
Key Points on Chapter 20: Electric Potential and Capacitance

• is the potential energy per
unit charge.

• Electric potential is the same as electric potential energy.

• The unit of electric potential is .

• Sometimes the electric potential is referred to as .

• Charge × voltage equals .

• An (eV) is a unit of en-
ergy.

• The voltage drop between 2 points is path .

• All points on an surface have the
same electric potential or voltage.

• The electric field is to equipotential sur-
faces.

• Electric potential is analogous to .

• Electric potential is a (not a vector).

• The potential of produced by several charges is the of
their individual potentials.

• The field is minus the of the potential.

• Electric potential energy is in fixed charges.

• An isolated conductor is an .

• A has 2 isolated conductors.

• A capacitor stores .

• Capacitance depends only on the of the
conductors.

• A capacitor stores .

• is stored in an electric field.

• A increases the capacitance.



• Add capacitances to find the equivalent capacitance Ceq of capacitors in .

• Add capacitances to find the equivalent
inverse capacitance 1/Ceq of capacitors in .
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Lectures on Chapter 20: Electric Potential and Capacitance

Gravitational force and electrostatic force are similar:

Fgrav = G
m1m2
r2

Fe =
1

4πε0

q1q2
r2

Recall that we can define a gravitational potential energy. If the work done to lift an
object from a to b is

Wab =
∫ b

a

~Fgrav · d~s

then the potential energy gained by the object is

∆U = Ub − Ua = −Wab = −
∫ b

a

~Fgrav · d~s

For example, a mass m a distance h above the ground has potential energy

m

h
g

∆U = +mgh (1)

The energy is measured with respect to the ground (U = 0ath = 0), but we could
put the zero of energy anywhere. It would just add a constant to Ua and Ub but wouldn’t
change the potential energy difference U(h)− U(ground).

Since gravity is a conservative force, Ub−Ua is independent of the path taken between
a and b. All that matters is the endpoints.

In analogy with this, we can define the change in the electric potential energy.

∆U = −Wab = −
∫ b

a

~Fe · d~s

If we have a charge q that finds itself in an electric field ~E, then it feels a force

~Fe = q ~E

~E is due to other charges, e.g., another point charge. The electric potential energy
associated with dragging the charge from a to its present position b is the negative of the
work done in getting it there.
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∆U = −Wab = −
∫ b

a

~Fe · d~s = −
∫ b

a
q ~E · d~s

d~s goes along the path we took from a to b. Like gravity, ~Fe is a conservative force
so that ∆U depends only on the endpoints a and b, not on the path between them.

Notice that the sign of ∆U will change in q → −q. So if the field comes from positive
charges and q > 0, we do work in dragging q toward the charges and ∆U increases. If
q < 0, then q is attracted to the positive charges and drags us toward them; ∆U decreases
and is negative. (It’s like the difference between uphill and downhill.)

Let’s take q > 0. Notice that the bigger q is, the more work we do in dragging it
around, and the bigger the potential energy is. Remember how it was convenient to
divide ~Fe by q to get ~E.

~E =
~Fe
q

(2)

~E is independent of q that feels it but doesn’t produce it. For example, consider the
force on q produced by a point charge q1.

Fq←q1 =
1

4πε0

q1q

r2
(3)

The force depends on q and q1, but the electric field ~E produced by q1

~E =
~F

q
=

1

4πε0

q1
r2
r̂ (4)

depends only on q1. It does not depend on q.
Similarly, it is convenient to divide U by q to get something independent of q.

∆V =
∆U

q
potential energy per charge

V is called the electric potential.

∆V =
∆U

q
= −

∫ b

a

1

q
~Fe · d~s = −

∫ b

a

~E · d~s

This depends on only on the charges that produce ~E. Just as ~E was the force felt by a
unit charge (q = 1), ∆V is the potential energy of a unit charge, i.e., ∆V is the potential
energy per unit charge.

is the potential energy per
unit charge.
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Electric potential is the same as electric potential energy.
Units

The unit of electric potential is .
Sometimes the electric potential is referred to as .

[∆U ] = joules (after all, it’s an energy)
[∆V ] = joules

coulomb
= volts

So electric potential ∆V and electric potential energy are different. Sometimes the electric
potential is referred to as voltage.

Charge × voltage equals .
An (eV) is a unit of energy.
Notice that if there is potential difference ∆V = 1volt, the potential energy gained

by moving a proton with charge +e through this difference (“uphill” or against the field)
is ∆U = e∆V = 1eV = 1 electron volt.

