
Chapter 6

The Quantum Wave Function

Let’s just get to the point: Quantum mechanics represents a particle as a wavefunc-
tion: ψ(~r, t). What does a wavefunction mean physically? It means that the probability
that a particle is located in a volume dV is |ψ(~r, t)|2dV .

To understand this, let’s go back to classical electromagnetic radiation. EM waves
have oscillating electric fields E(~r, t). The energy E in a volume dV is

E = ε0 [E(~r, t)]2 dV (1)

where ε0 is the permittivity of the vacuum. We’ll just drop these constants and use
proportionality signs:

E ∝ [E(~r, t)]2 dV (2)

In quantum mechanics, energy is carried by photons in packets with energy hf . So the
number of photons in dV at ~r is

N =
E

hf
∝ [E(~r, t)]2 dV

hf
∝ [E(~r, t)]2 dV (3)

Since the square of a wave is called the intensity, we can say that the number of photons
in a small volume dV is proportional to the intensity of the light [E(~r, t)]2 in dV . There is
a slight problem with Eq. (3). Namely, there can be a fraction on the right hand side and
there is an integer on the left hand side. No such thing as half a photon. So it would be
better to interpret this by saying that if we took a lot of measurements, then the average
number 〈N〉 of photons, or the most probable number of photons, is proportional to the
intensity:

〈N〉 = E

hf
∝ [E(~r, t)]2 dV

hf
∝ [E(~r, t)]2 dV (4)

So we are associating intensity (square of the wavefunction) with a probability of finding
a particle in a small volume. So if an electron is represented by a wavefunction ψ(~r, t),
then the probable number of electrons in a small volume dV at ~r is proportional to
[ψ(~r, t)]2dV .

One slight complication is that in quantum mechanics, wavefunctions are complex
numbers:

ψ = ψreal + iψimag (5)

where i =
√
−1. So we need to modify the probable number of electrons to |ψ(~r, t)|2dV

where
|ψ|2 = ψ∗ψ = ψ2

real + ψ2

imag (6)

and
ψ∗ = ψreal − iψimag (7)



is the complex conjugate of ψ. We will refer to |ψ|2 as the intensity of the wavefunction.
It is a positive real number as is the probability of finding an electron in a particular
volume element. We choose the proportionality constant to be 1 so that we can write

|ψ(~r, t)|2dV = Probability of finding particle in dV at ~r (8)

We can divide both sides of the equation by dV and interpret |ψ|2 as the probability
density:

|ψ(~r, t)|2 = Probability per unit volume of finding particle at ~r (9)

In quantum mechanics we cannot say definitively where an electron is until, or unless,
we make a measurement (collapse the wavefunction). We can only talk about the prob-
ability of a particle being somewhere. In classical mechanics we give the probability of
a flipped coin being heads or tails because we don’t have enough information about the
forces, etc. on the coin. But if we had that info, we could determine how the coin would
land. We say that classical mechanics is deterministic. Quantum mechanics is inherently
probabilistic, not because of a lack of information.

Which Slit Does the Electron Go Through?

When an electron goes through a 2-slit apparatus, its wavefunction passes through
both slits like a light wave and then hits the screen in front. The dark bands on the
screen correspond to where the electron waves interfere constructively according to the
condition

d sin θ = nλ n = 0,±1,±2, ... (10)

where d is the slit separation and λ the electron wavelength. This is the same equation
that we use to describe the interference of a light wave going through 2 slits.

But if we think of an electron as a particle, we’d like to know which slit it went
through. We can try to look and see which slit it goes through, but this doesn’t work.
In trying to observe or measure the electron, we perturb it so much that we mess up the
wavefunction. The measurement destroys the state we are trying to observe. Usually,
when you measure something, you don’t want to affect the thing you are trying to observe.
In quantum mechanics, you can’t do that.

