
1 
 

Supporting Material for 
Axonal Transport: How High Microtubule Density Can Compensate for 
Boundary Effects in Small-Caliber Axons 

Juliana C. Wortman,† Uttam M. Shrestha,† Devin M. Barry,‡ Michael L. Garcia,§ Steven P. Gross,†¶ and 
Clare C. Yu†* 
†Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697; ‡Center for the Study of Itch, Washington 
University School of Medicine, St. Louis, MO 63110; §Biological Sciences, University of Missouri, Columbia, MO 65211; ¶Department of 
Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697. 

 
 
In this supplement, we describe the basic algorithm that we have used to simulate the cargo dynamics in 
multiple microtubules as well as the implementation of cargo-protein interactions. We also describe how 
we analyzed electron micrographs to obtain the distribution of microtubules. In Section 1, we describe 
the formalism of the wall effect. In Section 2, we introduce the transport of a cargo in multiple 
microtubules. In Section 3, we show the detail calculations of cargo-protein interactions. In Section 4, 
we show our simulation results of (1) the wall effect on a cargo transported by a single motor, and (2) 
the effective viscosity on a sphere being pushed through a cylinder containing a fluid with 
macromolecules. In Section 5, we show that large loads on the motor (when it is greatly extended) occur 
when the cargo is near the microtubule and far from the axon wall. In Section 6, we show how we 
analyzed the electron micrographs of axon cross sections to determine whether the distribution of 
microtubules is given by the Poisson distribution. In Section 7, we describe some ways to make our 
simulation more realistic. 
  

1. Wall correction: Heuristic Approach 
1.1 Effect on Translational Motion 
 

Generally, the axoplasm has a viscosity that can be an order of magnitude larger than the viscosity of the 
water. The dynamical viscosity may be enhanced further due to the relative motion between the cargo 
and the axonal wall. In order to incorporate the wall effect quantitatively, let us consider translation of a 
spherical cargo of radius 𝑎 moving in a cylindrical axon of radius R (Fig. 1 in main paper). We assume 
the viscosity of the axoplasm in an unbounded medium is 0η . Due to the finite size effect, the Stokes 
force experienced by the cargo moving with velocity v in the laboratory frame of reference is modified 
and can be expressed as in Eq. 1 in the main paper (1): 
 

6 ( )a Kπη∞=F v x , 
 
where ( )( 1)K ≥x  is the correction factor due to the boundary wall effect and x is the position of the 
cargo. Here we assume the velocity of the cargo in the direction parallel to the axis of the axon tube. 

( )K x , in principle, depends on the position x, the radius a of the cargo, and the diameter D of the axon.  
 
The exact solution for the correction factor, ( )K x , for a sphere moving along the axis of a cylinder 
filled with viscous fluid has been obtained numerically by solving a set of linear equations (1, 2). 
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Brenner and Happel, by employing the method of images, have given an asymptotic solution for a 
sphere positioned arbitrarily and eccentrically about the axis of the cylinder (3). However, those 
solutions are valid in the limit when the radius of the sphere is much smaller than to the size of the 
cylinder, and the sphere is not far from the axis. When the size of the sphere is comparable to that of the 
cylinder, Bungay and Brenner (4), and Tozeren (5) have provided approximate off-axis solutions 
perturbatively in terms of the eccentricity parameter that can be treated as small expansion coefficient,  

b
R

ε =  

where b is the distance of the center of the sphere from the axis of the cylinder and R is the radius of the 
cylinder (Fig. 1 in main paper). All of the findings indicate that the viscous drag does not increase 
monotonically as ε increases. Instead, it reaches its minimum value around ε = 0.4, and then increases 
sharply afterwards. In fact this theoretical prediction has been verified experimentally in the optical 
feedback system and in circular conduits (6).  
 
To the best of our knowledge, there is no converging general solution for ( )K x  that applies over the 
entire range of possible positions and sizes of the sphere.  For a rigid wall, the no-slip boundary 
condition dictates that the velocity of the sphere should tend to vanish when it approaches to the wall. 
This implies an infinite viscous drag and the functional behavior of the correction factor can be 
approximated as 1/K h  for 0h → , where h is the surface-to-surface distance of the sphere from the 
wall. By exploiting the behavior of the solutions near the axis and near the wall, we can heuristically 
write an approximate solution as a superposition, which is presumably valid over the entire range for 0 < 
ε < 1. Noting the fact that the off-axis viscous drag also depends upon the ratio of the radius of the 
sphere to the radius of the cylinder 
 

ak
R

= , 

 
Ambari (6) presented the experimental data for the correction term as a function of ε for different values 
of k. In order to fit these experimental data, we write the correction term in the form shown below and in 
Eq. 2 in the main text. 
 

0
2 2exp(- )   ( ) ( / )K k K k f R hε ε ε= +  

 
Here, 0K  is the wall correction factor for rigid spheres moving in a still liquid along the axis of a 
cylindrical tube (b = 0), and ( )f ε  is an eccentricity function (1, 3), and h is the sphere-cylinder surface 
to surface distance. For the correction factor 0K , we use 
 

5
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1 0.75857
1 2.1050 2.0865 0.72603
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k k k
−

=
− + +

 

  
When ε is near zero (i.e., the sphere is near the cylinder’s axis), we make the approximation 
 

2( ) 2.10444 0.6977f ε ε= −  
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For values of ε near 1 (corresponding to a sphere near the cylinder wall), we use 
 

9( )
16(1 )

f ε
ε

=
−

 

 
It is evident that the heuristic correction recovers the previous results for both the limiting cases 

0ε →  and 0h → . We have verified that our heuristic calculations are in agreement with the 
experimental results given by Ambari (6) as shown in Figure 1C. 
 