E

1 V

0 V

An eV is a unit of energy:

1eV = e (1V ) = (1.60× 10−19C)(1
J

C
) = 1.60× 10−19J

In general, moving a charge q through a voltage drop ∆V changes its potential energy
by ∆U .

∆U = q∆V

So a big voltage can give a small ∆U if q is small. For example, rubbing your hair with
a balloon can charge the balloon to several thousand volts but the amount of charge is
small (∼ 10−6 C) so ∆U is small =⇒ you won’t get electrocuted.

The voltage drop between 2 points is path .
The gravitational analog is Ugrav/m = gh. Just as with gravity, ∆V = Vb−Va depends

only on where a and b are, not on the path between them. Thus it doesn’t matter whether
you take path 1 or path 2, ∆V is the same. (The gravitational analog of E = F

q
was

F/m = g = acceleration.)

E 1 2 V∆
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You can think of
Ugrav

m
= gh as gravitational potential (if you multiply by m, you

get gravitational potential energy). Think of different distances up a hill. Higher points
on the hill have greater gravitational potential. Going uphill is like acquiring a higher
voltage by dragging a positive charge opposite to the field. “Danger: High Voltage” are
like “Danger: Falling rocks” signs.

Equipotential Surfaces
All points on an surface have the

same electric potential or voltage.
An equipotential surface is the set of points which all have the same electric potential

or voltage. These points are usually a surface.

∆V = Vb − Va (5)

If a and b are on the same equipotential surface, then Vb = Va and ∆V = 0. Look at

∆V = Vb − Va = −
∫ b

a

~E · d~s (6)

How can ∆V = 0? One way: ~E = 0 everywhere along d~s (like inside a conductor).

Another way:
∫ ~E · d~s = 0.

∫ ~E · d~s is a line integral along the path parameterized by ~s.
∫ ~E · d~s adds up all the components of ~E along d~s. ~E · d~s = | ~E||d~s| cos θ. If ~E ⊥ d~s, then

θ = π
2
= 90◦, ~E · d~s = 0. So ∆V = 0 on surfaces ⊥ ~E.

θ E
ds

The electric field is to equipotential sur-
faces.

Examples:
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EΕ

Equipotential Sphere
Point Charge q > 0

+
+
+
+
+
+
+
+
+
+
+

+
+
+ −

−
−
−
−
−
−
−
−
−
−
−
−

Equipotential planes

q

All points on the surface have the same potential but different surfaces have different
potentials. Gravitational analogy: Every point at the same altitude h has the same
gravitational potential gh. ~Fgrav ⊥ to equipotential surfaces. ~Fgrav points along the fall
line on a slope.

E (fall line)
straight downhill

E      equipotentials
equipotential 
lines

Potential in a Uniform Field
Electric potential is analogous to .
Electric potential is the analog of height on a hill. Notice that the height difference

between points a and b is the same as the height difference between points a and c.
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equipotential 
lines

a

b c

Similarly the potential difference between points a and b is the same as the potential
difference between points b and c in the figure of equipotential planes in a uniform electric
field. Dragging a mass uphill corresponds to dragging a positive charge from a to c or
from a to b.

E

r
r

E

+
+
+
+
+
+
+
+
+
+
+

+
+
+ −

−
−
−
−
−
−
−
−
−
−
−
−

V =     4    3     2    volts

ab

c

θ
d

θ φ

The potential difference between points a and c is given by

∆V = Vc − Va = −
∫ c

a

~E · d~s = − ~E ·
∫ c

a
d~s = − ~E · ~r = −Er cosφ

= −Er cos(π − θ) = Er cos θ = Ed = Vb − Va

We can take ~E out of the integral because the field is constant. It’s a uniform field that
is the same everywhere. So we see that in a uniform field the potential is E times the
perpendicular distance between equipotential surfaces.

Dimensional analysis: Notice that [V ] = [Ed] implies that voltage or potential
has the same units as electric field times length or (Newtons/Coulomb) × meters =
Joules/Coulomb=Volts. Similarly, [E] = [V/d] which means that electric field has
units of Volts/meter = V/m. Earlier we learned that [E] = [Force/Charge] = New-
tons/Coulomb. So 1 V/m = 1 N/C.