To see this, suppose we use light to observe which slit the electron goes through. To
observe interference on the screen beyond the 2 slits, the wavelength of the electron must
be of order the slit separation d:

λel ≈ d (11)

So the momentum of the electron is

pel =
h

λel
≈ h

d
(12)

In order to see which slit the electron goes through, we need the wavelength of the light
used to observe the electron to be less than or of order d:

λγ
<∼ d (13)
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So the momentum of the photon is

pγ =
h

λγ

>∼ h

d
≈ pel (14)

In other words the momentum of the photon is larger than the momentum of the electron.
So the photon will completely change the momentum of the electron. Recall the Compton
effect. If we do this to a lot of the electrons traversing the 2-slit apparatus, we will destroy
the interference pattern.

Basically, quantum mechanics describes particles in terms of wavefunctions. These
wavefunctions work great until they hit something or until something hits them. Then
quantum mechanics doesn’t work so well.

Sinusoidal Waves

The de Broglie relations say that if a particle has definite values of energy (E = hf)
and momentum (p = h/λ), then its wavefunction has definite values of frequency and
wavelength. A wave with definite frequency and wavelength is a harmonic or sinusoidal
wave. So let’s talk about sinusoidal waves. These are basically sine or cosine waves.

A wave traveling on a taut string has the form

y(x, t) = A sin 2π
(

x

λ
− t

T

)

(15)

where x is position, t is time, A is the amplitude, λ is the wavelength, and T is the period
(time to repeat the cycle). This equation describes a wave traveling to the right (see Fig.
6.8 in your book). If we want a wave traveling to the left, we just change the minus sign
to a plus sign:

y(x, t) = A sin 2π
(

x

λ
+
t

T

)

(16)

The amplitude A is the maximum displacement of the string in the vertical direction,
measured from its mean position. For a fixed time t, the wavelength λ is the distance
one must go before the wave repeats. For a fixed position x on the string, the period T
is the time we must wait for the wave to repeat itself. The frequency f is the number of
cycles or oscillations per unit time at one fixed position:

f =
1

T
(17)

The units of frequency is s−1 or hertz where 1 hertz = 1 Hz = 1 s−1. If we define
wavenumber

k =
2π

λ
(18)

and angular frequency

ω = 2πf =
2π

T
(19)
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then we can write the wave function as

y(x, t) = A sin(kx− ωt) (20)

The wave speed is given by dividing the distance (λ) the wave moves in a given time (T ):

v =
λ

T
= λf =

ω

k
(21)

ω and k are used a lot in quantum mechanics so become familiar with them. In terms of
ω and k, the de Broglie relations become

E = hf = h̄ω (22)

and

p =
h

λ
= h̄k (23)

Wave Packets and Fourier Analysis

In reality, waves never have just one wavelength and frequency. They are usually a
mixture of wavelengths and frequencies. Even though we refer to monochromatic light as
having one well-defined frequency, in fact, there is always a small spread of frequencies.

True sinusoidal waves go on forever, but if we want to describe particles as waves, we
want the particles to be localized in space, not spread out everywhere in the universe with
equal probability. So we refer to a wave packet or wave pulse as a wave function that is
localized in some region of space. Localized wave packets can be written mathematically
as the sum or superposition of many different sinusoidal waves, i.e., of many different
cosine and sine functions. The study of the decomposition of wave packets into sine
and cosine waves is called Fourier analysis. There are 2 broad types of functions: (1)
periodic functions that repeat at regular intervals, and (2) nonperiodic, nonrepeating
functions like localized wave packets.

Fourier Series

Periodic functions can be decomposed into Fourier series which are a sum of sines and
cosines. Examples of periodic functions are a square wave and a triangular wave. Let’s
consider an even function, i.e., f(x) = f(−x). This will be a sum of cosines since cosine
is even, i.e., invariant if x→ −x. So we can write

f(x) =
∞
∑

n=0

An cos
(

2πn

λ
x
)

=
∞
∑

n=0

An cos (knx) (24)

where An are constants called Fourier coefficients. The particular values that they
take depend on the function f(x). Eq. (24) is called a Fourier sum or Fourier series.
Notice that the different terms correspond to different wavelengths. The n = 0 term is
just a constant. The succeeding terms have wavelengths

λ,
λ

2
,
λ

3
, ...,

λ

n
, ... (25)
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The longest wavelength term is n = 1 which is called the fundamental. The other terms
are called higher harmonics. Corresponding to these wavelengths are the wavenumbers

k1 =
2π

λ
, k2 = 2 · 2π

λ
, k3 = 3 · 2π

λ
, ..., kn = n · 2π

λ
, ... (26)

There is a straightforward way to calculate the coefficients An for a given function
f(x), but we won’t go into that here. It turns out that for a square wave, the coefficients
are

An =
2

πn
sin

(

πan

λ

)

(27)

where a is the width of a square bump. Even though the series has an infinite number
of terms, the first several terms are enough to approximate the function remarkably well
as shown in Figure 6.11 in the book.

