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1/f noise in electron glasses
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We show that 1f/ noise is produced in a three-dimensional electron glass by charge fluctuations due to
electron hopping between isolated sites and a percolating network at low-temperatures. The low-frequency
noise spectrum goes as “ with « slightly larger than 1. This result together with the temperature dependence
of @ and the noise amplitude are in good agreement with the recent experiments. These results hold true both
with a flat, noninteracting density of states and with a density of states that includes the Coulomb interactions.
In the latter case, the density of states has a Coulomb gap that fills in with increasing temperature. For a large
Coulomb gap width, this density of states gives a dc conductivity with a hopping exporeft @ which has
been observed in recent experiments. For a small Coulomb gap width, the hopping expOrent
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I. INTRODUCTION tunneling time. Moreover, the noise magnitude is predicted
to increase as the temperatdre-0 in contradiction with the
Low-frequency 1f noisé~23is found in a wide variety of ~recent experimental findings of Massey and te@his, in
conducting systems such as metals, semiconductors, tunr@dt, led Massey and Lee to the conclusion that the single-

junctions® and even superconducting quantum interferenc article picture is inconsistent with the observed noise be-
devices>® Yet the microscopic mechanisms are still not well avior. A different approach was proposed by Kofamho

. .. _considered intervalley transitions as the source of the hop-
understood. One example is an electron glass which is

insul h | localized b q ing conduction noise. Unfortunately, this approach does
insu at_or where gectrons are localized by a strong randorfjot seem to be analytically traceable and is not easily gener-
potential. A special case of this is a Coulomb glass in whichgjizaple.

the electrons interact with one another via a long-range Cou- |n this paper, we extend Kogan and Shklovskil
lomb potential. Doped semiconductors and strongly disorapproach by including the energy dependence of the hop-
dered metals provide examples of electron glasses. Expenping as well as the effects of electron-electron interactions on
mental studies on doped silicon inversion layers have showthe single-particle density of statgée). This is essentially a
that low-frequency ¥ noise is produced by hopping mean-field approximation: we assume that charge is carried

other charges is taken into account via the single-particle

can occur on very long time scales which can produce low= . . -l
frequency noise. In this paper, we show that the resultin ensity of states. Later we will present some justification for

. n . hy we believe this approach works for low-frequency
noise spectrum goes ds ®, wheref is frequency and the noise. For comparison we also consider the case of noninter-
temperature-dependent exponert 1. acting electrons with a flat density of states.

Shklovskiihas Suggested thatflnoise is caused by fluc- The paper iS Organized as fo”ows_ In Sec. ||A, we de_
tuations in the number of electrons in an infinite percolatingscribe our calculation of the noise spectral density. In Sec.
cluster® These fluctuations are caused by slow exchange dfi b, we present the density of states that includes the Cou-
electrons between the infinite conducting cluster and théomb gap and that models the decrease in the gap with in-
small isolated donor clusters. Subsequently, Kogan andreasing temperature. We show that this form of the density
Shklovskil combined a more rigorous calculation with nu- of states yields the usual value of the hopping exponent
merical simulations and found a noise spectrum wheveas  9~0.5 for small values of the Coulomb gap widfy. How-
considerably lower than 9 Furthermore, below a minimum ever, for large values o€y, 6~0.75. Both values have
frequency of order 1-100 Hz, the noise spectral density satigeen seen experimentatfy**~*"In Sec. I, we present our
rated and became a constant independent of frequency. Thegsyits.
calculations were valid only in the high-temperature regime
where the impurity band was assumed to be occupied uni- Il. CALCULATION
formly and the long-range Coulomb correlations were essen-
tially neglected. Since then there have been attempts to in-
clude the effects of correlations. We start with a model of the Coulomb glass in which