Potential of a Point Charge
Consider a point charge q > 0 at the origin. Infinitely far away, a test charge q0 feels

no force =⇒ ~E = 0 at ∞. So let’s set U∞ = 0 and V∞ = 0 because there is no potential
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energy and no potential at r = ∞. What is the potential V (r) a distance r away from
q? If we start at r and push q0 > 0 to infinity, then

∆V = V (end)− V (start) = V (∞)− V (r) = −V (r) < 0

This is less than 0 because we lose potential energy; we are going downhill.

E

E
q

ds = dr

∆V = −
∫

∞

r

~E · d~s

= −
∫

∞

r

~E · d~r

~E =
1

4πε0

q

r2
r̂ =⇒ ~E ‖ d~r =⇒ ~E · d~r = Edr

∆V = −V (r) = −
∫

∞

r
Edr′ = − 1

4πε0

∫

∞

r

q

r′ 2
dr′

= − 1

4πε0

[

− q

r′

]r′=∞

r′=r

=
1

4πε0

[

0− q

r

]

−V (r) = − 1

4πε0

q

r

V (r) =
1

4πε0

q

r
> 0 (7)

If q → −q, V (r) = − 1
4πε0

q
r
< 0. So V changes sign if q changes sign. V (r) falls off slower

than E ∼ 1/r2. Notice that V (r) > 0 which means that if we started at r = ∞ and
dragged a charge q0 to the point r, its potential energy would increase:

U(r) = q0V (r) =
1

4πε0

qq0
r

One of the great benefits of V is that it is a scalar, so we don’t have to find the
components of a vector. V (r) is a scalar field, i.e., a number is associated with every
point in space.

Electric potential is a (not a vector).
Superposition

The potential of produced by several charges is the of
their individual potentials.
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To find the potential of a group of charges at a point ~r, add the potential Vi at ~r due
to each charge qi:

V =
n
∑

i=1

Vi =
1

4πε0

n
∑

i=1

qi
ri

Because V is a scalar, we can add magnitudes. We don’t have to worry about vector
components.

Potential of an Electric Dipole

+ q

− q

P
r

r−

+

r

d
θ
(r    r  ) ~ d cos θ−− +

V =
2
∑

i=1

Vi = V+ + V− =
1

4πε0

[

q

r+
+
(−q)
r−

]

=
q

4πε0

[

1

r+
− 1

r−

]

=
q

4πε0

[

r− − r+
r−r+

]

For r >> d, r+r− ≈ r2 and (r− − r+) ≈ d cos θ

V =
q

4πε0

d cos θ

r2
p = qd

=
p cos θ

4πε0r2
V (r) = scalar field set up by dipole

Azimuthal symmetry (rotational symmetry about z-axis) =⇒ no φ dependence. In the
equatorial plane, θ = 90◦ =⇒ V = 0 because V+ and V− cancel (V+ = −V−).

Continuous Charge Distribution
Given q(~r′), find V (~r).

Recipe for Finding the Potential due to a Continuous Charge Distribution
Method I
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1. Divide charge distribution into pieces with charge dq.

2. dq produces a potential dV = 1
4πε0

dq
r
where r is the distance from dq to the point

P .

3. V =
∫

dV = 1
4πε0

∫ dq
r
. Integrate over the charge distribution. (Notice this assumes

V = 0 at r =∞)

Method II

1. Use Gauss’ Law to find ~E if there is symmetry.

2. Use ∆V = − ∫ ba ~E · d~s

Example Using Method II: Charged Planar Sheet
Consider an infinite (insulating) sheet with uniform positive charge density σ. What

is the change in potential in going from z1 to z2, where z1 and z2 are distances from the
sheet?

E

E

da

Area = A

σ > 0

z
1

z
2

d

z

Solution
Use V (z2)− V (z1) = −

∫ z2
z1

~E · d~s

1. Find ~E using Gauss’ Law:

ε0

∫

~E · d~a = qenc

2ε0EA = σA

E =
σ

2ε0

Notice that ~E is uniform, i.e., it’s the same everywhere.
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2. We saw earlier that the potential difference between 2 points in a uniform field is Ed.
Since z2 is further from the sheet of charge than z1, we expect V (z2)− V (z1) < 0.
So V (z2)− V (z1) = −Ed. We can also go through the math again:

V (z2)− V (z1) = −
∫ z2

z1

~E · d~s

= −
∫ z2

z1

Edz = −E
∫ z2

z1

dz

= −E(z2 − z1) = −
σ

2ε0
(z2 − z1)

V (z2)− V (z1) = − σ

2ε0
(z2 − z1) < 0

Calculating the field from the potential
The field is minus the of the potential.