Fourier Integrals

Nonperiodic functions can be regarded as a periodic function in the limit of an infinite
repeat distance. If we set the wavelength to infinity, then the spacing of the wavenumbers
∆k = 2π/λ is zero. So rather than a sum over discrete values of k, we need to do an
integral over k because there is a continuous distribution of k’s. So we can write the
Fourier integral as

f(x) =
∫

A(k) cos(kx) dk (28)

The function A(k) is called the Fourier transform of f(x). It gives the weighting of
the cosine functions with different values of k, i.e., with different wavelengths. In other
words, A(k) gives the distribution of wave numbers k that make up the wave packet.

Preview: Heisenberg’s Uncertainty Principle We’re going to use all this to
motivate Heisenberg’s Uncertainty Principle which says that

∆x∆p
>∼ h̄

2
(29)

This says that you cannot precisely know the position and momentum of a particle si-
multaneously. ∆x is the uncertainty in position and ∆p is the uncertainty in momentum.
Since de Broglie tells us that

p =
h

λ
= h̄k (30)

the uncertainty (range of values that might come from a measurement of the momentum
of a particle) in the momentum is

∆p = h̄∆k (31)

Here ∆k is the spread in k values in a wave packet that represents a particle. (Here ∆k
is not the spacing between k values in a Fourier sum.) So in terms of ∆k, the uncertainty
principle is

∆x∆k ≥ 1

2
(32)
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To see where this comes from, consider a wave packet of size ∆x made up of a range
of wave numbers ∆k. It turns out that ∆x∆k is a number of order 1. Your book writes

∆x∆k ≈ 1 (33)

This means that to make a wave packet that is very wide in real space, we would use a
small range of k’s, i.e., small ∆k. Conversely, a narrow wave packet would require large
∆k. This inverse relationship between ∆k and ∆x comes from the fact that k ∼ 1/λ
where λ is the wavelength in real space. The extreme case would be a pure sinusoidal
wave like A sin(kx − ωt). There is no uncertainty in k, so ∆k = 0. This wave extends
throughout all space, i.e., it never ends or diminishes, so ∆x = ∞.

To establish Eq. (32), consider an even function of x made up only of cosines with
wavelengths in the range from λ±∆λ. We focus attention on the 2 terms at the extremes:
the cosine terms with λ−∆λ and λ+∆λ. So the difference in wavelength is 2∆λ. The
spread ∆λ corresponds to a spread ∆k in wave numbers that goes as follows. Since
k = 2π/λ, we have

∆k =

∣

∣

∣

∣

∣

dk

dλ

∣

∣

∣

∣

∣

∆λ =
2π

λ2
∆λ (34)

We put an absolute value sign since the derivative is negative but ∆k and ∆λ are positive
by definition.

Now we need to find ∆λ in terms of ∆x. To do this, look at Figure 6.15 which shows
the 2 cosine functions. Near x = 0, the 2 cosines are in phase and they add. But as we go
away from x = 0, the phase difference gets progressively larger because of the wavelength
difference. After one cycle, the peaks of the 2 cosines are a distance 2∆λ apart. N cycles
away, i.e., at x ≈ Nλ, the peaks of the 2 functions are 2N∆λ apart. When the 2 cosines
are 180o out of phase, i.e., when 2N∆λ = λ/2, the 2 waves cancel. This destructive
interference occurs N wavelengths from the origin, approximately at position x = Nλ
where 2N∆λ = λ/2. This sets N . Thus the half-width of the wave packet ∆x is Nλ
because x = Nλ is where the wave packet goes to 0. So we have

2N∆λ =
λ

2
∆x ≈ Nλ (35)

We can combine these equations eliminate N to get

∆x ≈ λ2

4∆λ
(36)

We can plug in Eq. (34) to eliminate λ2/∆λ to get

∆x ≈ 1

4

2π

∆k
(37)

or
∆x∆k ≈ π

2
(38)
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So the larger the spread in wavelengths, the more rapidly the waves dephase as one moves
away from the center of the wave packet, and the more rapidly the packet decays to zero
due to destructive interference: Bigger ∆k means smaller ∆x and vice versa.

