: we assume that charge is car
by electronlike quasiparticles whose interaction with t
other charges is taken into account via the single-part
density of states. Later we will present some justification
why we believe this approach works for low-frequen
noise. For comparison we also consider the case of nonin
acting electrons with a flat density of states.

The paper is organized as follows. In Sec. II A, we d
scribe our calculation of the noise spectral density. In S
II b, we present the density of states that includes the C
lomb gap and that models the decrease in the gap with
creasing temperature. We show that this form of the den
of states yields the usual value of the hopping expon
d'0.5 for small values of the Coulomb gap widthEg . How-
ever, for large values ofEg , d'0.75. Both values have

been seen experimentally.11,13–17In Sec. III, we present our
results.

II. CALCULATION

A. Noise spectral density

We start with a model of the Coulomb glass in whic
electrons occupy half of the impurity sites. Each site c
have at most one electron due to a large on-site repuls
The sites are randomly placed according to a uniform spa
distribution, and each has a random on-site energyf i chosen
from a uniform distribution extending from2W/2 to W/2.
Thus,go , the density of states without interactions, is flat.
T50 such a system is a perfect insulator, while at low b
©2003 The American Physical Society06-1
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KIRILL SHTENGEL AND CLARE C. YU PHYSICAL REVIEW B 67, 165106 ~2003!
finite temperatures it will be able to conduct via variab
range hopping.18–20 In this picture, the dc conductivity is
dominated by particles hopping along the percolating n
work, which is constructed as follows. The resistanceRi j
associated with a transition between sitesi and j grows ex-
ponentially with both their separationr i j and energy differ-
ence« i j :

Ri j 5Ri j
o exp~xi j !, ~1!

where the prefactorRi j
o 5kT/(e2g i j

o ) with g i j
o being given

by18

g i j
o 5

D2uD i
j u

prs5\4 F 2e2

3kj G2 r i j
2

j2 F11S D i
jj

2\sD
2G24

, ~2!

whereD is the deformation potential,s is the speed of sound
r is the mass density,j is the localization length, andk is the
dielectric constant.D i

j5« j2« i2e2/kr i j is the change in en
ergy that results from hopping fromi to j with « i5f i
1( j (e

2/kr i j )nj being a single-site energy. In Eq.~1!, the
exponent is given by

xi j 5
2r i j

j
1

« i j

kT
. ~3!

The exponent reflects the thermally activated hopping
betweeni andj as well as the wave-function overlap betwe
the sites:

« i j 5H u« j2« i u2
e2

kr i j
, ~« i2m!~« j2m!,0

max@ u« i2mu,u« j2mu#, ~« i2m!~« j2m!.0
~4!

~in what follows, we choose the Fermi levelm50!.
A noninteracting picture of dc conduction is described

terms of electron hopping between sites in the cluster
spans the entire sample. In order to determine which sites
in a cluster, we introduce the ‘‘acceptance’’ parameterx such
that any two sitesi and j are considered ‘‘connected’’ ifxi j
<x and disconnected otherwise. For small values ofx, only
rare pairs of sites are connected. As we increasex, more such
pairs appear and small clusters start coalescing into big
ones until an infinite cluster—the critical percolatin
network—is formed at somexc . At this point we can neglec
the contribution of the remaining impurity sites to the
conductivity since it is exponentially small as compared
that of the sites already in the percolating network~although
the former sites are important for understanding both ac c
ductivity and noise!. In a similar manner the resistance of th
critical percolating network is dominated by a few pairs w
xi j 5xc—these are the pairs that bridge the gaps betw
large finite clusters enabling the formation of the infin
cluster. Hence, the resistance of the entire sample is
approximated byRtot'Roexp(xc), where Ro[kT/(e2go)
with go being the average value ofg i j

o given by Eq.~2!.
In the presence of the Coulomb interactions, there is

exact mapping of transport onto a percolation picture. W
nevertheless, assume that upon diagonalizing the interac
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Hamiltonian one finds that charge carrying excitations are
a local nature, and so they can be treated within the pe
lation picture as noninteracting quasiparticles. The Coulo
interactions renormalize the single-particle density of sta
which acquires a soft gap. We will discuss this in more de
in the section on the density of states. However, we w
mention here that this approach appears to work well for
conduction and leads to a temperature dependence of
conductivity,18,21,22 which is distinctly different from the
noninteracting case and which agrees with experiment~see,
for example Ref. 23!. However, the question about the valid
ity of this approach is still far from being settled—see R
24 for a different point of view.