In Fig. 1 in the main text, we show the correction factor K as a function of sphere-cylinder surface to 
surface distance h for two values of k, namely k = 0.1 and k = 0.5, where the radius of the sphere was 
fixed at a = 250 nm, and k was altered by changing the radius of the axon. The Faxén correction (1) for 
the sphere of the same radius moving parallel to a planar surface is also shown. The heuristic calculation 
also agrees well with the Faxén correction for a large cylinder with the sphere far away from the wall. 
Two general features of our results are of interest.  First, relatively close to the wall, the boundary effect 
is very large, and second, for cargos that are relatively large with respect to the caliber of the axon (i.e. 
roughly filling it by half), the “wall” effect is evident even quite far away from the wall. For example, if 
we think of  as an effective viscosity, then  can be 50 times that of water for K = 5 and 

 times that of water (7). Previous theoretical findings indicate that viscous drag does not 
increase monotonically as ε increases. Instead, the minimum value is about  and then the drag 
increases sharply with increasing ε (1); this prediction has been verified experimentally in an optical 
feedback system and in cylindrical conduits (6). We tested our phenomenological calculations against 
the experimentally measured correction factor (6) and found good agreement as shown in Fig. 1C. 
 
 
1.2 Effect on Rotational Motion 
  

The moving sphere approaching near the wall may also rotate due to the velocity gradient in the flow, 
and the corresponding torque is given by (1) 
 

38wall aπη= −τ ω , 
 
where ω is the angular velocity of the rotation due to presence of the wall. This torque should not be 
confused with the torque exerted by external forces such as the pull of the motor or thermal kicks. Due 
to axial symmetry there is no wall effect producing the rotational motion for a sphere moving along the 
axis of the cylinder. Following Greenstein and Happel (8) the frictional torque within the first order 
approximation can be written as, 
 

2 28 ( )wall a g kπη ε= − ×v zτ , 
 
where z is the unit vector along the axis of the cylinder, and ( )g ε  is the rotational eccentricity function 
that satisfies   
 

eff Kη η∞= effη

10η∞ =
0.4ε ≈
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2(1 ) ( ) 1gε ε−  . 
  
For a typical cargo size (a = 250 nm) and motor velocity (v = 800 nm/s) and in a medium with the 
viscosity of water, one can estimate that the magnitude of the rotational torque is of the order of 

1wall τ  pN·nm. However, the torque experienced by a similar cargo driven by a kinesin motor with a 
load of 1 pN force is about 250 pN·nm.  So we henceforth neglect the wall effect on the rotational 
motion.  
 
2. Modeling of Kinesin Motors  
 
In this paper we use the three-dimensional Monte Carlo method, as outlined in the Ref. (9), to study the 
transport carried out by kinesin motors(s). In this model, we consider kinesin molecules bound to a 
spherical cargo (vesicle), and the heads of the motor(s) are free to search for a place to bind on the 
protofilaments of the microtubule (MT). All places on the MT are available for binding. Once the motor 
head can reach the MT, we use a motor binding rate of 2 s-1. It should be pointed out that the diffusion of 
the head was not incorporated into our model.  The rule for the binding of the head to the microtubule 
was dictated by where the tail of the motor was attached to the surface of the cargo - that is, if the tail-
microtubule distance was less than the native (unstretched) motor length, the motor bound to the MT at a 
given rate of 2 s-1 in our simulation. Nonetheless, we expected thermal fluctuations of the cargo to play a 
significant role in the motor(s) abilities to reach (and bind to) the microtubules.  
 
We ignored head-head dynamics of a motor, and as others have done, simply modeled kinesin as a 
single head that hopped from one binding site to the next with step size of d = 8 nm, moving toward the 
plus end of the MT. We model kinesin as a monomer with a single head that can hop from one binding 
site to the adjacent site with a step size of d = 8 nm towards the positive end of the MT. These motors 
exert an elastic force on an object only when they are stretched, not when they are compressed. In our 
model, the tails of the motors are always bound to the cargo. Motors can actively participate in the cargo 
hauling process only when they are engaged, i.e., bound to the MT. In the presence of ATP molecules, 
the stochastic stepping of the motors is governed by Michaelis-Menten kinetics (10). The stepping of the 
motors applies mechanical force to the cargo. In our model, the tails of the kinesins were always bound 
to the cargo while the head could bind the MT. The motors participated in the transport process only 
when they were engaged, i.e., bound to the MT. In addition to the forces acting on the cargo due to the 
molecular motors and viscous drag, it also underwent Brownian motion.  
 
 
2.1 Kinesin Kinetic Cycle and Stepping 
 
In order to introduce our notation and parameters, we briefly review in this subsection how the kinesin 
completes its kinetic cycle and exerts mechanical force on the cargo. 
 
Kinesin moves processively towards the plus end of the MT by hydrolyzing ATP molecules. The 
velocity of the movement of the kinesin is determined by the rate of binding of ATP to the motor head 
and its subsequent  hydrolysis, 

( ) iK ATP K ATP K ADP P+ ⋅ → + +   
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We denote motor-ATP on (binding) and off (unbinding) rates by onk  and offk , and the rate of the ATP 
hydrolysis by catk . After hydrolysis of ATP, ADP and the phosphate ion iP  are released. The motor 
stepping velocity is given by the Michaelis-Menten rate of the chemical reaction (11): 
 

[ ]
[ ]

max

m

V ATPV
ATP K

=
+

 

 
where [ATP] is the ATP concentration and maxV  is the maximum velocity at the saturated concentration 
of the ATP molecules which can be expressed in terms of the load dependent efficiency function, ( )Fζ , 
as 
 

( )max catV k d Fζ= , 
 
where F is the external load on the motor. The efficiency function, 𝜁(𝐹), is maximum at zero load and 
decays to zero at the motor stall force. We therefore write the approximation 
 

2

0

( ) 1 FF
F

ζ
  
 = −     

. 