~E = −∇V (8)

We’ve seen how to calculate the potential V if we know ~E : ∆V = − ∫ ba ~E · d~s.
How do we calculate ~E if we know V ?

V = −
∫

~E · d~s =⇒ dV = − ~E · d~s

Suppose d~s = dx î (d~s is in the î direction.) Then

dV = − ~E · dx î = −Exdx

=⇒ Ex = −
∂V

∂x

If d~s = dy ĵ, then

dV = −Eydy → Ey = −
∂V

∂y
(9)

If d~s = dz k̂, then

dV = −Ezdz =⇒ Ez = −
∂V

∂z
(10)

In general we can write

~E = Exî+ Ey ĵ + Ezk̂

= −∂V
∂x

î− ∂V

∂y
ĵ − ∂V

∂z
k̂

= −∇V (11)

where ∇V is called “the gradient of V .” What does this mean? Recall the equipotential
surfaces, each with constant V . ~E is perpendicular to the surfaces and points from high
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potential to low potential, i.e., “downhill”. So if you put a + charge where V = 5 volts,
it would feel a force ~F in the direction of V = 0 volts. ~F ‖ ~E.

Think of a hill. Equipotential corresponds to equi-altitude. ~E would point straight
downhill, i.e. along the “fall line”.

Electric fields are high near the tips of lightning rods which is why they get struck by
lightning first.

Example: If V (~r) = 5x− 3y + z2, what is ~E?

Ex = −∂V
∂x

= −∂(5x)
∂x

= −5

Ey = −∂V
∂y

= −∂(−3y)
∂y

= −(−3) = 3

Ez = −∂V
∂z

= −∂(z
2)

∂z
= −2z

~E = −5 î+ 3 ĵ − 2z k̂

Electric Potential Energy due to a System of Charges
Electric potential energy is in fixed charges.
The electric potential energy of a system of fixed point charges is equal to the work

done to assemble the changes, bringing one at a time in from infinity.

r

r

23

12

r
13

q

qq
2

3

1

Consider assembling 3 point charges. Bring in one charge at a time. No work to bring
in q1, but q1 sets up a potential

V1 =
1

4πε0

q1
r

(12)

where r is the distance from q1. Now bring in q2. The energy we store in doing this is

U12 = q2V1 =
1

4πε0

q1q2
r12

(13)

where r12 is the distance between q2 and q1. (The work we do is minus the work done by
the field, so U = WUS = −W ~E of q1

.)
Note that the general formula for the potential energy of a pair of point charges a

distance r apart is

U =
1

4πε0

q1q2
r
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q2 also sets up a potential V2 =
1
4πε0

q2
r

When we bring in q3, we add more potential energy.

U13 + U23 =
1

4πε0

q1q3
r13

+
1

4πε0

q2q3
r23

So the total electric potential energy stored is

Utot = U12 + U13 + U23 =
1

4πε0

q1q2
r12

+
1

4πε0

q1q3
r13

+
1

4πε0

q2q3
r23

An Isolated Conductor
An isolated conductor is an .
Recall that ~E = 0 inside an isolated conductor. If ~E were not zero, then the free con-

duction electrons would feel ~F = q ~E and they would run. A charged, isolated conductor
has charges on the surface because the charges get as far apart as possible. They arrange
themselves such that ~E = 0 inside. There is no charge inside because Gauss’ law tells us
that

ε0

∮

~E · d~a = qenc = 0 because ~E = 0 (14)

V = Constant throughout a conductor, i.e., a conductor is an equipotential. Pick 2
points a and b in the conductor or on its surface.

Vb − Va = −
∫ b

a

~E · d~s = 0
because ~E = 0 inside

and ~E ⊥ d~s if d~s
is along surface

=⇒ Vb = Va

E

~E ⊥ surface of a conductor
If ~E has a component along the surface, the charges would run along the surface.

Here ~E can be either due to charges on the surface of the conductor or due to an external
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field ~Eext. If an uncharged conductor is placed in an external field, the conduction
electrons feel the field and race to the surface, arranging themselves until they cancel the
field ~Eext inside the conductor. This “induced charge” produces a field ~Eind such that
~Eind + ~Eext = 0 inside the conductor.

E
ind

−
−
−
−
−
−
−

+
+
+
+
+
+
+

E
ext

Capacitors
A has 2 isolated conductors.
A capacitor stores and .
So far we’ve been considering a single isolated conductor. Now consider 2 isolated

conductors. This is a capacitor. The conductors are called capacitor plates. Capacitors
are important circuit elements. They are also used to store energy.