In our treatment we will focus on the noise caused
quasiparticle hopping between isolated clusters and the
colating network, producing fluctuations of charge in t
latter.8,9 Let NP be the average number of such particles
the critical percolating network anddNP(t) be its time-
dependent fluctuation. Assuming that only stationary p
cesses are involved@i.e., ^dNP(t2)dNP(t1)&5 f (t22t1)], we
can use the Wiener-Khintchine theorem3 to relate the noise
spectral densitySI(v) of current fluctuations to the Fourie
transform of the autocorrelation function:

SI~v!

I 2
5

2^dNP~ t2!dNP~ t1!&v

NP
2

, ~5!

whereI is the average current. The charge fluctuation au
correlation function can be expressed as a superpositio
modesa, each of which relax exponentially with a chara
teristic timeta . Thus the Fourier transform̂•••&v of the
autocorrelation function is a weighted sum ov
Lorentzians,9

^dNP~ t2!dNP~ t1!&v5
2kT

e2 (
aÞ0

ta

11v2ta
2 U(i PP

Cica~ i !U2

.

~6!

Here,Ci[(e2/kT) f i(12 f i) is the capacitance of sitei „with
f i5@exp(«i /kT)11#21 being its equilibrium occupancy…,
while ta

21 andca( i ) are theath eigenvalue and eigenvecto
respectively, of the following system of linear equations:

(
j

Ri j
21@ca~ i !2ca~ j !#5ta

21Cica~ j !, ~7!

with Ri j being the intersite resistances given by Eq.~1!.
SinceRi j

21 is proportional to the hopping ratet i j
215g i j

o exp
(2xij) from site i to site j, Eq. ~7! relatest i j

21 to the relax-
ation ratesta

21 of the entire percolating network. The su
over sitesi in Eq. ~6! runs only over those sites that belong
the critical percolating network since only their occupanc
affect the current through the sample. The physical mean
of the quantityCica( i ) is that it is proportional to the fluc-
tuation d f i of the occupation of sitei and decays exponen
tially with the associated time constantta . The eigenvectors
satisfy the following conditions:
6-2
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1/ f NOISE IN ELECTRON GLASSES PHYSICAL REVIEW B67, 165106 ~2003!
(
i

Cica~ i !cb* ~ i !5dab , ~8!

(
a

Cica~ i !ca* ~ j !5d i j , ~9!

(
i

Cica~ i !50, ;aÞ0. ~10!

The first condition states that the eigenfunctions are ort
normal; the second states that the functions form a comp
set. One of the eigenfunctions is a constant, which we tak
be the one corresponding toa50. This has the eigenvalu
t0

2150. Equation~10! is the orthonormalization condition
between this eigenstate and the others. It represents the
that the fluctuations in occupation represented by theaÞ0
modes do not affect the total number of electrons on
impuritiy sites. Thus, the last equation is just the statemen
overall charge conservation. We remark here that Eqs.~7! are
linear only within the assumption made earlier about non
teracting quasiparticles. Otherwise,Ri j are not constant co-
efficients; they depend on the on-site energies, which in t
depend on the occupancies of other sites.

Since we are interested in the modes that affect the ch
in the conducting network, we can replace the sum overa by
a sum over all finite clusters that coalesce with the infin
cluster as the acceptance parameter increases abovexc . In
particular, we can replace the sum overa by an integral over
x and a sum over all finite clusters merging with the infin
cluster at a given value ofx. With this in mind, we can
evaluate Eq.~6! using Eqs.~8! and ~10!. For a single mode
a, the sum over sitesi can be split into a sum over finit
clusters~FC! and a sum over the infinite cluster~IC!. So we
can write the normalization condition, Eq.~8!, and the charge
conservation condition, Eq.~10!, as

(
mPFC

Cmca
2~m!1 (

nPIC
Cnca

2~n!51, ~11!