In particular, Kozub suggested a mod®in which elec-  electrons occupy half of the impurity sites. Each site can
tron hops within isolated pairs of impurities produce fluctua-have at most one electron due to a large on-site repulsion.
tions in the potential seen by other hopping electrons thaThe sites are randomly placed according to a uniform spatial
contribute to the current. While leading tof4¥pe noise distribution, and each has a random on-site enérgghosen
within some frequency range, this model also shows lowfrom a uniform distribution extending from W/2 to W/2.
frequency noise saturation due to the exponentially smalThus,g,, the density of states without interactions, is flat. At
probability of finding anisolated pair of sites with a long T=0 such a system is a perfect insulator, while at low but

A. Noise spectral density
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finite temperatures it will be able to conduct via variable Hamiltonian one finds that charge carrying excitations are of
range hopping®=2° In this picture, the dc conductivity is a local nature, and so they can be treated within the perco-
dominated by particles hopping along the percolating netiation picture as noninteracting quasiparticles. The Coulomb

work, which is constructed as follows. The resistaie
associated with a transition between sitemndj grows ex-
ponentially with both their separatian; and energy differ-
encesij .

Rij=Rjexp(x;), (1)
where the prefactoR} =kT/(e®y{}) with »{ being given
by18

D2|A=| 2e2 Zrﬁ Afg 21-4
YiT &4z 2|t 57e , 2
wpSs he 3ké §2 2hs

whereD is the deformation potentiad,is the speed of sound,
p is the mass density, is the localization length, and is the
dielectric constantA{=sj—si—e2/Krij is the change in en-
ergy that results from hopping from to j with &;= ¢;
+E]-(e2/;<r”-)nj being a single-site energy. In E(l), the
exponent is given by

]

3

The exponent reflects the thermally activated hopping rate
between andj as well as the wave-function overlap between

the sites:

e2
lej—eil = ——,
Krij

max|e;— ul,|e;— ul],

(e1— ) (e— ) <0
8”':
(&1 1) (8= 1) >0

4

(in what follows, we choose the Fermi levgk0).

A noninteracting picture of dc conduction is described in
terms of electron hopping between sites in the cluster that{ SNp(t2) SNp(t1)),=—-
spans the entire sample. In order to determine which sites are

in a cluster, we introduce the “acceptance” parameatsuch
that any two sites andj are considered “connected” i;;

<x and disconnected otherwise. For small valueg,ainly
rare pairs of sites are connected. As we increaseore such

pairs appear and small clusters start coalescing into bigger
percolating

ones until an infinite cluster—the critical
network—is formed at some.. At this point we can neglect

the contribution of the remaining impurity sites to the dc
conductivity since it is exponentially small as compared to

that of the sites already in the percolating netw@lthough

interactions renormalize the single-particle density of states
which acquires a soft gap. We will discuss this in more detail
in the section on the density of states. However, we will
mention here that this approach appears to work well for dc
conduction and leads to a temperature dependence of the
conductivity*®21:22 which is distinctly different from the
noninteracting case and which agrees with experiniseg,

for example Ref. 2B However, the question about the valid-
ity of this approach is still far from being settled—see Ref.
24 for a different point of view.

In our treatment we will focus on the noise caused by
quasiparticle hopping between isolated clusters and the per-
colating network, producing fluctuations of charge in the
latter®® Let N, be the average number of such particles in
the critical percolating network andNp(t) be its time-
dependent fluctuation. Assuming that only stationary pro-
cesses are involvddle., { SNp(t,) SNp(tq))=f(t,—t1)], we
can use the Wiener-Khintchine theorétn relate the noise
spectral density5(w) of current fluctuations to the Fourier
transform of the autocorrelation function:

Si(w) _ 2(ONp(t5) ONp(t1)),
12 NZ

: ®)

wherel is the average current. The charge fluctuation auto-
correlation function can be expressed as a superposition of
modesa, each of which relax exponentially with a charac-
teristic time 7. Thus the Fourier transforrq- - -),, of the

autocorrelation function is a weighted sum over
Lorentzians,
2
T .
5 —51 2 Cigha(i)| -
e a#0 1+ w T, 1eP
(6)

