
Chapter 4

Example of Bragg Law

The spacing of one set of crystal planes in NaCl (table salt) is d = 0.282 nm. A
monochromatic beam of X-rays produces a Bragg maximum when its glancing angle
with these planes is θ = 7o. Assuming that this is a first order maximum (n = 1), find
the wavelength of the X-rays. What is the minimum possible accelerating voltage V0 that
produced the X-rays?

The Bragg law is

2d sin θ = nλ

λ = 2d sin θ = 2× (0.282 nm)× sin 7o

= 0.069 nm (1)

To find the minimum voltage V0, use Duane-Hunt law that says that the kinetic energy
of the electrons eV0 must be at least equal to the energy of the X-ray photon hf :

eV0 ≥ hf =
hc

λ
=

1240 eV − nm

0.069 nm
= 18, 000 eV (2)

or
V0 ≥ 18, 000 volts (3)

Compton Effect

Usually when light impinges on a system of charges, e.g., an atom or an electron or
a metal which has conduction electrons, it is scattered in various directions. Classical
electromagnetism explains the scattering by saying that the oscillating electric field of the
incident light causes the charges to oscillate, and hence radiate electromagnetic waves in
various directions. Recall that oscillating charges produce electromagnetic waves. This is
how antennas send out radio waves, for example. Since the charges must oscillate at the
frequency of the incident light, the frequency of the scattered and incident waves must
be the same:

f = f0 (4)

Experiments on light and preliminary experiments on X-rays seemed to confirm this
prediction until 1912, when experiments were finding that when high energy (frequency)
X-rays scattered from electrons, the scattered frequency f was less than f0:

f < f0 (5)

This was the first evidence of the Compton effect, proposed by the American physicist
Arthur Compton in 1923. He also presented experimental evidence for this. The basic
idea is that photons carry both energy and momentum. When a photon hits an electron,
it’s like any other object that collides with the electron: momentum and energy are
conserved. So the photon gets scattered by the electron, and the electron recoils, carrying
away some of the incident energy and momentum carried by the incident photon. So the



outgoing photon has less energy and momentum than the incident photon, and this
explains why f < f0.

How much momentum does the photon carry? Start with

E2 = (pc)2 +
(

mc2
)2

(6)

Since m = 0 for photons, we have
E = pc (7)

Now use E = hf :

p =
E

c
=

hf

c
=

h

λ
(8)

since f = c/λ.
As we mentioned above, Compton argued that when the photon collides with an

electron, energy and momentum are conserved. He used this to predict the frequency of
the scattered photon as a function of the scattering angle θ. He assumed that the X-rays
struck stationary electrons, but in fact, the electrons in his target (graphite which is a
form of carbon) are contained in atoms. So the electrons have some energy, on the order
of eV. And because they are tethered or bound in atoms, they are not free to recoil.
But these complications don’t matter because the binding energies of the electrons and
the energies of the electrons in the outer shells are on the order of eV which is orders
of magnitude smaller than the energies of the X-rays. We can estimate the energy of an
X-ray. The wavelength of an X-ray is of order 1 Å = 0.1 nm which corresponds to an
energy of

E = hf =
hc

λ
=

1240 eV − nm

0.1 nm
≈ 104 eV = 10 keV (9)

So X-rays have energies of the order of keV. This is typically the energy of the X-rays used
in the dentist’s office. Radiation therapy for cancer involves X-rays with MeV energies.

Now let’s derive Compton’s formula for the wavelength of a scattered X-ray as a
function of the scattering angle. Suppose the incident photon has energy E0 = hf0 and
momentum p

0
. It hits a stationary electron with rest energy mc2 and zero momentum.

After the collision, the outgoing photon has energy E = hf and momentum p that makes
an angle θ with p0. The electron recoils with energy Ee and momentum pe.

Conservation of energy and momentum gives us

Ee + E = mc2 + E0 (10)

and
pe + p = p0 (11)

We treat the electron relativistically so that this will apply to high energies.

Ee =
√

(pec)2 + (mc2)2 (12)
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Figure 1: Compton Scattering of an X-ray from a stationary electron.

The incident photon energy is E0 = p0c and the outgoing photon energy is E = pc. Since
we are interested in the frequency of the outgoing photon, let’s eliminate the electron’s
energy and momentum using these 2 equations. We start with energy conservation:

Ee = mc2 + E0 − E
√

(pec)2 + (mc2)2 = mc2 + p0c− pc
√

p2
e
+ (mc)2 = mc+ p0 − p (13)

Now let’s look at momentum conservation:

pe = p0 − p

p2
e

= pe · pe = (p0 − p) · (p0 − p)

= p2
0
+ p2 − 2p0 · p

= p2
0
+ p2 − 2p0p cos θ (14)

We can substitute this into Eq. (13), square both sides, cancel several terms and obtain

mc(p0 − p) = p0p(1− cos θ) (15)

or
1

p
−

1

p0
=

1

mc
(1− cos θ) (16)

This gives the scattered photon’s momentum and from this we can find the scattered
photon’s frequency and wavelength using

E = pc = hf =
hc

λ
(17)

So

p =
h

λ
(18)

or
1

p
=

λ

h
(19)
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Figure 2: Plot of Compton scattering of an X-ray from a stationary electron as a function
of angle θ.

Plugging this into Eq. (16), we obtain

∆λ ≡ λ− λ0 =
h

mc
(1− cos θ) (20)

Since ∆λ ≥ 0, this gives the wavelength increase of the photon scattered through an
angle θ. The wavelength is always increased and, hence, the frequency of the scattered
photon always decreases. The X-ray loses energy to the recoiling electron. The shift in
wavelength is 0 at θ = 0 (forward scattering) and increases as θ increases to a maximum
at θ = 180o. The formula also does not give any shift if there is no electron and the x-ray
goes straight through without being scattered (θ = 0). This is what we would expect
and is a good sanity check. The magnitude of the shift is

h

mc
=

hc

mc2
=

1240 eV − nm

0.511 MeV
= 0.00243 nm (21)

In Compton’s experiment the incident wavelength was λ0 = 0.07 nm. So the predicted
shift ∆λ ranged up to 7% of the incident λ0, and this was a shift that Compton could
detect. Compton measured the scattered wavelength at 4 different angles and found
convincing confirmation of his theory that photons carry energy and momentum and can
be treated like particles.

The formula for ∆λ does not depend on the wavelength itself, so it should be good at
any wavelength, including the wavelength of visible light. So why don’t we see the shift
of visible light? The answer is that the fractional shift ∆λ/λ0 is 5000 times smaller for
visible light than for X-rays because the wavelength of visible light is 5000 times larger
than that of X-rays. (Visible light has wavelengths between 400 nm and 700 nm.) Such
a small shift is unobservable. So the longer the incident wavelength, the smaller the
Compton effect will be. Also visible light has energies of order eV which is comparable
to electron orbital energies and electron binding energies.
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Compton also found some scattered X-rays had the same wavelength as the incident
wavelength λ0. These were not X-rays that missed hitting anything. Rather they were
X-rays that hit the nucleus or inner electrons (which take several hundred eV to remove),
causing the whole atom to recoil. One can go through the same calculation, but with
the heavier mass of the entire atom replacing the electron mass. For carbon, the result
is a wavelength shift that is 20,000 times smaller than before. This shift is too small to
be observed.
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