Chapter 6: Wave Nature of Matter

- Classically, light is a wave. Quantum mechanics says it's also particles (photons).
- Classically, an electron is a particle. Louis
 De Broglie proposed it's also a wave.
- Wave-particle duality.

De Broglie's Hypothesis

De Broglie relations

$$E = hf$$
 and $p = \frac{h}{\lambda}$

- These apply to light. De Broglie argued they applied to particles.
- Obviously frequency $f=c/\lambda$ applies to light but not to electrons since matter does not travel at velocity c.

Electron Standing Waves

- To explain quantization of electron orbits, De Broglie postulated electrons in orbits formed standing waves.
- http://www.youtube.com/watch?
 v=700gGm2U9vU

Electron Standing Waves

• Circumference $(2\pi r)$ of electron orbit is an integer number of wavelengths

$$2\pi r = n\lambda$$
 where $n = 1,2,3...$

$$\lambda = \frac{h}{p} \text{ (De Broglie relation } p = \frac{h}{\lambda}\text{)}$$

$$2\pi r = \frac{nh}{p}$$

$$rp = \frac{nh}{2\pi}$$

 Orbital angular momentum L = r x p, or |L|=rp, so we obtain Bohr's quantization of L

$$L = \frac{nh}{2\pi} = n\hbar$$

Caveat: orbits are not 1D

Wavelength of Electrons

 Find the wavelengths of electrons with energies K=10, 100, 1000, and 10,000 eV.

$$\lambda = \frac{h}{p}$$

$$K = \frac{1}{2}mv^2 = \frac{1}{2}\frac{p^2}{m}$$

$$p = \sqrt{2mK}$$

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mK}} = \frac{hc}{\sqrt{2mc^2K}}$$
Bigger m, shorter λ

• For K = 10 eV and $mc^2 = 0.51 \text{ MeV}$:

$$\lambda = \frac{hc}{\sqrt{2mc^2K}} = \frac{1240 \text{ eV-nm}}{\sqrt{2 \times (0.51 \times 10^6 \text{ eV}) \times (10 \text{ eV})}} = 0.39 \text{ nm}$$

K (eV)	10	100	1000	10,000
λ (nm)	0.39	0.12	0.039	0.012

Electron wavelengths << visible light (400 – 700 nm)

Experimental Evidence of Wave Nature of Electrons

- Electron diffraction by a crystal (Davisson and Germer; Thomson)
- <u>Low-Energy Electron Diffraction (LEED)</u>
 used to study surface properties

 Neutron diffraction used to study structure of solids

Electron Diffraction from Crystal

The diffraction pattern on the left was made by a beam of x rays passing through thin aluminum foil. The diffraction pattern on the right was made by a beam of electrons passing through the same foil.

Experimental Evidence of Wave Nature of Electrons

- 2-slit experiment with electron waves produces interference pattern.
- http://www.youtube.com/watch?v=DfPeprQ7oGc

Waves

1D Wave:

Displacement is described by a function f(x,t)

2D Wave: Displacement is described by a function g(x,y, t)

Quantum Wave Function

See board notes

Wave Packet is Sum of Waves

- Waves can add constructively or destructively.
- Waves with different wavelengths sum to give a wave packet with a finite extent in space.

Wave Packet Spread

2 Cosine Waves

- 2 Cosine waves with different wavelengths
- Wavelengths differ by 2Δλ
- Waves sum near x=0 (interfere constructively)
- Waves cancel (interfere destructively: 2NΔλ=λ/
 after N cycles around x=Nλ