Here,C;=(e?/kT)f;(1—f,) is the capacitance of sitgwith
f,=[expE;/kT)+1]"* being its equilibrium occupangy
while 7, * andy,(i) are theath eigenvalue and eigenvector,
fespectively, of the following system of linear equations:

; R ¥aD) = a() 1= 7, Citha(i), @)

the former sites are important for understanding both ac corwith R;; being the intersite resistances given by Ef).
ductivity and noisg In a similar manner the resistance of the Since Ri}l is proportional to the hopping ratﬁf: y?j exp

critical percolating network is dominated by a few pairs with (—x;) from sitei to sitej, Eq. (7) relatesnj

! to the relax-

xjj=Xx.—these are the pairs that bridge the gaps betweegtion ratesr,® of the entire percolating network. The sum
large finite clusters enabling the formation of the infinite gyer siteg in Eq. (6) runs only over those sites that belong to
cluster. Hence, the resistance of the entire sample is wethe critical percolating network since only their occupancies

approximated by R~ R%xpf,), Where R°=kT/(e?y°)
with y° being the average value Qﬂ given by Eq.(2).

affect the current through the sample. The physical meaning
of the quantityC; (i) is that it is proportional to the fluc-

In the presence of the Coulomb interactions, there is nduation 5f; of the occupation of sité and decays exponen-
exact mapping of transport onto a percolation picture. Wetially with the associated time constant. The eigenvectors
nevertheless, assume that upon diagonalizing the interactirgatisfy the following conditions:
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L We can use these results to evaluate the sum over sites in Eq.
> Gty V(1) =64p, (8 (6) by noting that all the sites in the critical network are also
' in the infinite cluster by definition. Thus,
1/2
> Ci) ,

ieFC
(15

whereNc(x) is the number of sites in the infinite cluster at
] - ) ) a given value of.
The first condition states that the eigenfunctions are ortho- | evaluating Eq(6), we make the following approxima-
normal; the second states that the functions form a completgy, for r,. Since we are interested in the modesthat
set. One of the eigenfunctions is a constant, which we take tgffect the charge of the percolating network, we only con-
belthe one corresponding te=0. This has the eigenvalue sjger particle exchange between the isolated clusters and the
7o~ =0. Equation(10) is the orthonormalization condition infinite cluster. This involves hopping times that are longer
between this eigenstate and the others. It represents the fagln those within the percolating network itself by definition.
that the fluctuations in occupation represented byd#®  Due to the exponentially wide distribution of hopping times
modes do not affect the total number of electrons on theTiJ. , such exchange is likely to be dominated by the single
impuritiy sites. Thus, the last equation is just the statement of|osest pair of sites in which one belongs to the finite and the
overall charge conservation. We remark here that Efjare  other to the infinite cluster. The relaxation times within each
linear only within the assumption made earlier about nonin-cjuster are much faster, and therefore the above-mentioned
teracting quasiparticles. Otherwid®,; are not constant co- pair serves as a “bottleneck” for intercluster relaxation. A
efficients; they depend on the on-site energies, which in turgimple diagonalization of the system of E¢#). for two clus-
depend on the occupancies of other sites. ters A; and A, with the bottleneck hopping resistanée
Since we are interested in the modes that affect the charge min(R;;ie A;,j € A,) between them(and with the as-
in the conducting network, we can replace the sum @avby  sumption that all other intercluster resistances are much
a sum over all finite clusters that coalesce with the inﬁnitehigher and all intracluster resistances are much lower than

cluster as the acceptance parameter increases agov@  R) leads to the following expression for the intercluster re-
particular, we can replace the sum oveby an integral over |axation time:

x and a sum over all finite clusters merging with the infinite

cluster at a given value of. With this in mind, we can

evaluate Eq(6) using Egs.(8) and(10). For a single mode = R(
a, the sum over siteg can be split into a sum over finite

clusters(FC) and a sum over the infinite clustdC). So we  Since we are interested only in the situation where one of the
can write the normalization condition, E@), and the charge clusters is infinite, this simplifies Eq16) to 7=RY;_ 4C;,