 
The Michaelis-Menten constant mK  is defined by 
 

cat off
m

on

k k
K

k
+

= . 

 
The off-rate of ATP from the motor head, in principle, also depends upon the applied load 𝐹, and can be 
scaled in terms of experimentally measurable parameters as 
 

0 expoff off
B

Fk k
k T
δ 

=  
 

, 

 
where Bk T  is the thermal energy, δ is a characteristic length, and 0

offk  is the no load off-rate that can be 
fitted with the experimental results (12).  
 
The finite value of the run length during the stochastic stepping of the kinesin implies a finite lifetime of 
the motor-MT bound state. We follow the detachment kinetics as discussed in (11) in order to quantify 
the rate of dissociation of kinesin molecules from the MT. The probability of the detaching from the MT 
per unit time before ( detach1P ) and after ( detach2P ) the ATP binds are defined as 
 

[ ]
step

detach1

BP
P

ATP
= , 
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exp(F )l
step

B
detach2

P
k TP
A

δ

= , 

where 
( )[ ]

[ ]
cat

step
m

k F ATPP
ATP K
ζ

=
+

. 

 
Here, lδ , A and B are physical constants characteristic of the molecular motor, and can be fitted with the 
experimental data (12). Once the detachment rates are known, the probabilities that the motors dissociate 
from the MT in each Monte Carlo time step dt are detach1P dt and detach2P dt  before and after the ATP binds. 
The motor detachment rate above stall is, however, constant. 
The list of constant parameter values used in our simulations is given in Table S1. 
Table S1: Parameters and Values for the Motor Simulation 
Parameters Values Comments 

δ 1.3 nm Characteristic length  

d 8 nm Step 

onk  2 µM 1s−  ATP on-rate 

0
offk  55 1s−  ATP off-rate 

catk  105 1s−  Rate of hydrolysis 

[ ]ATP  2000 µM ATP concentration 

A 107 Constant 

B 0.029 µM Constant 

l 110 nm Motor length 

k 0.32 pN/nm Motor spring constant 

T 300 K Temperature 

dt 6 510 10− −−  s Time step 

MTr  12.5 nm Radius of MT 

offk  (back-detach) 2 1s−  Above stall-detachment rate 
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2.2 Cargo Dynamics 
 

In a viscous medium, a cargo under the action of molecular motor(s) undergoes diffusive-directive 
motion. It is capable of translation as well as rotation due to the resultant Brownian kicks from the 
molecules in the medium. 
 
For a given axonal cross section and MT position, we assume that the head of the kinesin molecule can 
bind to the MT at time t = 0. If the motor state is on, there is a certain waiting time between the motor 
binding and the ATP hydrolysis plus ADP release. Once the ATP is hydrolyzed, the motor head 
instantly takes a step forward of d = 8 nm towards the plus end of the MT. As the head steps forward, 
the motor gets stretched and exerts mechanical force on the cargo. Since the motion is highly 
overdamped, the time to reach the Stokes regime is much smaller than any relevant time scale in the 
system. The dynamics of the cargo is modeled by the Langevin equation, 
 

( ) ( ) ( ) ( )ext thermal
T

dm t t t t
dt

α= − + +v v f f . 

 
The first term on the right hand side is the drag force at the instant when the cargo is moving with 
velocity ( )tv , and the drag coefficient is given by 

06 ( )T K aα π η= x , 
where the correction factor ( )K x  is given by Eq. (2) in the main paper, and x is the position of the cargo 
with respect to the wall. The second term is the sum of all external forces due to motor(s) and the 
confining potential (if any). The last term is the sum of the all forces due to the erratic kicks given by 
fluid molecules that give the cargo Brownian motion. 
 
If we assume that the cargo to be in a state of mechanical equilibrium, the average velocity is a time 
independent quantity and we can integrate the above equation in the presence of thermal fluctuations to 
obtain the time evolution of the position of the center of mass of the cargo (9): 
 

( ) ( ) ( , )ext
T T

T

tt t t x t σ
α
∆

+ ∆ = + +x x f ε , 

 
where we have defined 
 

2 B
T

T

k T tσ
α

∆
= , 

 
and Tε  is a three-dimensional random variate drawn from a normally distributed function of zero mean 
and unit standard deviation. An analogous equation can also be derived for the torque and the rotational 
motion of the cargo. The details of the calculation can be found in Ref. (9). 
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Throughout our simulation, the motor-cargo system satisfies the following boundary conditions: (i) the 
motor cannot enter into the cargo or the MT; (ii) the cargo cannot enter into the MT; and (iii) the cargo 
must lie inside the axon. 
 
2.3 Implementation of Multiple Motors on Multiple Microtubules  
 

It has been shown both in vitro and in vivo that the effective transport of a comparatively large cargo is, 
basically, carried out by several molecular motors (13). The multiple-motor transport is particularly 
important in a geometrically constrained cell such as a neuron since the undulations and constrictions of 
a long narrow axon could obstruct the motion significantly.  
 

For a given cargo size, axon caliber, and MT position, multiple motor transport depends upon how the 
motors are distributed over the surface of the cargo. It also depends upon the state of the motors. For 
instance, if the motors are uniformly distributed over the surface of the cargo and if their density is low, 
the transport is basically associated with a single motor since only one motor at a time can access the 
MT. Multiple motor transport is also influenced by the initial binding state and the attachment rate of the 
motors to the MT. The higher the motor binding rate, the longer is the run length of the cargo.  
 