To understand how they work, consider a parallel plate capacitor consisting of 2
parallel conducting plates a distance d apart. Each plate has area A. When the capacitor
is charged, its plates have equal and opposite charges +q and −q. Each plate has a
constant potential, but there is a potential difference V between the plates. (Conventional
notation: V = ∆V = potential difference between the plates.) V is proportional to q.
(“q” is called “the charge of the capacitor,” even though both plates are charged.)

+ q

− q

Area A d

q = C∆V

The constant of proportionality C is called the capacitance of the capacitor.
A capacitor holds charge; it’s sort of a charge bucket. It can store charge. The value

of C tells us how well the capacitor holds charge. C is the “figure of merit”. Look at
q = C∆V . If C is large, a small value of the voltage difference ∆V will still give a large
value of the charge q. On the other hand, if C is small, a large value of the voltage
difference ∆V will still give a small value of the charge q. So a large value of C is like a
large charge bucket and a small value of C is like a small charge bucket.

Units

[C] =
[q]

[∆V ]
=

Coulomb

volt
= farad
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1 farad = 1F =
1 coulomb

1 volt

1 farad is huge. Typical units: 1µF = 10−6F and 1pF = 10−12F. Notice that there
is an electric field between the capacitor plates. ~E points from the +q plate to the −q
plate.

+ q

− q

d s

d

0

E

z

The +q plate is at a higher voltage than the −q plate. The potential difference between
the plates is

∆V = −
d(+)
∫

0(−)

~E · d~s = −
d
∫

0

Eds cos(180◦)

= +

d
∫

0

E ds =

d
∫

0

Edz = Ed

Notice that ∆V ∝ E. How do we get Q = C∆V from this? Recall Gauss’ law:

ε0

∮

~E · d~a = qenc or E =
1

4πε0

∫ dq

r2

This implies E ∝ q. Since ∆V ∝ E ∝ q, ∆V ∝ q. Thus ∆V = q
C
or q = C∆V .

Calculating Capacitance
Capacitance depends only on the of the

conductors.
C depends only on the geometry of the conductors, i.e., their size, shape, and sepa-

ration. C is independent of q and ∆V . In a typical problem, you are given the geometry
of the conductors and asked to find the capacitance C. (C > 0 always.)

Recipe to find the capacitance

1) Assume +q on one plate and −q on the other plate (or surface charge density σ = q/A
on one plate, σ = −q/A on another plate).

2) Use Gauss’ law to find ~E between the plates.

3) Use ∆V =
(+)
∫

(−)

~E · d~s to find the potential difference between the plates. Note that we

want ∆V > 0.
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4) Use q = C∆V =⇒ C = q
∆V

to find C. (The charge you put on the plates in step 1
will cancel out.)

Example: Parallel Plate Capacitor
Find the capacitance of a parallel plate capacitor with area A and separation d.

(
√
A >> d =⇒ neglect fringing fields.)

+ q

− q

Area A d

Solution: Put +q on the top plate and −q on the bottom plate. Then the top plate has
σ+ = q/A surface charge density and the bottom plate has σ− = −q/A. The charge on
each plate is attracted to the side facing the other plate. No excess charge is on the outer
surfaces. Find ~E using Gauss’ law.

d s
d

0

E

z+

−

E = 0

− − − − − −

+ + + + + +

−

E = 0

Gaussian
surface
of area
a

εo

∮

~E · d~a = qenc =⇒ ε0Ea = σ+a =⇒ E =
σ+
ε0

=
q

ε0A
(15)

where we used σ+ = q/A
Find ∆V using

∆V = −
(+)
∫

(−)

~E · d~s = −
d
∫

0

E dz cos(180◦)

= +

d
∫

0

Edz = E

d
∫

0

dz = Ed

=
q

ε0A
d

where we used d~s = dz ẑ and ~E · d~z = Edz cos(180o).
Find

C =
q

∆V
=

q

qd/ε0A
=
ε0A

d
(16)
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Notice that this just depends on the size and separation of the plates, not on q or ∆V .
C increases with A and decreases with increasing d. It is more convenient to express

ε0 = 8.85× 10−12
F

m
= 8.85 pF/m

(Before we used different units: ε0 = 8.85× 10−12 C2/(N-m2)).
If the plates are 1 mm apart (d = 10−3m) and C = 1F , how big are the plates?