> Cia(DE())=46y, 9) v Np o o ___Ne
g | 2 Gt = 2 Ceie™ " e

> Cigha(i)=0, Ya#0. (10)

-1
+

> G

ie Ay

> C

je Ay

1\ —1
|

conservation condition, Eq10), as where A is the finite cluster.
We can substitute this value afinto Eq.(6) by replacing
2 mei(m)+ 2 ani(n)=1, (11) the sum over aI_I modeg by_ a sum over all finite clusters
meFC nelc that coalesce with the infinite cluster as the acceptance pa-

rameterx is increased above.. Each such finite cluster
contributes one new term to the sum ovein Eq. (6) with
the correspondingr,=R(x)Z;. 4Ci, where R(x)=R°.

) . . . Then we can write the spectral density of the noise as fol-
respectively. Since the fast modes equilibrate the occupationg,,s:

of sites within each cluster, the eigenfunctions do not depen
on their site indices within each cluster, i.eg,(m) >
= o rc, YMe FC andiy,(n)= i, c, Yme IC. As a re- Nic"(X)R(x)

> Cotba(M+ 2, Coiha(n)=0, (12)
me FC nelC

2

> G

sult, we can take,, rc andy, c out of the sums in Eq¢11) Si(@) — 16ka°o de' e
and (12). The sum over capacitances in the finite clusters, 12 e2 Jaxe A 1+w2R2(X)( E c 2
will be much smaller than the sum over the infinite cluster =y
which implies that (¢, c)? is negligible in Eq.(11). This (17)
leads to where X/, stands for the sum over all finite clusters that
—2 coalesce with the infinite cluster asincreases bylx. The
lﬂa,Fc=(meEFc Cm) 13 parameter\=1 and sets the distance inspace from the
percolation threshold.
Plugging this into Eq(12) yields This equation is difficult to evaluate mathematically. For-
o tunately, however, we can extract the low-frequency
_ asymptotic behavior of Eq17) where the above approxima-
%"Cm;c Cm (m;:C Cm) ' (4 tions are well justified. The lowest-frequency contributions
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come from large values of where the infinite cluster has Thus, the probabilityP;(x,&) that a given site with on-site
already absorbed almost all the sités., Nic=N, the total energys has no neighbors nearer thars given by
number of sites What is left are the small clusters, which e
are mostly isolated sites in the increasingly rare voids of the , ,
infinite cIL}J/ster. The probability of havinggt}\:vo such sites in Pl(x,s)zexp{ _f ddrf_w,zds 9(".T)
the same void is negligibly small. Since low-frequency noise
will be dominated by the hops between such isolated sites 2r  e|+|e'|+|e—g'|
and the infinite cluster, we only consider such hops in ob- ?_ 2kT . (249
taining the spectral density of current fluctuations. In Eq.
(17), we can seh to correspond to this situation at large ~ Notice the absence of the Coulomb energy in the argument
and we can replace the sum over all finite clusters that argf the ¢ function in Eq.(24), in accordance with our quasi-
merging with the infinite cluster with a sum over all sites particle picture. Our quasiparticle picture is likely to work
multiplied by the probability®,(x,s)dx that a single site best for hops between isolated sites and the infinite cluster.
with energy € has its nearest neighbor between Although one .SUCh hop may resplt. In a sequence of other
andx+ dx. hops, these will mpstly happen W|th!n the infinite c_Iu_ster on
. _ ~ a much shorter time scale, effectively renormalizing the
We can write down an expression fé(x,e)dx. We — oonerties of the “slow” particle. As was mentioned earlier,

begin by definingP;(x,¢) to be the probability that a given heqe renormalizations can be included in the single-particle
site with on-site energy has no neighbors nearer thar_et density of stateg(e,T).