In our two-MT-multiple-motor simulations, we fix the position of 2 MTs parallel to the axis of the axon 
and let one of the motors bind to either of the MTs randomly. The binding process, position of the cargo 
and the size of the axon all satisfy the boundary conditions mentioned before. It should be noted that the 
initial motor state, i.e., whether the motor is on (ATP-bound) or off (ATP-unbound) also affects the 
transport properties. In the simulations, we assume an ATP molecule is bound to the head of the motor 
at the time when the motor attaches to the MT. When transport starts, only one motor is allowed to bind 
to the MT and the rest of the motors are free. Multiple motor transport along a single MT is discussed in 
detail in Ref. (9). Here we describe briefly the scenario of multiple-motor transport along two MTs (see 
Fig. S1). 
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Figure S1: (A) A cartoon of a cargo being hauled by multiple motors along parallel microtubules. (B)  
Cargo interacting with polymers.  A polymer is modeled by a chain of beads linked by tiny springs.  
Unlike the cargo, each bead of a polymer performs constrained diffusive motion. 
  
Our simulation for the calculation of the run length goes as follows: 
At t = 0, a given number of motors is specified.  
A single motor is fixed at a point defined by spherical coordinate angles (θ, φ) on the surface of the 
cargo.  
The tails of rest of the motors are distributed in a region from (θ, φ) to (θ + 0.01π,φ + 0.01π) . 
In other words, the tails of the motors are clustered together on the surface of the cargo. 
At t = 0, a single motor is allowed to bind to one of the MTs to initiate the simulation. 
At t > 0, the motors that can reach to the MT will be able to bind without bias at the binding rate of 2 per 
sec.  
The binding of the motors to the second MT depends upon the MT’s position. If a motor can reach both 
the MTs at the same time, then there is a 50/50 chance of binding.  This means the motor tries to bind to 
the first MT. If it fails, then it tries to bind to the second MT. In both cases, the binding rate of a motor 
to a MT is still 2 s-1. 
In the course of time, motors can bind and unbind from the MTs as well as switch back and forth 
between the MTs. The binding, unbinding, and stepping processes of the motors are governed by 
Micheles-Menten detachment kinetics. 
 
The state of the cargo is defined by the states of the motors. Basically the cargo can be hauled along one  
or two MTs, depending upon the state of motors.  In principle, when the motors can reach both the MTs, 
this allows the cargo to straddle both MTs when the separation between the MTs is less than twice the 
native length of the motor. 
 
The run length of the cargo is defined by the total mean distance travelled by the center of mass of the 
cargo without dissociating from the MT(s). In the simulation, we do not consider the direct motor-motor 
interactions. However, motors can interact via their forces on the cargo.  
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3. Effect of Macromolecules Crowding the Cargo 
 

The biological medium differs greatly from an idealized system due to large molecules in the cytoplasm. 
In particular, in a neuron, owing to the confined geometry of the axon, the effective cargo-protein 
interactions may be much more pronounced than in an ordinary cell.  Axoplasm consists of an 
abundance of large molecules such as microtubule-associated proteins (MAPs) bound to microtubules 
(14, 15), the C-termini of neurofilaments medium and heavy with long side arms (15-17), and plectin 1c 
(18) which is a member of a family of cytoskeletal linking proteins (19).  
 
3.1 Cargo-Protein interaction 
3.1.1 Spring-Bead Model 
 

The detail molecular structure and dynamics of the residues of these large molecules using microscopic 
modeling such as molecular dynamics is computationally challenging and time demanding. In order to 
get a rough estimate of how a crowded environment affects the cargo dynamics in a confined geometry, 
we model the cargo-protein interactions by considering each polymer as a chain of spherical beads 
coupled by massless springs. The motion of each polymer consists of the motion of its constituent beads, 
each of which diffuses in a constrained environment. In a dense medium, we also incorporate the 
protein-protein interactions via bead-bead collisions. We assume the interaction is attractive when the 
beads are far apart and repulsive when they are very close together (at very short range); the interaction 
is the standard Lennard-Jones (LJ) potential. The LJ potential is useful to model the interaction between 
particles at the atomic level (20): 
 

12 6

4LJV
r r
σ σε

    = −    
     

 

 
The LJ parameters ε and σ are the potential depth and the equilibrium distance of the interparticle 
separation. r is the distance between the 2 particles. In our simulation, the potential does not enter into 
the calculation explicitly. We define the forces on the cargo due to polymers, Fc, and on the ith bead due 
to other beads, Fi, as the sum of the forces   

 
1

( , ) ˆ
N

LJ
c

j
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∂
= −
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N
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i s i i
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V i j
F r k x x

r + −
≠

∂ 
= − − − ∂ 
∑



 

  

 
where the sum, in principle, runs over all beads, N is the total number of beads, and  is a unit vector.  
The spring constant ks is defined as 
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1 1, same polymer
0 otherwise

i i
s

k
k + − ∈
= 


x x
 

 
Each bead and the cargo perform Brownian dynamics with an additional force originating from the 
interactions, i.e., the positions of the bead and the cargo at any given time are calculated according to 

( ) ( ) ( )
( )i i i T T

T

tt t t i
i

σ
α
∆

+ ∆ = + +x x F ε , 

( ) ( ) ( )
( )c c c T T

T

tt t t c
c

σ
α
∆

+ ∆ = + +x x F ε , 

 
where the thermal fluctuation coefficients ( )T iσ  and ( )T cσ  for the beads and the cargo can be different 
due to differences in their radii. While the cargo can perform free diffusion, the motion of the beads of 
each polymer is constrained due to the coupling to the neighboring beads via springs.  In order to speed 
up the simulation, we have also introduced a cut-off in the potential, and the subsequent correction in the 
derivatives is added into the calculation in order to avoid the divergence in the spatial derivatives that 
come from the abrupt cut-off. In all our calculations, the cut-off distance is defined in terms of σ, the 
equilibrium distance of the LJ potential. 
The parameter values for the cargo-bead simulations are listed in Table S2. 
Table S2: Cargo-Protein Interaction Parameters and Values 
Parameters Values Comments 