A =
d

ε0
C =

(10−3m)(1F)

8.85× 10−12F/m
= 1.13 · 108m2

If the plates are square, then each side is

√
A = 1.0× 104m = 10 km huge!

Example: Cylindrical Capacitor
Consider 2 coaxial cylinders of length L and radii a and b. Find the capacitance C.

b

a

− q+ q

E

dr

−−
−

−
−

−
− − −

−
−
−
−

−

+ +

++
+

Solution: Assume the inner cylinder has charge +q and σ+ = q/A+ = q/2πaL. The outer
cylinder has −q and σ− = −q/A− = −q/2πbL.
Find ~E using Gauss’ law. The Gaussian surface is a cylinder of length ` < L, a < r < b.

ε0

∮

~E · d~a = qenc =⇒ ε0E(2πr`) = σ+2πa`

~E =
1

ε0

σ+a

r
r̂

Find ∆V :

∆V = −
(+)
∫

(−)

~E · d~s =⇒ −∆V = −
(−)
∫

(+)

~E · d~s

where we switched limits so that ~E||d~r||d~s.
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−∆V = −
(−)
∫

(+)

~E · d~s = −
∫ (−)

(+)
E dr use d~s = d~r and ~E||d~r

= −
r=b
∫

r=a

1

εo

σ+a

r
dr

= −σ+a
ε0

ln

(

b

a

)

∆V = +
σ+a

ε0
ln

(

b

a

)

=
qa

2πε0aL
ln

(

b

a

)

=
q

2πε0L
ln

(

b

a

)

Find C:
q = C∆V =⇒ C =

q

∆V
(17)

C =
q

∆V
=

q
q

2πε0L
ln
(

b
a

) = 2πε0
L

ln
(

b
a

)

Again C only depends on geometrical quantities.
Spherical Capacitor

A spherical capacitor consists of 2 concentric spherical conducting shells of radii a
and b. Find the capacitance C.

b

a

− q+ q

E

dr

−

−

−
−

−
+

+

−

−

−

− −

+

++

Solution: Assume the inner sphere has charge +q. Find ~E between the spheres. We
know that outside the sphere of charge +q, ~E is the same as for a point charge:

~E =
q

4πε0r2
r̂ (18)

We could also use Gauss’ law: ε0
∮ ~E · d~a = qenc

ε0E · 4πr2 = q =⇒ E =
q

4πε0r2
(19)
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Find the potential difference between the spheres

∆V = −
(+)
∫

(−)

~E · d~s =⇒ −∆V = −
(−)
∫

(+)

~E · d~s d~s = d~r|| ~E

−V = −
(−)
∫

(+)

~E · d~s = −
r=b
∫

r=a

E dr = − q

4πε0

r=b
∫

r=a

dr

r2

= − q

4πε0

[

−1

r

]r=b

r=a
=

q

4πε0

[

1

b
− 1

a

]

=⇒ +V = − q

4πε0

[

1

b
− 1

a

]

=
q

4πε0

[

1

a
− 1

b

]

C =
q

∆V
=

q
q
4πε0

(

1

a
− 1

b

)

=
4πε0
1
a
− 1

b

Note that C just depends
on geometry

Suppose we have an isolated conductor of radius a.

a

We can assign it a capacitance by assuming the other (outer) sphere is at infinity. So if
we set b =∞, then

C =
4πε0
1/a

= 4πε0a

Numbers for Van de Graaf

a ∼= 10 cm = 0.2 m
ε0 = 8.85 pF/m

C = 4πε0a = 4π
(

8.85
pF

m

)

(0.1m) = 11pF

Q = C∆V ∆V = Ed d = distance spark jumps = 3 cm = 0.03 m

E = 3× 106V/m breakdown of air

∆V = Ed =
(

3× 106V/m
)

(0.03m) = 9× 104 V = 90, 000V
High voltage!

Q = C∆V = (11 pF )(90, 000V ) = (11× 10−12F )(90, 000V )

= 9.9× 10−7C

' 10−6C small amount of charge
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Energy released

U =
1

2
C(∆V )2 =

1

2
(11× 10−12F )(90, 000V )2 = 4.5× 10−2 Joules (20)

If this is released in 1 second, power = U/∆t = 0.045 Watts.

Storing Energy in the ~E field
A capacitor stores .
We have seen that capacitors store charge. It turns out that charging capacitors is

also a way to store energy.