(
mPFC

Cmca~m!1 (
nPIC

Cnca~n!50, ~12!

respectively. Since the fast modes equilibrate the occupat
of sites within each cluster, the eigenfunctions do not dep
on their site indices within each cluster, i.e.,ca(m)
5ca,FC, ;mP FC andca(n)5ca,IC , ;mP IC. As a re-
sult, we can takeca,FC andca,IC out of the sums in Eqs.~11!
and ~12!. The sum over capacitances in the finite cluste
will be much smaller than the sum over the infinite clus
which implies that (ca,IC)2 is negligible in Eq.~11!. This
leads to

ca,FC5S (
mPFC

CmD 21/2

. ~13!

Plugging this into Eq.~12! yields

ca,IC (
mPIC

Cm52S (
mPFC

CmD 1/2

. ~14!
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We can use these results to evaluate the sum over sites in
~6! by noting that all the sites in the critical network are al
in the infinite cluster by definition. Thus,

(
i PP

Cica~ i !5
NP

NIC~x! (
i PIC

Cica,IC52
NP

NIC~x! S (
i PFC

Ci D 1/2

,

~15!

whereNIC(x) is the number of sites in the infinite cluster
a given value ofx.

In evaluating Eq.~6!, we make the following approxima
tion for ta . Since we are interested in the modesa that
affect the charge of the percolating network, we only co
sider particle exchange between the isolated clusters and
infinite cluster. This involves hopping times that are long
than those within the percolating network itself by definitio
Due to the exponentially wide distribution of hopping tim
t i j , such exchange is likely to be dominated by the sin
closest pair of sites in which one belongs to the finite and
other to the infinite cluster. The relaxation times within ea
cluster are much faster, and therefore the above-mentio
pair serves as a ‘‘bottleneck’’ for intercluster relaxation.
simple diagonalization of the system of Eqs.~7! for two clus-
ters A1 and A2 with the bottleneck hopping resistanceR
5min(Rij ;iPA1 , j PA2) between them~and with the as-
sumption that all other intercluster resistances are m
higher and all intracluster resistances are much lower t
R) leads to the following expression for the intercluster
laxation time:

t5RS F (
i PA1

Ci G21

1F (
j PA2

Cj G21D 21

. ~16!

Since we are interested only in the situation where one of
clusters is infinite, this simplifies Eq.~16! to t5R( i PACi ,
whereA is the finite cluster.

We can substitute this value oft into Eq.~6! by replacing
the sum over all modesa by a sum over all finite clusters
that coalesce with the infinite cluster as the acceptance
rameterx is increased abovexc . Each such finite cluste
contributes one new term to the sum overa in Eq. ~6! with
the correspondingta5R(x)( i PACi , where R(x)5Roex.
Then we can write the spectral density of the noise as
lows:

SI~v!

I 2
5

16kT

e2 E
lxc

`

dx( 8
A

NIC
22~x!R~x!S (

i PA
Ci D 2

11v2R2~x!S (
i PA

Ci D 2 ,

~17!

where (A8 stands for the sum over all finite clusters th
coalesce with the infinite cluster asx increases bydx. The
parameterl>1 and sets the distance inx space from the
percolation threshold.

This equation is difficult to evaluate mathematically. Fo
tunately, however, we can extract the low-frequen
asymptotic behavior of Eq.~17! where the above approxima
tions are well justified. The lowest-frequency contributio
6-3
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KIRILL SHTENGEL AND CLARE C. YU PHYSICAL REVIEW B 67, 165106 ~2003!
come from large values ofx where the infinite cluster ha
already absorbed almost all the sites~i.e., NIC'N, the total
number of sites!. What is left are the small clusters, whic
are mostly isolated sites in the increasingly rare voids of
infinite cluster. The probability of having two such sites
the same void is negligibly small. Since low-frequency no
will be dominated by the hops between such isolated s
and the infinite cluster, we only consider such hops in
taining the spectral density of current fluctuations. In E
~17!, we can setl to correspond to this situation at largex,
and we can replace the sum over all finite clusters that
merging with the infinite cluster with a sum over all sit
multiplied by the probabilityP̃1(x,«)dx that a single site
with energy « has its nearest neighbor betweenx
andx1dx.

We can write down an expression forP̃1(x,«)dx. We
begin by definingP1(x,«) to be the probability that a given
site with on-site energy« has no neighbors nearer thanx. Let
exp@2r(x,«)dx# be the probability that a site with energy«
has no neighbors betweenx andx1dx. Then

P1~x,«!5expS 2E
0

x

r~x8,«!dx8D . ~18!