0η  10 wη  wη : viscosity of water 

br  10 nm Bead size 

bσ  1.12(2 br ) Bead equilibrium distance 

cσ  1.12(a+2 br ) Cargo-bead equilibrium distance 

ε  1  Potential depth 

zL  1.6 µm Length of the cylinder 

sk  2 pN/nm Spring constant 
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3.1.2 Boundary Condition and Wall Effect 
 
In order to find the mobility and effective viscosity in our simulations, we consider a cylindrical tube of 
diameter D, and longitudinal dimension Lz, filled with a medium of viscosity 0η .  The volume 
concentration C of the polymers is defined by the ratio 
 

p

t

V
C

V
=  

  
where Vp and Vt  are the net volume occupied by the polymers and the volume of the tube, respectively. 
The spherical cargo has radius a.  At t = 0, we place the cargo at a distance Lz / 4 along the axis of the 
tube and apply an external force F so that it can move in the z-direction. (The cargo is not being hauled 
along the microtubule by motors; it is being driven by the external force F.) We end the simulation when 
the cargo reaches the point 3Lz / 4. We record the time for the net displacement of Lz / 2. During this 
time the cargo as well as polymers can interact with their surroundings and can also experience the 
resistance from the wall. The wall effect for both cargo and the polymers is incorporated by rescaling the 
viscosity 0( )eff Kη η η→ = x  during the diffusion process. 

 
3.1.3 Cargo Mobility and effective viscosity 
 
When the cargo interacts with the beads in a polymer, it recoils due to Newton’s third law. The recoil 
velocity of the cargo is much smaller than that of the bead due to a large cargo-bead size ratio. This 
effect can be significant if the polymer concentration is high. 
 
In order to quantify the effect of the polymer-cargo interactions, we define cargo mobility μ and size-
dependent effective viscosity effη  as follows: 

µ =
v
F

, 

6eff a
η

π
=

F
v

, 

 
where F is the cargo driving force, a is the cargo radius, and v is the average velocity. The effective 
viscosity can also be found directly by using Stokes’ formula:  
 

0 0

effη
η

=
v
v
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The average velocity in our simulation is calculated by measuring the average time for the cargo to 
travel through a given distance. We assume that the crowding and confinement renormalize the effective 
viscosity of the medium.  This viscosity changes with the size of the cargo, the length and the density of 
the polymers, and the strength of the lateral confinement, i.e., the axonal caliber.  
 

4. Results 
4.1  Wall effect on transport by a single motor 
We first explored how the wall would modify axonal transport of a cargo hauled by a single kinesin 
motor. We modeled the axon as a long cylinder of uniform diameter with a microtubule centered along 
the axis of the axon. (In practice, electron micrograph images (21) show a wide variation both in the 
caliber size and longitudinal undulation.)  We investigated the magnitude of the wall effect on cargo 
motion via our simulations (Fig. S2), and consistent with the analytic results in Fig. 1, observed that the 
importance of the wall depended very much on the size of the cargo relative to the axon. For a D = 1200 
nm axon with = 10 times that of water, and with the 500 nm diameter cargo, the average load on the 
motor during the simulation was approximately 0.84 pN; the effect of such a load in our simulations in 
the presence of Brownian motion was consistent with past experimental results (11) and previous force-
processivity data (11). Thus, for some parameter values, the effect of the increased drag due to the wall 
effect can be enough to decrease by approximately 50% the expected mean travel distance of a cargo 
that is hauled by a single motor.  Such an effect would likely not be insignificant from a physiological 
point of view, since recent work (22) suggests that a roughly 25% decrease in motor processivity is 
enough to have significant consequences.  Note that the parameters for the large cargo/small axon case 
considered are not unreasonable, since mitochondria are frequently on the order of 200 nm in diameter 
(23), and there are numerous axons on the order of 1 µm in diameter.  
 

 
FIGURE S2 (A) Run length of a single motor hauling a cargo of radius a = 250 nm as a function of axon 
diameter when the microtubule (MT) is along the axis of the axon.  The expected value of the run length 
of a cargo in water hauled by a kinesin molecule without any wall is about 800 nm (24). In our 
simulation, the viscosity of the medium is 10 times that of the water (7) and the run length 
asymptotically approaches the unbounded value when the axon diameter approaches infinity. (B) Run 
length of a cargo hauled by a single motor versus the scaled distance r/D of the microtubule from the 
axis of the axon for different axon diameters D.  r is the distance of the center of the MT from the center 
of the axon. The MT is parallel to the axis of the axon. The position of the MT with respect to the 
diameter D of the axon has been rescaled so that all data fits in a single plot. For large axons, the run 

η∞
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lengths fairly remain constant except when the MT is close to the wall. For small caliber axons, the run 
length increases slightly when the MT is along the axon axis. Here each data point is the average of 
1000 runs. (C) Cartoon depicting cross section of axon of diameter D with MT center a distance r from 
the axon center, and the cargo touching the MT. 
 
4.2 Potential effect of crowding 
The biological medium differs from an idealized Newtonian fluid, in part due to large molecules or parts 
of large molecules that can impede cargo motion due to steric hindrance. To investigate theoretically 
how large molecules could hinder cargo transport through such effects, we included polymers in our 
simulations as described in the Methods section. 
 