The right hand side Eq. (38) is of order 1 and that’s what we set out to show. A more
precise definition of uncertainty is given by the root-mean-square, or rms, uncertainty:

∆x =
√

〈(x− xo)
2〉 (39)

where the brackets 〈...〉 indicates an average over all values of x, and xo denotes the center
of the wave packet. The rms uncertainty is a bit smaller than the half-width uncertainty,
and if we use this definition of ∆x and a similar definition of ∆k, then the uncertainty
relation becomes

∆x∆k ≥ 1

2
(40)

This is the version that your book uses. Some books write

∆x∆k
>∼ 1 (41)

which is fine for giving rough estimates of the uncertainty in x and k.
So far we have been talking about the spread in positions of a wave function at a

fixed time t. We could equally well consider the spread in times of a wave function at a
particular position x. So we can talk about a wave pulse as a superposition of cosωt and
sinωt for various values of angular frequency ω = 2πf = 2π/T . So we can go through
the same argument as above with cosωt replacing coskx, and sinωt replacing sinkx. We
just replace x with t and k with ω. Then we get the uncertainty principle

∆t∆ω ≥ 1

2
(42)

This says that the shorter a wave lasts in time, the larger the spread in constituent
frequencies that make up the wave, and vice-versa. If a wave has only a narrow band of
frequencies, i.e., if the wave has a narrow bandwidth, then it lasts a long time.

Heisenberg Uncertainty Relation

As we said before, since

p =
h

λ
= h̄k (43)

the uncertainty (range of values that might come from a measurement of the momentum
of a particle) in the momentum is

∆p = h̄∆k (44)

So Eq. (40)

∆x∆k ≥ 1

2
(45)

yields the Heisenberg uncertainty relation

∆x∆p ≥ h̄

2
(46)
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which says we can’t know the exact position and momentum of a particle simultaneously.
The smaller the extent of the particle in space, the larger the spread in momentum values,
and vice-versa. This is intrinsic to the wave function that represents the particle. It’s
not the result of experimental uncertainty.

Example: An electron is known to be somewhere in an interval of total width a ≈
0.1 nm (size of an atom). What is the minimum uncertainty in its velocity, consistent
with this knowledge?

Since ∆x is the spread of the wave packet from the central value out to either side,

∆x ≤ a

2
(47)

According to the uncertainty relation, this implies that

∆p ≥ h̄

2∆x
≥ h̄

a
(48)

So

∆v =
∆p

m
>∼ h̄

am
=

h̄c2

amc2
=

200 eV − nm

(0.1 nm)(0.5× 106 eV)
c =

c

250
≈ 106 m/s (49)

where we multiplied the numerator and denominator by c2 to take advantage of the useful
combinations h̄c and mc2. This is a huge uncertainty in velocity.

What about the uncertainty in the velocity in a large macroscopic object?
Example: The position x of a 0.01 g pellet is known to within ±0.5 µm. So

∆x ≤ 0.5 µm (50)

According to the uncertainty principle,

∆p ≥ h̄

2∆x
≥ 10−34 J− s

10−6 m
= 10−28 kg −m/s (51)

So

∆v =
∆p

m
≥ 10−28 kg −m/s

10−5 kg
= 10−23 m/s (52)

So the uncertainty in velocity is totally negligible. If something were moving at 10−23 m/s,
it would take a million years to cross an atomic diameter.