We can use this to expressP̃1(x,«)dx as the product of
P1(x,«), the probability of no neighbors withinx, multiplied
by the probability of having a neighbor betweenx and x
1dx:

P̃1~x,«!dx5P1~x,«!@12e2r(x,«)dx# ~19!

52F ]

]x
P1~x,«!Gdx. ~20!

Thus, (2]P1 /]x) is the probability density for a site to hav
its nearest neighbor betweenx andx1dx. We can now write
the spectral density of current fluctuations as

SI~v!

I 2
5

16kTV

e2N2 E
lxc

`

dxE
2W/2

W/2

d«g~«,T!

3S 2
]P1~x,«!

]x D R~x!C2~«!

11v2R2~x!C2~«!
, ~21!

whereV is the volume,W is the bandwidth, andf («) is the
Fermi occupation number. To obtain an expression
P1(x,«), we note that the average numberdN of impurity
sites found in a phase volume elementdV5ddrd«8 within a
distancex of a site with energy« is given by

dN5g~«8!uS x2
2r

j
2

u«u1u«8u1u«2«8u
2kT Dd«8ddr .

~22!

The probability that no sites are indV is given by

lim
N→`

F12
dN

N GN

5e2dN. ~23!
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Thus, the probabilityP1(x,«) that a given site with on-site
energy« has no neighbors nearer thanx is given by

P1~x,«!5expH 2E ddr E
2W/2

W/2

d«8g~«8,T!

3uS x2
2r

j
2

u«u1u«8u1u«2«8u
2kT D J . ~24!

Notice the absence of the Coulomb energy in the argum
of the u function in Eq.~24!, in accordance with our quasi
particle picture. Our quasiparticle picture is likely to wo
best for hops between isolated sites and the infinite clus
Although one such hop may result in a sequence of ot
hops, these will mostly happen within the infinite cluster
a much shorter time scale, effectively renormalizing t
properties of the ‘‘slow’’ particle. As was mentioned earlie
these renormalizations can be included in the single-part
density of statesg(«,T).

To facilitate evaluating the integral in Eq.~21! numeri-
cally for the case where we include a Coulomb gap in
density of states, we define the dimensionless variabler̃

5r /j, «̃5«/Eg , ṽ5v/go, T̃5kT/Eg , t̃5goR(x)C(«)
5 f («)@12 f («)#ex, and g̃( «̃,T̃)5g(«,T)/go. go is the
noninteracting density of states andEg'e3Apgo/3k3 is the
characteristic width of the Coulomb gap. Evaluating the
tegral overx in Eq. ~21! leads us to define

x̃52r̃ 1
u«̃u1u«̃8u1u«̃2 «̃8u

2T̃
. ~25!

Then we can rewrite Eq.~21! as

SI~v!

I 2
5AE

2W̃/2

W̃/2
d«̃g̃~ «̃,T̃!E

2W̃/2

W̃/2
d«̃8g̃~ «̃8,T̃!E

0

R̃V
r̃ 2dr̃

3u~ x̃2lxc!
P1~ x̃,«̃ !t̃~ x̃,«̃ ! f ~ «̃ !@12 f ~ «̃ !#

11ṽ2t̃2~ x̃,«̃ !
,

~26!

where A564pgo
2Eg

2Vj3/(N2go), R̃V5(3V/4p)1/3/j, W̃
5W/Eg , h54pgoEgj3, and

P1~ x̃,«̃ !5expF2hE
0

R̃V
r̃ 82dr̃8E

2W̃/2

W̃/2
d«̃9g̃~ «̃9,T̃!

3uS x̃22r̃ 82
u«̃u1u«̃9u1u«̃2 «̃9u

2T̃
D G . ~27!