 
 
FIGURE S3 (A) Cartoon depicting the simulation used to calculate the effective viscosity. A sphere 
subjected to a constant force F moves through a cylinder of diameter D containing a fluid with 
polymers. (B) Effective viscosity of the medium in the presence of 200 nm long polymer chains 
consisting of 10 beads, each with 20 nm diameter as a function of axon diameter D without the wall 
effect (correction factor K=1 in Eq. 2). In the absence of the enhanced viscosity near the wall, the caliber 
size of the axon does not have any noticeable effect. (C) Effective viscosity with the wall effect. For 
comparison, the exact viscosity for a cargo moving along the axis given by Haberman and Sayre (1, 2) is 
also shown at 0% polymer concentration. Note that the concentration of the polymers enhances the 
viscosity significantly. This enhancement is very pronounced for small caliber axon when the wall effect 
is incorporated. Here the radius of the cargo is a = 100 nm and the length of the polymer is set at L = 
200 nm. The concentration in µM refers to the number of micromoles of polymer per liter.  
 
Obviously, the higher the polymer concentration, the more effect it had. Thus, we investigated the effect 
of macromolecules in the axoplasm on the effective viscosity for concentrations of 0, 0.2, 0.4, 0.6, 0.8, 
and 1.0 µM, corresponding to approximate excluded volumes of 0%, 0.5%, 1%, 1.5%, 2%, and 2.5%. 
To keep the polymer concentration constant for different caliber axons, we varied the number of 
polymers as we varied the axon diameter. Each polymer was modeled by a chain containing between 10 
beads, each of radius 10 nm coupled through a tiny spring with spring constant 2.0 pN/nm. Because 
many axonal cargos are small, the cargo radius was fixed at 100 nm, while the diameter of the axon 
(tube) was varied from 400 nm to 1000 nm. Both the viscosity and mobility data show a clear deviation 
from the free transport values due to cargo-polymer interactions and the wall effect. 
 

In Fig. S3, we separate the effect of confinement and of crowding by the polymers on the cargo mobility 
(quantified in terms of effective viscosity) for different polymer concentrations. In Fig. S3B, we show 
the effect of the presence of polymers alone, without incorporating the wall effect on the polymer 
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filaments and on the cargo. There was a significant enhancement of the “base” viscosity of the medium 
as the concentration of the polymer increased. This enhancement came from the excluded volume effect. 
When the wall effect was included (see Fig. S3C), the effective viscosity remained fairly constant for a 
given volume exclusion (polymer concentration) in large diameter axons. However, the wall effect 
became important and was the dominant factor inhibiting cargo mobility as the caliber size decreased, 
and the presence of the polymers increased the wall effect.  The length scales for which the wall effect 
became important are discussed next. 
4.3 Onset of the wall effect when the cargo radius and cargo-wall distance are comparable 
Noting that the presence of long molecules dramatically enhanced the opposition to the motion for even 
a relatively small cargo in a small caliber axon, we wanted to better understand how the onset of huge 
resistance depended on the different length scales of the system. The explicit lengths involved in the 
system were the radius of the cargo (a), the diameter of the axon caliber (D), and the length of the 
polymers (L), and the distance of the surface of the cargo to the inner wall of the axon (h).  
 
For a Newtonian fluid, the mobility of a spherical object is inversely proportional to its size, while the 
coefficient of viscosity is the property of the medium, and is size independent. Cytosol, especially the 
axoplasm, is a complex fluid with large molecules, and is expected to be a non-Newtonian fluid, i.e., the 
mobility and thus the effective viscosity should vary with the size of the object. In our simulation, as 
indicated above, we modeled each polymer chain as a system of beads coupled by tiny springs. The size 
and the number of beads determined the net volume exclusion. We varied the length of the polymer by 
changing the number of beads linked together while keeping the overall density of the beads (excluded 
volume) constant.  We also varied the size of the cargo as well as the diameter of the axon.  
 
For a small caliber axon, when thermal fluctuations pushed the cargo away from the axonal axis, the 
average cargo-wall distance, h, could be comparable to the polymer length. In that case one might 
expect strong cargo-wall coupling via the polymers, leading to a large resistance to cargo transport. 
However, we observed a very weak dependence on the length of the polymer, as long as the volume 
exclusion remained constant (see the Supporting Materal), suggesting that such direct cargo-wall 
coupling via filaments was not a dominant effect. 
 
For a given polymer concentration (volume exclusion), however, the wall effect was significantly 
amplified by the presence of the polymer when the cargo was relatively close to the wall. In Fig. S3, we 
see that the wall effect for a given polymer concentration with a small cargo was fairly constant for large 
caliber axons: its effect was noticable only when the axon diameter was reduced to about D = 400 nm. 
Here, the cargo radius was 100 nm, so the corresponding ratio of h (distance of cargo surface to the 
wall) divided by a (cargo radius) was h/a = 1. We investigated whether the observed onset of a dramatic 
enhancement of the effective viscosity (or the reduction of the mobility) seen in Fig. S3 occurred more 
generally for cargos of other sizes, at around the same value h/a = 1 (Fig. 2). We observed that it did, for 
all polymer concentrations and for all polymer lengths; the presence of long molecules increased the 
‘base’ viscosity of the axoplasm, which then resulted in amplifying the magnitude of the wall effect. 
 
To understand whether the ratio h/a was a truly universal quantity, we varied the cargo size for different 
axon diameters in the regime where  for a concentration of polymers equal to 4.17% excluded 
volume. These concentrations were 16.5 μM, 3.31 μM, and 0.827 μM for polymers of lengths 20 nm, 

/ 1h a ≈
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100 nm, and 400 nm, with beads of radius 10 nm. In Fig. 2, we show the extracted effective viscosity 
data for different calibers and cargo radii expressed in terms of the parameter h/a. It is interesting to note 
that, irrespective of the axon or cargo size, the effective viscosity dramatically increased when  
for all axon and cargo dimensions. Physically, small h meant that the cargo was close to the wall, and 
large a meant that there was a large amount of cargo surface area to enhance the viscous drag produced 
by proximity to the wall of the axon. Thus the wall effect became insignificant if the cargo-axon 
geometry satisfied the condition h/a ≫ 1.   
 