X 0| X—

exfl —p(x.e)dx] be the probability that a site with energy To facilitate evaluating the integral in E¢21) numeri-
has no neighbors betweerandx+dx. Then cally for the case where we include a Coulomb gap in the
« density of states, we define the dimensionless varidbles

Pl(x,s)zexp(—Jop(x',g)dx'). (18 =r/¢ F=elEy, ®=wly°, T=KT/Ey, 7=7°R(X)C(e)

=f(e)[1—f(e)]e*, and G(&,T)=9(e,T)/go. 0, is the
We can use this to expred®,(x,e)dx as the product of noninteracting density of states afig~e®\mg,/3«° is the
Pl(X,S), the probabmty Of no neighbors W|thm mu'“p“ed Characte”s“(.: W|dth Of the Coulomb gap EValuaUng the IN-
by the probability of having a neighbor betweanand x  tegral overxin Eq. (21) leads us to define

+dx: N o
[B|+[E"|+ 5%’

~ X=2T + = 25
Bu(x,2)dx=Py(x,2)[1-e P (19 X o7 (9
P Then we can rewrite Eq21) as
—|—=Pi(x,e)|dx. (20
IX S'(w)—AfW/z d~~~_~r)f\7v/2 e ~"~I')fﬁvT2d*
Thus, (— 9P, /0x) is the probability density for a site to have 12 ) e sg(2, G2 g(e’, 0 '
its nearest neighbor betwegmmandx+ dx. We can now write
the spectral density of current fluctuations as _ P.(X,z2)7(X,e)f(e)[1—1(%)]
X O(X—N\Xc) — ,
1+ %7 (X,3)
Si(w) 16kTVf°° J fW/z deg(s.T)
- = X ,
12 N2 ax,  J-we egle (26)
where A=64mg3E2VES/(NZYO), Ry=(3V/4m)¥¥¢, W
dP1(X,€) R(x)C?(¢) —W/E :4775 EgJ ¢%, and
x| — , (2D g 7 0=gS
X ] 1+ w’R?*(x)C?(¢) ) )
Ry’ W/2 ~
whereV is the volume W is the bandwidth, andi(¢) is the P1(7<,“é)=ex;{ - nf F ZdT’f _ dg"g(e",T)
Fermi occupation number. To obtain an expression for 0 —wi2

P,(x,&), we note that the average numhiX of impurity
sites found in a phase volume elemdfit=d%de’ within a X 6
distancex of a site with energy is given by

X—2r' . (27

[2|+|2"|+ [z —&"
2T

2r  |e|+|e'|+|e—¢’| g For comparison we also consider the case with no Cou-
dN=g(s’)0(x— T KT )ds'd r. lomb gap by setting)(¢,T) =g, in Egs.(21) and(24). Since
(22) there is no natural energy scale, we do not rescale the ener-
gies. However, we can defiffe 7, and@ as before. As a

The probability that no sites are @) is given by result, the definition ofX in Eq. (25 becomesX=2F
N +(le|+]|e'|+]|e—€'])/(2T). In Eq. (26), A is replaced by
lim | 1— dN —edN 23 A.=647VgiEN?y° andW is replaced by simply. In Eq.
N0 N (27), 5 is replaced byp,=47&3g,.
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FIG. 2. Xx(eo,,T) versus temperature withg,=6.25
FIG. 1. The density of stateg(s, T) versuss at various tem- <107 ° states/K K and¢=10a,=5.29177 A, where, is the Bohr

peratures. The symbols are calculated using @8 with W,/2 radius and 10 is an estimate of the dielectric constant. We show

=2.3x10" K. The density of states is measured from the FermiPlots for Eg=0.4 K (O), E;=8 K (1), and E;=200 K (A). E4

energyEr=0. The lines are the result of evaluating EB9) with =0.4 K corresponds to the value of the Coulomb gap deduced from
Ey=100 K. go=6.25% 1075 states/K B. transport measurements, whiig= 8 K value from tunneling mea-

surements on Si:BRefs. 22 and 37 The lines are fits to the nu-

merical data with the indicated slopes. The fit to Eye=0.4 K data

yields 5=0.56 andT,=19 K. The fit to theE,=8 K data at low
At zero temperature, long-range interactions produce #&mperatures yield§=0.47 andT,=27 206 K, while the fit to the