For comparison we also consider the case with no C
lomb gap by settingg(«,T)5go in Eqs.~21! and~24!. Since
there is no natural energy scale, we do not rescale the e
gies. However, we can definer̃ , t̃, and ṽ as before. As a
result, the definition ofx̃ in Eq. ~25! becomes x̃52r̃
1(u«u1u«8u1u«2«8u)/(2T). In Eq. ~26!, A is replaced by
Ao564pVgo

2j3/N2go andW̃ is replaced by simplyW. In Eq.
~27!, h is replaced byho54pj3go .
6-4
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III. DENSITY OF STATES

At zero temperature, long-range interactions produc
Coulomb gap centered at the Fermi energy
g(«,T).18,21,25,26This gap arises because the stability of t
ground state with respect to single-electron hopping from
occupied sitei to an unoccupied sitej requires that the en
ergy differenceD i

j.0. At finite temperatures, the Coulom
gap is partially filled and the density of states no long
vanishes at the Fermi energy.27–32The exact form ofg(«,T)
is not known, but some have argued30–32 that its low-
temperature asymptotic behavior is described byg(«50,T)
;Td21. We have done Monte Carlo simulations of a thre
dimensional Coulomb glass with off-diagonal disorder a
we find that g(«50,T) cannot be described by a simp
power law.28,33 The results of such simulations do not pr
duce a density of states that is suitable for use in our n
integrals due to finite-size effects. In particular,g(«,T) goes
to zero at energies far away from the Fermi energy beca
of the finite size of the system.

Another way to approximate the density of states is to
the Bethe-Peierls-Weiss~BPW! approximation.31 The idea is
to treat the interactions between one ‘‘central’’ site and
other sites~boundary sites! exactly, but to include the inter
actions between these boundary sites by means of effe
fields. The density of states can then be written as a con
lution

g~«,T!5E
2Wo/2

Wo/2

d«8g~«2«8!
1

kT
hS «8

kTD , ~28!

whereg(«) is the zero-temperature density of states andWo
is the bandwidth. The functionh(«/kT) takes into accoun
thermal fluctuations in the occupation of the central site a
the boundary sites. At low temperatures, it has a sharp p
with a width of the orderkT at «50. We can make the
approximation (1/kT)h(«/kT)'2 f 8(«), wheref 8(«) is the

FIG. 1. The density of statesg(«,T) versus« at various tem-
peratures. The symbols are calculated using Eq.~28! with Wo/2
52.33104 K. The density of states is measured from the Fer
energyEF50. The lines are the result of evaluating Eq.~29! with
Eg5100 K. go56.2531025 states/K Å3.
16510
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derivative of the Fermi function. The zero-temperature d
sity of states can be determined numerically by solving
self-consistent equation based on the ground-state stab
condition that a single-electron hopping from an occup
site i to an unoccupied sitej requiresD i

j.0.34,35 The result
of evaluating Eq.~28! is shown in Fig. 1.

Since using the BPW approximation to evaluate Eqs.~21!
and~24! is rather awkward, we model the finite-temperatu
density of states by

g~«,T!5go

«21~kT!2

Eg
21«21~kT!2

. ~29!

Notice that forT50, g(«,T50);«2 for «!Eg as is ex-
pected for a Coulomb gap in three dimensions. For la
energies («@Eg and«@kT), g(«,T) approaches the nonin
teracting valuego . A comparison of Eq.~29! with the BPW
approximation at various temperatures is shown in Fig.
Equation ~29! is the expression we use for the density
states of a Coulomb glass in Eqs.~21! and ~24!.

We can calculate the dc conductivity resulting from th
density of states by following Mott’s argument for variab
range hopping.18 We start with the hopping resistanceRi j
given by Eq.~1!. Mott pointed out that hopping conductio
at low temperatures comes from states near the Fermi en
If we consider states within«o of the Fermi energy (EF
50), then the concentration of states in this band is

i

FIG. 2. x(«o ,T) versus temperature with go56.25
31025 states/K Å3 andj510ao55.29177 Å, whereao is the Bohr
radius and 10 is an estimate of the dielectric constant. We s
plots for Eg50.4 K ~s!, Eg58 K ~h!, and Eg5200 K ~n!. Eg

50.4 K corresponds to the value of the Coulomb gap deduced f
transport measurements, whileEg58 K value from tunneling mea-
surements on Si:B~Refs. 22 and 37!. The lines are fits to the nu
merical data with the indicated slopes. The fit to theEg50.4 K data
yields d50.56 andTo519 K. The fit to theEg58 K data at low
temperatures yieldsd50.47 andTo527 206 K, while the fit to the
high-temperature data yieldsd50.72 andd50.357 K. The fit to the
Eg5200 K data yieldsd50.75 andTo542 068 K. d is virtually
independent ofgo but To does depend ongo . For example, chang-
ing go by 10 orders of magnitude to 6.2531015 states/K Å3 results
in d50.75 andTo519 K for Eg5200 K.
6-5
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N~«o ,T!5E
2«o