5. Relation between the load on the motor and the location of the microtubule 
 
The cargo is subjected to a greatly enhanced viscosity when it is very close to the wall of the axon.  For 
this reason, it avoids the wall. Suppose the cargo is close to the wall of the axon. As the motor walks 
along the MT and pulls on the cargo, the wall exerts a drag force parallel to the wall and the MT. This 
force stretches the motor. The component of the force perpendicular to the wall and the MT pushes the 
cargo down toward the MT.  In our simulations we find that the cargo avoids being close to the wall.  In 
Figure S4A, we plot the run length vs. load on the motor at the time when the motor detaches from the 
MT for a large and small diameter axon.  The load on the motor is given by the amount that the motor is 
stretched multiplied by the spring constant of the motor. For small loads, the average run length (travel 
distance) is about the same for both axon sizes. However, for large loads (greater than 8 pN), the run 
length is considerably shorter for the smaller caliber axon.  Figures S4B and S4C show that the large 
loads on the motor occur when the cargo is near the microtubule and far from the axon wall.  The 
reduced run length in the small caliber axon is due to the viscosity that is enhanced by the small 
diameter of the axon.  The nominal viscosity of the axoplasm in our simulations is 10 times that of 
water.  With the correction factor (Figure 1 in main paper) of 5 far from the wall, the effective viscosity 
is about 50 times that of water. 

/ 1h a ≤
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Figure S4: In all of these scatter plots, a single motor hauls a spherical cargo with a radius of 250 nm 
along a single microtubule centered on the axis of the axon. We show two axon diameters: 1200 nm and 
9200 nm. Each point represents a single run. (A) Run length versus the load on the motor at the time 
when the motor detached from the microtubule. The run length is shorter for high loads (> 8 pN) in the 
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smaller axon. Data is from 400 runs. (B) The distance between the inner wall of the axon and the surface 
of the cargo versus the load on the motor when it detached. (C) The distance between surface of the 
cargo and the surface of the microtubule versus the load on the motor when it detached. Notice that the 
motor can have a large load when it is near the microtubule, but never when it is near the wall and hence 
far from the microtubule. 
 
 
6. Electron Micrograph Images of Axons and Their Microtubule Distribution 
 
Here we present some examples of electron micrograph (EM) images of small caliber axons where we 
have measured the distribution of microtubules. Electron micrograph images of axonal cross section of 
small and large motor neurons of mice were analyzed by paying particular attention to the microtubule 
distributions. In some EMs, the resolution or magnification were such that it was hard to identify 
microtubules, so those images with indistinguishable microtubules were discarded. To determine 
whether the microtubules were randomly distributed or not, we overlaid a grid onto the images such that 
there was an average of roughly one microtubule per grid square. We then counted the number of visible 
microtubules in each square that was fully contained within the axon’s boundary (25).  The grid size was 
such that there was approximately one MT per square, i.e., the side of a grid square ranged from 0.2 to 1 
μm. An example is shown in Figure S5. Given the mean number of microtubules per square, we could 
then use the Poisson distribution with that mean to calculate the probability of finding a given number of 
microtubules in a square. Values of chi-squared (representing the deviation of the results from the 
Poisson distribution) and p (the probability that the microtubules were randomly distributed) were then 
calculated. In most cases we found that the MTs were randomly distributed and agreed well with a 
Poisson distribution (Fig. S5C). Of the nine images with readily visible microtubules, eight had p-values 
greater than 0.05, suggesting microtubules were largely randomly distributed (Figure S5). In some axons 
the MTs appear to be clustered (see Figure S6) and we find the MTs in a cluster tend to be within 100 
nm of each other as long as the overall MT density is comparable to that of similar caliber axons. Figure 
S6 had a p-value below 0.05, suggesting a nonrandom clustering of microtubules. Of course, one axon is 
not enough to draw any conclusions about whether the microtubule arrangement is random or not; this 
one axon could simply be one of the rare axons whose arrangement of microtubules puts it in the tail of 
the Poisson distribution. However, previous work has also found microtubule bundling in axons (16, 26, 
27). A summary of the axonal EMs that we examined is shown in Figure S7 where we plot the p-value 
vs. the MT density of the axon in Figure S7A and the p-value vs. the cross sectional area of the axon in 
Figure S7B. The p-value represents the probability that the distribution of MTs followed a Poisson 
distribution. Since a small p-value corresponds to a non-random distribution of MTs, we can see that 
most of the axons had a large p-value and thus, a Poisson distribution of MTs, regardless of the axon 
size, i.e., the axonal cross sectional area.  
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Figure S5. (A) Electron Micrograph (EM) image of the cross section of a myelinated axon of a large 
motor neuron of a 6-month-old mouse. The average inner diameter (excluding myelin) is about 6 
microns. The MT density is 28.3 MTs/μm2. (B) A zoomed portion of the cross section. Three arrows 
point out microtubules. Other microtubules are clearly visible. (C) Histogram comparing the observed 
distribution microtubules with the Poisson distribution (Poisson mean = 2.6371 MT/square). Good 
agreement with the Poisson distribution indicates that the MTs are randomly distributed. The p-value for 
a Poisson distribution of MTs is 0.5 in this case. The EM was analyzed by overlaying a square grid on 
the axon and counting the number of microtubules in each square. The mesh size was such that there 
was approximately 1 MT per grid square. 
 

