Physics 3B Week 8: Current and Direct Current Circuits

Name: Andrea Silvestri

TA: Andrea Silvestri

Day: Wednesday Date: February 27, 2008

Hour: 8.60 - 12 - 50

Problem 1 1.

A $\mathcal{E}=10$ Volt battery is connected across four resistors. (a) Find the voltage drop across each resistor. (b) Find the current through each resistor. The four resistors have resistance: (${f R}_1=1\Omega,$ $\mathbf{R}_2 = 4\Omega, \mathbf{R}_3 = 8\Omega, \mathbf{R}_4 = 2\Omega.$

circuit looks like this.

i

Resistors in porsilel:

F p: 8 Q + 2 D: 10 D;

the individual currents

$$I_{\perp} = \frac{\Delta V}{R} = \frac{10}{5} = \frac{2A}{1} = \frac{1}{R} = \frac{10}{10} = \frac{1}{10}$$

2. Problem 2

Vector $\mathbf{A}=-2\,\hat{\mathbf{j}}$ and vector $\mathbf{B}=3\,\hat{\mathbf{k}}$, calculate magnitude and direction of $\mathbf{C}=\mathbf{A}\times\mathbf{B}$, and draw the vectors in a Cartesian coordinate system, labeling all vectors $(\mathbf{A},\mathbf{B},\text{and }\mathbf{C})$.

2. Problem 2

Vector $\mathbf{A} = 2 \hat{\mathbf{j}}$ and vector $\mathbf{B} = 3 \hat{\mathbf{k}}$, calculate magnitude and direction of $\mathbf{C} = \mathbf{A} \times \mathbf{B}$, and draw the vectors in a Cartesian coordinate system, labeling all vectors $(\mathbf{A}, \mathbf{B}, \text{ and } \mathbf{C})$.