Coulomb gap centered at the Fermi energy inhigh-temperature data yields=0.72 and5=0.357 K. The fit to the

g(s,T)_18'21'25'26This gap arises because the stability of theEy=200 K data yieldss=0.75 andT,=42068 K. & is virtually

ground state with respect to single-electron hopping from arndependent o, but T, does depend og, . For example, chang-

occupied sitéi to an unoccupied sitg requires that the en- ing go by 10 orders of magnitude to 6.3.0"° states/K & results

ergy differenceAl>0. At finite temperatures, the Coulomb ™ 6=0.75 andTo=19 K for E;=200 K.

gap is partially filled and the density of states no longer

vanishes at the Fermi enertfy:>2The exact form ofy(e,T) . _ _

is not known, but some have argd®? that its low- derivative of the Fermi function. The zero-temperature den-

temperature asymptotic behavior is describedgby=0,T) sity of states can be determined numerically by solving a
~T971, We have done Monte Carlo simulations of a three—Se'f'C.o_nSIStent equation based on thg ground-state stat_)lhty
dimensional Coulomb glass with off-diagonal disorder angcondition that a single-electron hopping 2203? an occupied
we find thatg(s=0.T) cannot be described by a simple Sit¢i to an unoccupied sitprequiresA{>0.""The result
power law?®33 The results of such simulations do not pro- Of evaluating Eq(28) is shown in Fig. 1.

duce a density of states that is suitable for use in our noise Since using the BPW approximation to evaluate Efs)
integrals due to finite-size effects. In particula¢e, T) goes and(24) is rather awkward, we model the finite-temperature-
to zero at energies far away from the Fermi energy becaugdensity of states by

of the finite size of the system.

Ill. DENSITY OF STATES

Another way to approximate the density of states is to use B e?+(kT)?
the Bethe-Peierls-Weig8PW) approximatiort* The idea is g(S’T)_g°E2+82+(kT)2' (29)
to treat the interactions between one “central” site and all 9

other sitesboundary sitesexactly, but to include the inter- Notice that forT=0, g(e, T=0)~&2 for e<Ey as is ex-

actions between these boundary sites by means of effecti\fgécted for a Coulomb gap in three dimensions. For large
fie!ds. The density of states can then be written as a CONVQspergies ¢>E, ande>kT), g(¢,T) approaches the nonin-
lution teracting valueg, . A comparison of Eq(29) with the BPW
approximation at various temperatures is shown in Fig. 1.
Equation (29) is the expression we use for the density of
states of a Coulomb glass in Ed81) and (24).

We can calculate the dc conductivity resulting from this
whereg(¢) is the zero-temperature density of states Wyd  density of states by following Mott's argument for variable
is the bandwidth. The functioh(e/kT) takes into account range hoppindg® We start with the hopping resistanég;
thermal fluctuations in the occupation of the central site andjiven by Eq.(1). Mott pointed out that hopping conduction
the boundary sites. At low temperatures, it has a sharp peakt low temperatures comes from states near the Fermi energy.
with a width of the ordekT at e=0. We can make the If we consider states withir, of the Fermi energy K¢
approximation (4T)h(e/kT)~—f'(e), wheref’(¢) isthe  =0), then the concentration of states in this band is

W,/2 , , 1 e’
g(s,T)=J 0/2d8 g(e—e )ﬁh(ﬁ)' (28
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FIG. 3. The noise power spectrum as a function of frequency. 1010-20 0" 00 0°

The frequency is measured in the units)Sfwhich is estimated to

be of the order of 1% Hz for values appropriate for insulating Si:B.
Unless otherwise noted, all curves in this and the following figures
which were obtained for the case with a Coulomb gap uged