 

Figure S6. (A) Electron Micrograph (EM) image of the cross section of a myelinated axon of a small 
motor neuron of a 6-month old mouse. The average inner diameter (excluding myelin) is about 2.08 
micron. The MT density is 3.2 MTs/μm2. (B) A zoomed portion of the cross section. Two arrows point 
out microtubules. Other microtubules are clearly visible. (C) Histogram comparing the observed 
distribution microtubules with the Poisson distribution (Poisson mean = 0.9143 MT/square). Analysis 
was the same as in Figure S5. Poor fit to Poisson distribution indicates that the MTs were clustered. The 
p-value for a Poisson distribution of MTs is 0.035 in this case. However, since this is just one axon, one 
cannot draw any definite conclusions about whether the microtubule arrangement is random or not; this 
axon could simply be one of the rare axons whose arrangement of microtubules occurs 3.5% of the time 
in a Poisson distribution. 
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Figure S7.  (A) P-value of Poisson distribution of microtubules versus the MT density. Each point 
represents the MTs in one axon. Low p-value indicates that the MTs are clustered and not randomly 
distributed. High p-value means that the MTs are distributed randomly according to a Poisson 
distribution. (B) P-value of Poisson distribution versus the cross-sectional area of the axon. Note that 
most of the axons have a random distribution of MTs, regardless of their size (cross-sectional area).  
 
If the microtubules are randomly distributed, we can calculate likely nearest-neighbor distances given 
the average microtubule density. Given an average MT density ρ, the probability P that some MT will 
have a nearest neighbor within a distance r is (28): 
 

2

1 rP e ρπ−= −  
 
(Note that this expression goes to zero as r goes to zero, and to 1 as r goes to infinity; it increases with 
ρ.) Solve for ρ: 
 

2

ln(1 )P
r

ρ
π

− −
=  

 
We plot this equation in Figure 5 in the main text. A center-to-center distance of 75 nm between 
adjacent microtubules is more than sufficient for a single motor within range of the MTs to reach either 
of them, as discussed in the main text. If we set r to 75 nm, we can calculate values of ρ for different 
desired values of P as shown in Table S3.  
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Table S3: Microtubule Densities Needed For Various Nearest-Neighbor Probabilities at 75 and 200 nm 
P (neighbor within distance) ρ (MTs / µm2), 75 nm ρ (MTs / µm2), 200 nm  

0.75 78.45 11.03 

0.8 91.08 12.81 

0.9 130.3 18.32 

0.95 169.5 23.84 

0.99 260.6 36.65 

 
Smaller-caliber axons have recorded microtubule densities of roughly 150 microtubules/µm2, meaning a 
microtubule has a greater than 90% chance of having a neighbor within 75 nm. As mentioned above, 
some axons do appear to exhibit clustering in microtubules rather than random distribution; in these 
cases, the closest neighbors in a cluster are well within 75 nm. 
For contrast, we also include the microtubule densities necessary for a microtubule to have a neighbor 
within 200 nm, although a separation this great makes multiple-microtubule transport unlikely. In the 
images of larger axons with the most clearly visible microtubules, microtubule densities ranged from 
roughly 12-25 microtubules/µm2, corresponding to at least a 75% chance of any given microtubule 
having a neighbor within 200 nm. 
 
7. More realistic modeling of axonal transport 
The purpose of this paper has been to point out that there can be significant viscous drag on cargos 
moving close to the axonal wall, which effectively acts as a rigid wall. We have used a simple model of 
axonal transport to illustrate this, but there are clearly ways in which the model of axonal transport could 
be made more realistic. For example, we have modeled the cargo as a rigid sphere, but a variety of 
cargos with different shapes undergo fast axonal transport, e.g., membranous organelles and tubules, 
mitochondria, vesicles containing neurotransmitters, lysosomes, etc. (29). Some of these cargos could be 
deformed as they pass near the axon wall or near other cargos.  In addition, we have modeled axoplasm 
as an isotropic viscous fluid containing polymers, even though it is a complex anisotropic heterogeneous 
viscoelastic fluid (30) containing polymers, and membranous organelles and tubules largely oriented 
along the axis of the axon. One way to model the axoplasm would be with the Burger’s model which 
involves elastic moduli and viscous coefficients a circuit-type arrangement (30). In addition to the 
viscosity enhancement near the wall of the axon, the membranous tubules, e.g., the endoplasmic 
reticulum, in the axoplasm could also enhance the viscosity experienced by nearby cargos. This 
enhancement is not seen in nonneuronal cells as found in experiments where a reduction in the number 
of motors hauling lipid droplet in Drosophila embryos did not reduce the run length or the velocities of 
the cargo (13). Thus, it appears that at least without a nearby bounding membrane, intracellular 
membranes do not impair intracellular transport in nonneuronal cells because the vesicles are able to 
avoid close approaches where the viscosity is greatly enhanced.  However, avoiding such close 
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encounters is not always possible in the confined geometry of the axon. This would explain why, as we 
mentioned above, inhibition of force generation by dynein arrested the motion of large lysosomes/late 
endosomes in axonal transport but had little effect on the transport of small vesicles (22).  To model 
transport in the axon in the presence of membranous tubules is difficult because it requires too many 
unconstrained parameters such as the tubules’ size, shape, location, and whether they are tethered or free 
floating. However, we believe that cargo transport via motors walking along two MTs simultaneously 
could be especially helpful in small caliber axons where pushing such membranous tubules out of the 
way is difficult because of the confined geometry. In addition, interactions between cargos traveling in 
opposite directions could also impair cargo transport, e.g., the organelle traffic jams (31, 32) that we 
mentioned above, but modeling this is well beyond the scope of this paper which just considers single 
cargo transport. Although our modeling suggests that small cargos like synaptic vesicles (~100 nm) can 
be transported in an axon without significant resistance, other larger cargos like mitochondria and 
lysosomes (22) may have more difficulties, especially in small caliber axons.  This work thus provides a 
useful conceptual framework for such effects but the extent to which such scenarios contribute to 
disease progression in the animal remains to be explored experimentally.   
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