Perhaps the most dramatic consequence of the uncertainty principle is that a particle
confined to a small region cannot be at rest, i.e., cannot stop moving, even at T = 0 K.
This is called zero point energy. If a particle is localized to a small region, then ∆x is
small, and ∆p is large. So momentum is not precisely zero. Hence the particle must have
some kinetic energy since

K =
1

2
mv2 =

p2

2m
(53)
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We can estimate the minimum kinetic energy as follows. Suppose the particle is confined
to a region of size a. Then ∆x = a/2, and

∆p ≥ h̄

a
(54)

The momentum p must be of this order, so

〈K〉 = 〈 p
2

2m
〉 ∼ (∆p)2

2m
(55)

or

〈K〉 >∼ h̄2

2ma2
(56)

As we said, this is called the zero point energy. It is the minimum possible kinetic
energy for a quantum particle confined inside a region of size a. The kinetic energy can
be larger, but not smaller.

Example: What is the minimum kinetic energy of an electron confined to a region
of width a ≈ 0.1 nm, the size of an atom?

〈K〉 >∼ h̄2

2ma2
=

(h̄c)2

(2mc2)a2
=

(200 eV − nm)2

(106 eV)(0.1 nm)2
= 4 eV (57)

This is consistent with the known kinetic energy of 13.6 eV for the ground state of a
hydrogen atom.

We have just been assuming that the particle moves in one dimension. We can get
better agreement if we take into account that there are 3 dimensions. The uncertainty
relations in 3D are

∆x∆px ≥ h̄

2
∆y∆py ≥

h̄

2
∆z∆pz ≥

h̄

2
(58)

where x, y, z are the particles 3 coordinates and px, py, and pz are the particles 3 com-
ponents of momentum.

So going back to our example of the minimum kinetic energy, if we are in 3D, then

〈K〉 >∼ (∆px)
2

2m
+

(∆py)
2

2m
+

(∆pz)
2

2m
≈ 3(∆px)

2

2m
= 12 eV (59)

When we talked about making a hydrogen atom out of an electron and a proton, we
said that Coulomb’s law implies that the 2 should attract each other and they should
collapse to a point according to classical electrodynamics. That would make ∆x very
small and hence ∆p would be very large. Since

〈K〉 >∼ (∆p)2

2m
(60)

the kinetic energy of the electron would be very large. So the electron can lower its
energy by having a wave function with a finite extent. Since 〈K〉 ∼ 1/m, the more
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massive proton will have a smaller kinetic energy even though it is confined to a smaller
space and has a larger uncertainty in the momentum.

Uncertainty Relation in Time and Energy

We also found in Eq. (42) an uncertainty relation between the duration ∆t and the
frequency range ∆ω:

∆t∆ω ≥ 1

2
(61)

If we multiply through by h̄ and use E = h̄ω, then we have the Heisenberg uncertainty
relation for time and energy:

∆t∆E ≥ h̄

2
(62)

Here ∆E represents the uncertainty in the particle’s energy. ∆t is the time spent by a
wave pulse or a particle in the vicinity of a position x. If the particle only spends a short
amount of time in one spot, then the energy uncertainty is large, and vice-versa. On the
other hand, if ∆E = 0, then ∆t = ∞ which means the particle lives forever in that spot,
or more precisely, in that state. These are called stationary states, and are the analog of
Bohr’s stationary orbits.

If a particle does not remain in the same state forever, then ∆t is finite and nonzero.
This means that ∆E is finite and the energy is uncertain. For example, a radioactive
particle could decay after an average time ∆t, and emit some other particle. The energy
uncertainty of the unstable particle has a minimum uncertainty of

∆E ≈ h̄

2∆t
(63)

The emitted particle would also have energy uncertainty. Sometimes researchers measure
the number of emitted particles as a function of their energy. They see a peak called
a resonance. The peak has a width that is due to the uncertainty in the energy. The
uncertainty in energy gives the decay rate and is approximately the inverse of the lifetime.

Example:

An excited atom is unstable and decays by emission of a photon in a time of order
∆t ≈ 10−8 s. What is the minimum uncertainty in the energy of such an atomic state?

According to the uncertainty principle,

∆E ≈ h̄c

2c∆t
≈ 200 eV − nm

2(3× 1017 nm/s)(10−8 s)
≈ 3× 10−8 eV (64)

This is much smaller than the typical energy spacing between atomic levels.
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