_ 3 2 3_ —6 S . o= ) :
=4mEyE°go~ 1 Ey/(€7x€)]°=4.8x10°7, which in our esti- oo meters are the same as in Fig. 3. Notice the saturation at low
mates corresponds to the experimental dopant concentration @foq encies for large. For comparison, we show the case with no
roughly n=0.8n, for Si:B (Refs. 11 and 28 We setW=20, Ry Coulomb gap af =10 with a large value ofy,=47&%g,. Large
=100, andix.=1 (the precise value ok has no effect on the yalues ofy, lead to saturation but small values do not.
low-frequency noise that is governed k¥ X.). The parameteA

=647VE2g2£3/IN?5°. For comparison, we show the noise . .
g0 ’
spectrum in the absence of a Coulomb gap with, T) =g, in Egs. agreement with our value affor largeE,. The mechanism

(21) and (24). In the absence of a Coulomb gab,s replaced by behind'this e_xponent has b?en apu Her,e we see that

A,=64mVGZEINTY® and 7 is replaced byz,=4milg,=4.8 @ possible simple explanation for the experimental observa-
0 . . . .

X 10~6. The energy is measured in arbitrary units and weWet tON of an anomalous hopping exponent is that the Coulomb

=20. The other variables are the same as in the case of a fini@@P in the single particle density of states is filling in with
Coulomb gap. increasing temperature. If one takes this into account in the

variable range hopping calculations, then the observed expo-
£ nent of 0.75 can be obtained naturally. However, we should
N(so,T)=J g(e,T)de, (30 be cautious that our calculation applies to three dimensions
~%o while a two dimensional calculation may be more appropri-
ate for ultrathin films. In fact, we find that the analogous
two-dimensional calculation with a density of statgz,T)
9o(|e| +KT)/(Eg+|e|+KT) yields 6~0.5.

Frequency

FIG. 4. The noise power spectrum as a function of frequency at
T=10 E4 for various values 0f7;=477Eg§3go. The rest of the

whereg(e,T) is given by Eq.(29). So the typical separation
between sites iR,=[N(e,,T)] 3. To estimate the resis-
tance corresponding to hopping between two typical states in
the band, we replaag; with R, ande;; with &, in Eq. (3) to
obtain x(e,). Minimizing x(e,) numerically yieldse,. A

- . . IV. RESULTS
plot of x(e,) versus temperature is shown in Fig. 2. The dc
conductivity is then given by (T) = o,exd —x(g,)]. We find We evaluate Eqs(26) and (27) numerically and display
that at low temperaturesT(<E,), the results in Figs. 3—6. In Fig. 3, we show the spectral