+

+

−

+ +

− −

−
E

To charge up a capacitor, you have to remove electrons from the positive plate and carry
them to the negative plate. In doing so, you fight against the electric field, which is
pulling them back toward the positive plate and repelling them from the negative plate.
How much work does this take? If a voltage ∆V has already built up, ∆V = q/C. The
work done in transferring charge dq (imagine dq > 0 being transferred from the negatively
charged plate to the positively charged plate) is

dW = ∆V dq =
q

C
dq

The total work in going from q = 0 to q = Q is

W =
∫

dW =

Q
∫

0

q

C
dq =

1

2

Q2

C

This work is stored as potential energy in the capacitor

U = 1
2
Q2

C

Since Q = C∆V, U = 1
2
C(∆V )2. So

U = 1
2
C(∆V )2

The bigger the voltage or charge, the more the energy that is stored. An example of
energy stored in a capacitor is a camera flash. Another example is the defibrillator that
is used to restart the heart with electric shock. A capacitor stores the energy that is used
to administer the electric shock.

is stored in an electric field.
Where is the energy residing? It is viewed as being stored in the electric field ~E. It

is customary to define an energy density u as the potential energy per unit volume (of
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the space with ~E). Consider a parallel plate capacitor with voltage difference ∆V and a

uniform electric field ~E = ∆V
d
(−ẑ). Using C = ε0A/d, we can write

u =
U

volume
=

U

Ad
=

1

2

C(∆V )2

Ad
=
ε0
2

(

∆V

d

)2

∆V =
∫

~E · d~s =⇒ E =
∆V

d
=⇒ u = ε0E

2/2

Although we derived this result for the special case of a parallel plate capacitor, it holds
in general. (Just imagine the field being uniform in a tiny element of space.) This formula
is true even if there isn’t a capacitor. If E 6= 0, u = ε0E

2/2. Note that superposition
does not hold:

~E = ~E1 + ~E2 =⇒ u =
ε0
2
E2 =

ε0
2
( ~E1 + ~E2)

2

u =
ε

2
( ~E21 +

~E22 + 2 ~E1 · ~E2)

6= ε

2
~E21 + ~E22

So add fields and then square to get u.

Capacitor with Dielectric
A increases the capacitance.
It is common to find capacitors that are 1F but aren’t 10 km on a side. How do we

increase C without increasing the dimensions of the capacitor?
Answer: We can place an insulator, such as plastic, glass, or oil, between the ca-

pacitor plates. This insulator is called a dielectric. It increases the capacitance by a
numerical factor κ called the dielectric constant. Thus, if we place a dielectric with
dielectric constant κ between the plates of a capacitor, the capacitance increases:

C = κC0 (21)

where C0 is the capacitance without the dielectric. For a parallel place capacitor,

C0 = ε0
A

d
=⇒ C = κC0 = κε0

A

d

κ = 1 for vacuum. κ ≥ 1 for all other materials. So C ≥ C0, i.e., the capacitance
increases.

Why does this happen? Microscopically the molecules in the dielectric become polar-
ized by the electric field between the plates of a charged capacitor. “Polarized” means
that the electric dipole moments of the molecules line up in the field. These dipole mo-
ments are either “permanent” dipole moments (like H20) or “induced” dipole moments
(or both, i.e., permanent moments enhanced by induction). An induced dipole moment

occurs when the external ~E field “stretches” a molecule by separating the positive and
negative charges a little. This creates a dipole moment.
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− +

E

p

ext

Inside the dielectric there is no excess charge. On the surface near the positively charged
plate, the dielectric has a build up of negative charge. Similarly, the negatively charged
plate attracts a buildup of positive charge in the dielectric. The dielectric is neutral
overall, i.e., no net charge, but it is polarized. The dielectric charges “screen” the charges
on the plate, making them less repulsive to each other and more willing to stay.

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−
+
−

+

−

+ + + + + + + + +

− − − − − − − − − − −

E
ext

For example, the positive charge on the upper plate is attracted to the negative charge
on the surface of the dielectric, so it is more willing to stay than before the dielectric was
there. (This is like feeling more comfortable at a party if you know some people there.)
Thus the dielectric enables us to put more charge on the capacitor plates, i.e., to increase
the capacitance.

E
ext

+

−

+ + + + + + + + +

− − − − − − − − − − −

+ + +

− − − −

++ +

− −

E
ind

Notice that the induced field ~Eind in the dielectric is opposite to ~Eext. As a result the
total field ~Etot between the plates is reduced.