«o
g~«,T!d«, ~30!

whereg(«,T) is given by Eq.~29!. So the typical separation
between sites isRo5@N(«o ,T)#21/3. To estimate the resis
tance corresponding to hopping between two typical state
the band, we replacer i j with Ro and« i j with «o in Eq. ~3! to
obtain x(«o). Minimizing x(«o) numerically yields«o . A
plot of x(«o) versus temperature is shown in Fig. 2. The
conductivity is then given bys(T)5soexp@2x(«o)#. We find
that at low temperatures (T!Eg),

s~T!5soexpF2S To

T D dG , ~31!

whered is the hopping exponent. The value ofd depends on
Eg . For large values of the Coulomb gap (Eg*50 K)
d'0.75, while for small values of the Coulomb gap (Eg
&1 K) d'0.5. When we tried intermediate values ofEg
58, 10, and 20 K, we found that ln@x(«o)# versus ln(T) had a
break in slope withd'0.5 at low temperatures and wit
d'0.72-0.75 at high temperatures. Examples are show
Fig. 2. d50.75 is higher than the Mott value ofd50.25
associated with a flat density of states and the value ofd50.5
derived by Efros and Shklovskii21 for the zero-temperature
Coulomb gap. However, experiments on materials such
ultrathin metal films find values ford50.7560.0513–17 in

FIG. 3. The noise power spectrum as a function of frequen
The frequency is measured in the units ofgo which is estimated to
be of the order of 1013 Hz for values appropriate for insulating Si:B
Unless otherwise noted, all curves in this and the following figu
which were obtained for the case with a Coulomb gap usedh
54pEgj3go;12@Eg /(e2/kj)#354.831026, which in our esti-
mates corresponds to the experimental dopant concentratio

roughly n50.8nc for Si:B ~Refs. 11 and 23!. We setW̃520, R̃V

5100, andlxc51 ~the precise value ofl has no effect on the
low-frequency noise that is governed byx@xc). The parameterA
[64pVEg

2go
2j3/N2go. For comparison, we show the nois

spectrum in the absence of a Coulomb gap withg(«,T)5go in Eqs.
~21! and ~24!. In the absence of a Coulomb gap,A is replaced by
Ao[64pVgo

2j3/N2go and h is replaced byho54pj3go54.8
31026. The energy is measured in arbitrary units and we seW
520. The other variables are the same as in the case of a fi
Coulomb gap.
16510
in

in

as

agreement with our value ofd for largeEg . The mechanism
behind this exponent has been a puzzle13,36. Here we see tha
a possible simple explanation for the experimental obse
tion of an anomalous hopping exponent is that the Coulo
gap in the single particle density of states is filling in wi
increasing temperature. If one takes this into account in
variable range hopping calculations, then the observed ex
nent of 0.75 can be obtained naturally. However, we sho
be cautious that our calculation applies to three dimensi
while a two dimensional calculation may be more approp
ate for ultrathin films. In fact, we find that the analogo
two-dimensional calculation with a density of statesg(«,T)
5go(u«u1kT)/(Eg1u«u1kT) yields d'0.5.

IV. RESULTS

We evaluate Eqs.~26! and ~27! numerically and display
the results in Figs. 3–6. In Fig. 3, we show the spec
density of the noise as a function of frequency. We find t
for a wide range of parameters the noise spectral densit
given byS(v);v2a with the spectral exponenta between
1.07 and 1.16~see Figs. 3 and 5! which is 1/f noise. For
comparison, we show in Fig. 3 the noise spectrum in
absence of a Coulomb gap withg(«,T)5go in Eqs.~21! and
~24!. The slope of a line through the open squares is21.12
which is very close to the values obtained with a Coulom
gap. Notice that the presence of a Coulomb gap reduces
noise amplitude at low temperatures.