density of the noise as a function of frequency. We find that
To\? for a wide range of parameters the noise spectral density is
U(T):erx% - (?) , BD  given byS(w)~w ¢ with the spectral exponent between
1.07 and 1.16see Figs. 3 and)5which is 1f noise. For
where ' is the hopping exponent. The value &tlepends on comparison, we show in Fig. 3 the noise spectrum in the
Ey. For large values of the Coulomb gafE=50 K) absence of a Coulomb gap wiglie, T) =g, in Egs.(21) and
6~0.75, while for small values of the Coulomb gagy( (24). The slope of a line through the open squares-is12
=1 K) 6~0.5. When we tried intermediate values Bf  which is very close to the values obtained with a Coulomb
=8, 10, and 20 K, we found that[x(s,)] versus InT) had a  gap. Notice that the presence of a Coulomb gap reduces the
break in slope withé~0.5 at low temperatures and with noise amplitude at low temperatures.
6~0.72-0.75 at high temperatures. Examples are shown in In Fig. 3, we use théransportvalue of E;~0.4 K, not
Fig. 2. 6=0.75 is higher than the Mott value af=0.25 the tunneling one-8 K; the two were found to be different
associated with a flat density of states and the valug=df.5 by an order of magnitud&?*We find that increasingy by
derived by Efros and Shklovskii for the zero-temperature a factor of 20 does not produce a noticeable change in the
Coulomb gap. However, experiments on materials such asults at low temperature§ £0.1Eg), but at high tem-
ultrathin metal films find values fos=0.75-0.05"""in  peratures T=10 E,) it does lead to saturation of the noise
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FIG. 5. The spectral exponent as a function of temperature _ F!G- 6. Noise amplitude/S at ©=10"*%7° (or f~1 Hz) as a
with a Coulomb gap in the density of state&) and with a flat fu_nctlon of temperature for the cases with a C_:oulomb g@p_and _
density of stateO). We have suppressed the error bars for the casdithout a Coulomb gatO). The temperature is measured in units
with no Coulomb gap to avoid cluttering the graph. The suppressegf Eq for the case of a finite Coulomb gap and in arbitrary units in
error bars are comparable to those for the exponent with a Coulomi§€ case of no Coulomb gap. The inset shows the experimental data
gap at high temperatures. The temperature is measured in units fgrf=1Hz (Ref. 11.
the Coulomb gajk, for the case where there is a Coulomb gap, and
in arbitrary units for the case without a Coulomb gap. The insefiet us consider the case of density of states with no Coulomb
shows the experimental data obtained for SiFf. 1. gap, which gives qualitatively the same results as the case

) o o with a Coulomb gap. The decrease in the noise amplit/@8le

power at low frequencies. This is shown in Fig. 4 that alsoyjith decreasing temperature is due to the presence of acti-

shows that saturation occurs in the absence of a CoulomPyieq hopping processes which decrease with decreasing
gap when, is increased by a factor of 20. This saturation of (g mperature. However, this is not at all obvious from Eq.

the noise power occurs because the probabRifyx,e) of (56 The integral for the noise power at low frequencies is

finding a site with no.nelghb.ors _closer 'Fharlisee Eq(24)] dominated by larg& which corresponds to long relaxation
decreases exponentially with increasing temperature an

o ) - times7~exp). In this case, the factor of(e)[1—f(g)]
with increasingy or 7, . In addition,P;(x,e) becomes ex- . ;
ponentially small ax becomes large, and it is the large val- cancels between the numerator and denominator leaving the

ues ofx that contribute to the low-frequency noise. Finally temperature gependence .Of the mtegr_and dominated by
we note that decreasirig, by a factor of 10 does not pro- Pl(x's)exp(_x)' Pl(),(’s) increases while exp(x) de-
duce a noticeable change in the results for either low temS€@ses with decreasing temperature. The fact that our calcu-
peratures T=0.1E,) or high temperaturesT(= 10 E). We !atlons yield a dgcregse in the noise amplitude Wlth decreas-
plot the spectral exponentin Fig. 5 versus temperature for N9 ter_nperatu_re implies that_ the activated hopping processes
the cases with and without a Coulomb gap in the density oftSsociated with exp(X) dominate. We should mention that
states. In both cases, we see that it decreases slightly wixperimentally the noise power does not always decrease
increasing temperature and eventually saturates in qualitatiwith decreasing temperature. In some cases, it increases with
agreement with the experimeltFigure 6 shows that the decreasing temperatuig®® but we do not know the differ-
noise amplitude\'S grows with temperature and eventually ences in the samples which can account for this difference in
saturates, both in good qualitative agreement with the experlbehavior.

mental results of Massey and L¥eThe data of Massey and To summarize, recent experiments of aisé” are con-

Lee span two decades in frequency, while our calculationsistent with a quasiparticle percolation picture of transport in
are able to cover a much broader range. Again we see fromlectron glasses, though this does not exclude multiparticle
Fig. 6 that the presence of a Coulomb gap reduces the noigs@rrelations.
amplitude at low temperatures. We obtain qualitatively the

same results both with and without a Coulomb gap in the

density of states which implies that the behavior of the noise
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