~Etot = ~Eext + ~Eind, | ~Etot| < | ~Eext|

For a given amount of (free) charge Q on the plates, ∆V is reduced when the dielectric
is present. (“Free” charge refers to the charge that is not induced.)

∆V = −
∫

~Etot · d~s (22)

empty

∆V0 = Q/C

with dielectric

∆Vκ = Q/κC0
=⇒ ∆Vκ < ∆V0
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where Q is the free charge and κ > 1. To achieve a given voltage ∆V between the plates

Q0 = C0∆V Qκ = κC0∆V

=⇒ Qκ > Q0

Therefore a capacitor can hold more free charge with the dielectric. Charging the
capacitor to voltage ∆V stores energy U

U0 =
1

2

Q20
C0

=
1

2
C0(∆V )

2 < Uκ =
1

2

Q2κ
κC0

=
1

2
κC0(∆V )

2

More charge must be pumped onto the dielectric capacitor to achieve a given voltage
∆V . This takes more work. So more energy Uκ is stored.

Putting free charge Q on the capacitor stores energy U

U0 =
1

2
C0∆V

2
0 =

1

2

Q2

C0
> Uκ =

1

2
κC0(∆V )

2
κ =

1

2

Q2

κC0

It takes less work to put Q on the dielectric capacitor because the charge is screened.
Gauss’ law when a dielectric is present:

ε0

∮

κ~E · d~a = qfree

Capacitors in Circuits
Capacitors are important circuit elements. One way to charge a capacitor is to attach

it to a battery. You can think of a battery as a pump which takes plus charge from the
negatively charged plate and adds it to the positively charged plate.

+

−

+ +

− −
+

The battery keeps doing this until the voltage across the terminals of the battery equals
the voltage across the capacitor plates. Let’s draw a circuit diagram to show the setup
for doing this. An electric circuit is the path through which current flows.

−

+ V

S

high V

low V

wire

Battery
C

capacitor

switch

V∆
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Current starts to flow and the capacitor starts charging once the switch S is closed. Once
C is charged, it will stay charged even if S is opened, i.e., +q and −q stay on the plates.

Sometimes we have more than one capacitor in a circuit. It is convenient to replace
combinations of capacitors with an equivalent capacitor Ceq. This simplifies the circuit.
There are two basic combinations.

Capacitors in Parallel
Add capacitances to find the equivalent capacitance Ceq of capacitors in .

V

−

+
V∆ C C C

1 2 3

Capacitors are connected in parallel when a potential difference applied across their
combination results in that potential difference being applied across each capacitor. The
equivalent capacitor has the same amount of charge as all the parallel capacitors combined
and the same potential drop as all capacitors combined. In the case shown

q1 = C1∆V q2 = C2∆V q3 = C3∆V

total charge = q = q1 + q2 + q3 = C1∆V + C2∆V + C3∆V

= (C1 + C2 + C3)∆V

= Ceq∆V where Ceq = C1 + C2 + C3

Ceq is the equivalent capacitance of the single capacitor.

−

+ V C
V∆ eq

In general,

Ceq =
n
∑

i=1

Ci for capacitance in parallel

Add the capacitances for capacitors in parallel.

Capacitors in Series
Add capacitances to find the equivalent

inverse capacitance 1/Ceq of capacitors in .
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C
3

C
2

C
1

−

+
V∆ V

+q

−q
+q

−q

−q

+q

Capacitors are connected in series when the potential difference applied across the com-
bination is the sum of the potential differences across each capacitor. Ceq has the same
q and the same ∆V as the whole combination.

C
3

C
2

C
1

−

+
V∆ V

+q

−q
+q

−q

−q

+q

Notice that each capacitor in the series has the same amount of charge on it. To see this,
note that the boxed conductor is electrically isolated and therefore has no net charge.
The charges are merely separated into +q and −q. No charge can be transferred to the
isolated element.

q = C1∆V1 q = C2∆V2 q = C3∆V3

∆V1 =
q

C1
∆V2 =

q

C2
∆V3 =

q

C3

By the definition of being in series,

∆V = ∆V1 +∆V2 +∆V3 =
q

C1
+

q

C2
+

q

C3

= q
(

1

C1
+

1

C2
+

1

C3

)

= q
1

Ceq

1

Ceq

=
1

C1
+

1

C2
+

1

C3

Ceq =
1

1
C1

+ 1
C2

+ 1
C3

(23)

26



−

+ V C
V∆ eq

In general, for n capacitors in series

1

Ceq

=
n
∑

i=1

1

Ci

(24)
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