In Fig. 3, we use thetransport value of Eg'0.4 K, not
the tunneling one;8 K; the two were found to be differen
by an order of magnitude.22,23We find that increasingEg by
a factor of 20 does not produce a noticeable change in
results at low temperatures (T50.1 Eg), but at high tem-
peratures (T510 Eg) it does lead to saturation of the nois

y.

s

of

ite

FIG. 4. The noise power spectrum as a function of frequenc
T510 Eg for various values ofh54pEgj3go . The rest of the
parameters are the same as in Fig. 3. Notice the saturation at
frequencies for largeh. For comparison, we show the case with n
Coulomb gap atT510 with a large value ofho54pj3go . Large
values ofho lead to saturation but small values do not.
6-6
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power at low frequencies. This is shown in Fig. 4 that a
shows that saturation occurs in the absence of a Coul
gap whenho is increased by a factor of 20. This saturation
the noise power occurs because the probabilityP1(x,«) of
finding a site with no neighbors closer thanx @see Eq.~24!#
decreases exponentially with increasing temperature
with increasingh or ho . In addition,P1(x,«) becomes ex-
ponentially small asx becomes large, and it is the large va
ues ofx that contribute to the low-frequency noise. Fina
we note that decreasingEg by a factor of 10 does not pro
duce a noticeable change in the results for either low te
peratures (T50.1 Eg) or high temperatures (T510 Eg). We
plot the spectral exponenta in Fig. 5 versus temperature fo
the cases with and without a Coulomb gap in the density
states. In both cases, we see that it decreases slightly
increasing temperature and eventually saturates in qualita
agreement with the experiment.11 Figure 6 shows that the
noise amplitudeAS grows with temperature and eventual
saturates, both in good qualitative agreement with the exp
mental results of Massey and Lee.11 The data of Massey an
Lee span two decades in frequency, while our calculati
are able to cover a much broader range. Again we see f
Fig. 6 that the presence of a Coulomb gap reduces the n
amplitude at low temperatures. We obtain qualitatively
same results both with and without a Coulomb gap in
density of states which implies that the behavior of the no
spectral density with respect to temperature and frequenc
not strongly tied to the hopping exponentd or to the particu-
lar form of the density of states.

We will now discuss some of the physical reasons beh
our results. The fact that we obtain 1/f noise is perhaps to b
expected, since weighted sums over Lorentizians@see Eq.
~6!# often result in 1/f noise.1 The subtlety lies in the tem
perature dependence of the noise amplitude. For simpli

FIG. 5. The spectral exponenta as a function of temperatur
with a Coulomb gap in the density of states~L! and with a flat
density of states~s!. We have suppressed the error bars for the c
with no Coulomb gap to avoid cluttering the graph. The suppres
error bars are comparable to those for the exponent with a Coul
gap at high temperatures. The temperature is measured in un
the Coulomb gapEg for the case where there is a Coulomb gap, a
in arbitrary units for the case without a Coulomb gap. The in
shows the experimental data obtained for Si:B~Ref. 11!.
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let us consider the case of density of states with no Coulo
gap, which gives qualitatively the same results as the c
with a Coulomb gap. The decrease in the noise amplitudeAS
with decreasing temperature is due to the presence of
vated hopping processes which decrease with decrea
temperature. However, this is not at all obvious from E
~26!. The integral for the noise power at low frequencies
dominated by largex̃ which corresponds to long relaxatio
times t̃;exp(x̃). In this case, the factor off («)@12 f («)#
cancels between the numerator and denominator leaving
temperature dependence of the integrand dominated
P1(x,«)exp(2x̃). P1(x,«) increases while exp(2x̃) de-
creases with decreasing temperature. The fact that our ca
lations yield a decrease in the noise amplitude with decre
ing temperature implies that the activated hopping proces
associated with exp(2x̃) dominate. We should mention tha
experimentally the noise power does not always decre
with decreasing temperature. In some cases, it increases
decreasing temperature,38,39 but we do not know the differ-
ences in the samples which can account for this differenc
behavior.

To summarize, recent experiments on 1/f noise11 are con-
sistent with a quasiparticle percolation picture of transpor
electron glasses, though this does not exclude multipart
correlations.
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FIG. 6. Noise amplitudeAS at v510213go ~or f ;1 Hz) as a
function of temperature for the cases with a Coulomb gap~L! and
without a Coulomb gap~s!. The temperature is measured in un
of Eg for the case of a finite Coulomb gap and in arbitrary units
the case of no Coulomb gap. The inset shows the experimental
for f 51 Hz ~Ref. 11!.
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