
Chapter 5

Example

The helium atom has 2 electronic energy levels: E3p = 23.1 eV and E2s = 20.6 eV
where the ground state is E = 0. If an electron makes a transition from 3p to 2s, what
is the wavelength of the photon emitted?

Eγ = E3p − E2s = 2.5 eV (1)

So

λ =
hc

Eγ

=
1240 eV − nm

2.5 eV
≈ 500 nm (2)

This is blue-green light.
Bohr Model of the Hydrogen Atom

In the Bohr model of the atom, the electrons orbit the nucleus like planets around
the sun. (Whether the orbits are circular or elliptical doesn’t matter much. Bohr worked
out both possibilities. We will assume circular orbits for simplicity.) Bohr assumed that
only some orbits were allowed.

Let us consider the classical mechanics of an electron orbiting a proton. We assume
the proton is fixed in position and has charge +e while the electron has mass m and
charge −e. The force between the proton and electron is due to Coulomb attraction:

F =
ke2

r2
(3)

where k = 1/(4πε0) = 8.99× 109 N-m2/C2. The centripetal acceleration is a = v2/r, so
F = ma implies

m
v2

r
=

ke2

r2
(4)

or

mv2 =
ke2

r
(5)

We have 1 equation and 2 unknowns: v and r. So there is no unique value of v and r,
and no quantization of the energy. The kinetic energy is

K =
1

2
mv2 =

ke2

2r
(6)

If we compare this to the potential energy

U = −

ke2

r
(7)

where the minus sign means that the proton and electron attract one another. U = 0
corresponds to r = ∞. So we see that

K = −

1

2
U (8)



This is an example of the virial theorem. So the total energy is

E = K + U =
1

2
U = −

1

2

ke2

r
(9)

The fact that the total energy is negative means that the electron is bound to the proton.
So as the electron gets farther and farther away, the energy approaches 0. In general,
−∞ < E < 0.

To get quantized energy levels, Bohr proposed that the electron’s orbital angular
momentum was quantized. Recall that angular momentum

~L = ~r × ~p (10)

For an orbiting electron, the magnitude of L is

L = mvr (11)

Bohr proposed that the electron’s orbital angular momentum was quantized in integer
multiples of

h̄ =
h

2π
= 1.054× 10−34 J− s (12)

Note that Planck’s constant has units of angular momentum:

[h] = energy · time =
ML2

T 2
× T =

ML2

T
(13)

and

[angular momentum] = [mvr] = M ×

L

T
× L =

ML2

T
(14)

Bohr proposed that the electron’s orbital angular momentum L was quantized:

L =
h

2π
, 2

h

2π
, 3

h

2π
, ...

= h̄, 2h̄, 3h̄, ...

= nh̄ where n = 1, 2, 3, ... (15)

Techically speaking, the correct theory of quantum mechanics says that the components
of L are quantized in integer multiples of h̄.

For circular orbits, L = mvr, so we have

L = mvr = nh̄ where n = 1, 2, 3, ... (16)

Now we have our second equation. So we have 2 equations (Eqs. (4) and (16)) and 2
unknowns: v and r. Solving Eq. (16) for v, we get

v =
nh̄

mr
(17)
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Plugging into Eq. (4), we find

m

(

nh̄

mr

)2

=
ke2

r
(18)

and hence,

r =
n2h̄2

ke2m
(19)

We can write this as
r = n2aB where n = 1, 2, 3, ... (20)

where the Bohr radius aB is defined as

aB =
h̄2

ke2m
= 0.0529 nm (21)

The Bohr radius is half an angstrom. We see that the radius of the electron orbits in
hydrogen are quantized as integer multiples of the Bohr radius. The smallest orbit (n=1)
has the radius aB.

