Chapter 5: Quantization of Atomic Energy Levels

- Chapter 4 was quantization of light
- This is now quantization of electron energies in atoms.
- Electrons cannot have any energy. Electrons have energy levels.
- By early 1900s it was understood that classical physics didn't explain certain elements of atomic spectra.
- Atomic spectra were explained empirically by the Bohr model of the atom before a full theory of quantum mechanics was developed.

Emission spectrum of hydrogen

Each element, like hydrogen, has a characteristic spectrum. It can be seen in emission or absorption.

Discharge Tube That Produces Spectra

 http://phet.colorado.edu/en/simulation/ discharge-lamps

The Bohr Model of the Atom

- Electron can only be in certain orbits around atom
- Larger radii = higher energy
- Must absorb
 photon to
 jump up, emit
 photon to
 jump down

The Bohr Model and the Atom

- Energy of emitted or absorbed photon corresponds to change of electron energy due to transition.
- Energy "quantized"
 - Photon energy corresponds to certain frequency or wavelength. (E=hf = hc/λ) Certain wavelengths correspond to certain electron transitions.

Spectra of Hydrogen

Emission and absorption lines

Interaction of photons and matter

- Matter absorbs and emits photons at specific energies (and wavelengths), corresponding to specific electron transitions.
- The "spectrum of hydrogen" is a bunch of lines at specific frequencies corresponding to these transitions of electrons between energy levels.
- True for atoms, ions, molecules: have specific spectral lines (simple or complex depending on range of energy transitions available)

iquestion

- An atom at rest emits a photon at time t=0. Which of the following are true?
 - I. The atom has less internal energy at t<0 than at t>0.
 - II. The atom has more internal energy at t <0 than at t>0.
 - III. The atom recoils with momentum h/λ, where λ is the wavelength of the photon.
 - a. I only.
 - b. I and III only.
 - c. II only.
 - d. II and III only.
 - e. I, II, and III.

iquestion

- An atom at rest emits a photon at time t=0. Which of the following are true?
 - I. The atom has less internal energy at t<0 than at t>0.
 - II. The atom has more internal energy at t <0 than at t>0.
 - III. The atom recoils with momentum h/λ, where λ is the wavelength of the photon.
 - a. I only.
 - b. I and III only.
 - c. II only.
 - d. II and III only.
 - e. I, II, and III.

Balmer-Rydberg formula for hydrogen

Hydrogen is first to be modeled and analyzed.

Wavelengths emitted by hydrogen observed by Balmer in optical region satisfy this formula:

$$1/\lambda = R(1/2^2 - 1/n^2)$$
 where n=3,4,.... and R=0.0110 nm⁻¹

Later generalized by Rydberg to:

$$1/\lambda = R[(1/n^2) - (1/n^2)],$$

Where n' < n, both integers

Balmer-Rydberg formula for hydrogen

• What is the wavelength of a photon **emitted** when an electron jumps from the n=3 state to the n=2 state?:

```
1/\lambda = (0.0110 \text{ nm}^{-1}) \text{ x} (1/2^2 - 1/3^2)
 \lambda = 654.5 \text{ nm} ("true" value 656.3 nm; close enough)
```

• What is the wavelength of a photon that is **absorbed** when an electron jumps from the ground (n=1) state to the n=4 state of hydrogen?

$$1/\lambda = (0.0110 \text{ nm}^{-1}) \text{ x } (1/1^2 - 1/4^2)$$

 $\lambda = 97.0 \text{ nm}$

Note: the formula was only empirical, with no explanation.

Problem of Atomic Stability

- Rutherford's "nuclear model" had electron circling nucleus like miniature solar system.
- Classical electrodynamics says a proton and an electron will be attracted and crash into each other.
 Not a good way to make an atom.
- Classical electrodynamics says that charged particle that is accelerating (velocity changes direction and/or magnitude) should radiate electromagnetic waves, lose energy, ultimately spiral into nucleus
- Approximate timescale is 10⁻¹¹ s!!! Electron should crash into the nucleus in this short a time.
- Obviously, something is preventing this from happening...

Bohr Model

- Only certain discrete orbits are allowed for an electron; called "stationary orbits" or "stationary states"
- Energies are also discrete or quantized; only possible set is E₁, E₂, E₃, E₄, ...
- Bohr postulated that electrons in these stationary states remain there, without losing energy, until disturbed
- This postulate is pretty close to what modern quantum mechanics says, without the "orbit" (or with a slightly more complex version of orbiting)
- For transition from n down to n', photons are emitted with energies $hf = E_n E_{n'}$
- For transition from n' up to n, photons are absorbed with energies hf= E_n-E_{n'}

The Bohr Model: quantitatively

See board notes.

Hydrogen Energy Levels

Energy levels of H

$$E_n = -\frac{E_R}{n^2}$$

$$E_R = \frac{ke^2}{2a_B} = 13.6 \text{ eV}$$

Bohr Model

Spectra of Hydrogen

Hydrogen Spectra

Spectra of Elements

 http://jersey.uoregon.edu/vlab/elements/ Elements.html

Spectra in astrophysics

- These lines are one of our primary diagnostic tools
- They help us determine the compositions of galaxies that are many millions, or even billions, of light years away.

Analyzing the light from stars tells us what the stars are made of and how far away they are

Different spectra in different situations

Gas absorbs and emits

@ 2004 Thomson/Brooks Cole

Gas absorbs photons at characteristic wavelengths; then re-emits these wavelengths in other directions

Gas in outskirts of Sun absorbs certain wavelengths

- @ 2004 Thomson/Brooks Cole
 - gas in outskirts of sun absorbs
 - pattern of lines tells you what gas is made of

X-Ray Spectra

- Innermost electron of an atom only feels nuclear force – hydrogen-like (Outer electrons ~spherical shell of charge exert no force on inner electrons)
- $E_n = -Z^2 E_R / n^2$
- For zinc, Z=30, $Z^2E_R=(30)^2 \times (13.6 \text{ eV}) \approx 12,000 \text{ eV}$
- X-ray energies involved in transitions of innermost electrons

X-Ray Energies

- X-Rays are generated in a x-ray tube when electrons strike the anode, ejecting an inner electron, creating a vacancy.
- Outer electrons cascade down to fill the hole, emitting photons.
- Example: $n=2 \rightarrow n=1$

$$E_{\gamma} = E_2 - E_1 = Z^2 E_R \left(1 - \frac{1}{2^2} \right) = \frac{3}{4} Z^2 E_R$$

$$E_{\gamma} = \frac{3}{4}(30)^2 (13.6 \text{ eV}) = 9200 \text{ eV} = 9 \text{ keV}$$

$$E_{\gamma} = hf \sim Z^2 \Longrightarrow Z \propto \sqrt{f}$$