Now that we know the allowed radii of the orbits, we can immediately obtain the
energy associated with each orbit:

E = −

ke2

2r
= −

ke2

2aB

1

n2
where n = 1, 2, 3, ... (22)

We see that the energies are quantized. Each orbit is associated with a particular energy
level. Let En denote the nth energy level or the nth orbit. When the electron makes
a transition from n to n′, a photon is emitted (if the electron decreases its energy) or
absorbed (if the electron increases its energy). The energy of the photon is given by

Eγ = En − En′ =
ke2

2aB

(

1

n′2
−

1

n2

)

(23)

which has the same form as the Rydberg formula

Eγ = hcR
(

1

n′2
−

1

n2

)

(24)

So Bohr’s model predicts the Rydberg formula. Comparing these 2 formulas gives us an
expression for the Rydberg constant R

R =
ke2

2aB(hc)
=

1.44 eV − nm

2(0.0529 nm)(1240 eV − nm)
= 0.0110 nm−1 (25)

in perfect agreement with the observed value. The Rydberg or Rydberg energy ER is
defined by

ER = hcR =
ke2

2aB
=

m(ke2)2

2h̄2
= 13.6 eV (26)
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This is the binding energy of the electron in the ground state of the hydrogen atom. This
is the amount of energy you would have to give to the electron in the lowest orbital in
order to liberate it from the proton. In other words, this is the binding energy. In terms
of ER, the quantized energies of the electron in the hydrogen atom are

En = −

ER

n2
where n = 1, 2, 3, ... (27)

Properties of the Bohr Atom

The lowest energy state of the hydrogen is called the ground state. This corresponds
to n = 1 and

En=1 = E1 = −ER = −13.6 eV (28)

In this state, the electron orbit has the smallest radius which is the Bohr radius aB:

r = aB = 0.0529 nm (29)

This is the radius of a hydrogen atom in its ground state and gives the order of magnitude
of the outer radius of all atoms in their ground states. The allowed energies or the energy
levels are

En = −

ER

n2
where n = 1, 2, 3, ... (30)

The excited states correspond to n > 1, i.e., n = 2, 3, ... , e.g.,

E2 = −

ER

4
= −3.4 eV

E3 = −

ER

9
= −1.5 eV

An energy level diagram looks like a ladder with the allowed energies represented as
horizontal lines, and the energies increasing as you go up. It’s a good way to show
transitions between energy levels (see Figure 5.4 in your book). So going from n = 1 to
n = 2 requires a photon with energy equal to 10.2 eV.

When electrons make transitions from excited states (n) down to lower energy states
(n′), a photon is emitted according to the formula:

Eγ = En − En′ = ER

(

1

n′2
−

1

n2

)

(31)

n′ = 2 corresponds to the Balmer series. n′ = 1 is called the Lyman series, and n′ = 3 is
the Paschen series. The names are from the names of the discoverers.

The radius of the orbit for the nth level is given by

rn = n2aB (32)

Note that the radius increases rapidly with n since it goes as n2.
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We assumed circular orbits, but Bohr showed that elliptical orbits give the same
energy. Since this picture of orbits isn’t really correct, we won’t pursue this.

Example: What is the diameter of a hydrogen atom with n = 100? Such atoms
have been observed in the vacuum. The diameter is

d = 2r = 2n2aB = 2× 104 × (0.05 nm) = 1 µm (33)

Hydrogen-Like Ions

A hydrogen-like ion is any atom that has lost all but one of its electrons, and therefore
consists of a single electron orbiting a nucleus with charge +Ze. For example, a He+ ion
or a Li2+ ion (an electron and a lithium nucleus of charge +3e).

The math for hydrogen-like ions is the same as before if we replace e2 by Ze2. For
example, the magnitude of the force between the electron and the nucleus with charge
Ze2 is

F =
Zke2

r2
=

mv2

r
(34)

The potential energy is

U = −

Zke2

r
(35)

The total energy is

E = K + U =
U

2
= −

Zke2

2r
(36)

To find the allowed radii of an electron moving in a circular orbit around a charge Ze,
we go through the same argument as before:

L = mvr = nh̄

v =
nh̄

mr

mv2 =
Zke2

r
= m

(

nh̄

mr

)2

Solving for r yields

r = n2
h̄2

Zke2m
= n2

aB
Z

(37)

So

r ∼
1

Z
(38)

i.e., the larger the charge Z, the smaller the radius. The bigger charge pulls the electron
closer.

Plugging Eq. (37) into Eq. (36) gives

En = −Z2
ke2

2aB

1

n2

= −Z2
ER

n2
(39)
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The 2 factors of Z are easy to understand. One comes from the Z in the energy and one
comes from the 1/Z in the radius.
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