Lectures on Chapter 24: Electromagnetic Waves

Absence of Magnetic Monopoles
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Recall that for electrostatics, a positive point charge has electric field lines that all point
out. It acts as a “source” of F field lines. A negative point charge has electric field lines
that all point toward it. It acts as a “sink” of FE field lines.
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We can regard point charges as electric “monopoles.” If we put “+” and “—” charge near
each other, we get an electric dipole where the electric field lines begin on the “+” and

end on the “-=.”
©

Are there magnetic monopoles or magnetic charges? The answer is no, though scien-
tists have searched for them. The simplest magnetic structure is a dipole. The field lines
of a bar magnet are those of a dipole. They start at N and end at S.
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We could try to isolate magnetic charges by breaking the magnet up into tiny pieces, but
we would just get tiny dipoles.



To express this mathematically, recall that Gauss’ law
coPp = so]{E - dd = Gene (1)

states that the flux of electric field through a closed surface is proportional to the charge
enclosed. Since there are no magnetic charges, there can be no net magnetic flux through
any closed surface:

@B:fé-dazo 2)

This is one of Maxwell’s equations. Any closed surface will have equal amounts of out-
going and incoming magnetic flux.
Changing E produces B
Faraday’s law tells us that a changing magnetic field can induce an electric field.

Cfa . dbs  d oo
6_7{CE-ds— =2 dt/B da (3)
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So if B is increasing and pointing into the page, Emd is counterclockwise. It turns out

that the converse is also true. Namely, a changing E field can produce a B field. Think
of a parallel plate capacitor that is charging up.
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As the charge on the plates increases, the E field between the plates increases. This
changing (increasing) F field produces a B field. Just as B field lines circle around a
current carrying wire, so the induced B field circles around the changing E field.
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Mathematically, we describe what’s going on by adding a term to Ampere’s law.

dd

%B‘dg = /L0[+M0€od—tE

— d —
B-ds = pol—i-uoeo—/E-d&
dt Js

Here the surface S is an imaginary surface pierced by the E field lines. The closed curve
C is the boundary of S. For the parallel plate capacitor, the surface S lies between the

plates and is parallel to the plates.
Notice that the added term has a “4” sign in front: +pueod®g/dt. (This is in contrast
to Faraday’s law where we had a minus sign and Lenz’s law.) The “+” sign means that

the B field goes in the same direction around the capacitor as it does around the current
carrying wire.

Soif E is increasing into the page, Eind is clockwise. (Notice that Eind is opposite to Eind
in the first figure which illustrated Faraday’s law.) We can get the direction of F from
the right hand rule: if your thumb is in the direction of increasing E, your fingers curl

in the direction of B.
Displacement Current:

We can write Ampere’s law
— 5 d — 5
}[B-dSZ/,L()I-F,U()&O—/E'da
dt Js
in the form
745 - d3 = pol + poly
where the displacement current [, is given by

d [ = .
Id:eO%/SE-da (4)
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Let’s calculate I, for a parallel plate capacitor where the plates each have area A. Then
the flux through a surface S between the plates is

/ E.di=EA (5)
S
50 d(EA) dE

Id = 607 = 5014% (6)

It turns out that this I; is equal to the conduction current I that is flowing in the wires
connected to the capacitor. To see this, note that

d

=%
dt

where ¢ is the charge flowing through the wire and onto the capacitor plate.
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We can relate ¢ and the E field between the plates with Gauss’ law:

€0 ?{ E dd = Genc
coFa = oa
where 0 = ¢/A and a is the area of the face of the Gaussian box.

o
E = — = L — q = EoEA
€0 oA
(or have the Gaussian surface cover the inner surface of the capacitor plate to get £ § E.
dd = egEA = q, ignoring fringing fields). So the current in the wires is

_dg_ d(EA) _ dE
= g 0T g oAy
— Id



There is another way to see the importance of the displacement current. Suppose we use
I= / J-da (7)
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where J = current density, to write Ampere’s law in the form

}[é-dg' - uo/f-dauruoeoi/ﬁ-da
c s dt Js
I

OF

,Uo/ a + poo Bt a
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Ampere’s law tells us that the line integral of the magnetic field around any closed loop
C is equal to ug times the current passing through a surface S bounded by the loop plus
ogo times the rate of change of the electric field integrated over the surface S. Now
we have a choice of surfaces If we choose S;, which lies in the plane of the loop, then
OF /0t =0 at S; but J # 0. (If the current I is steady in the wire, then E in the wire is
time independent.) So

]fé-ds":,m/f-da:,m[ 8)
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But if we choose the bag-shaped surface S, that encloses one plate of the capacitor, then
J(S2) = 0 because no electrons go through S,. However, 0F/0t|s, # 0, so

. OE
?{jB'dt?:MoSo/sE'da:MoId (9)

Since we’ve already shown that I = I;, we get the same result for fcé - ds, which is
good. Ampere’s law holds no matter which surface we choose.
Maxwell’s Equations
It was James Clerk Maxwell who added the term to Ampere’s law. He realized that a
changing electric field generates a magnetic field. We can now write down the four basic
equations of electricity and magnetism. These are called Maxwell’s equations:

}[ E.di = Jenc Gauss’ law
€0



B-di = 0 No magnetic monopoles

S
— d —
B.ds = -2% / B-di Faraday’s law
c dt Js
— d —
B-ds = pol + poco— / FE-da Ampere’s law
c dt Js

Gauss’ law and Faraday’s law tell us that electric charges and changing magnetic
fields generate electric fields. Ampere’s law tells us that electric currents and changing
electric fields generate magnetic fields. The coeflicient ppeo in Ampere’s law is related to
the speed of light:
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In fact, from Maxwell’s equations one can derive a wave equation that describes elec-
tromagnetic waves and light. Maxwell discovered that light consists of electromagnetic
waves. Radio waves, microwaves, and x-rays are all forms of electromagnetic waves de-
scribed by Maxwell’s equations. An electromagnetic wave consists of oscillating E and
B fields. E L B L k where k points in the direction that the wave is travelling. The
changing E field generates a changing B field and vice—versa. One example of a (linearly
polarized) electromagnetic wave traveling in the Z direction is

Cc=

= Emax cos(kx — wt)y
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Binax cos(kx — wt)2

Notice that E and B oscillate in space and time and that they are perpendicular to each
other and to the direction that the wave is travelling in. Maxell’s equations are incredibly
powerful. They are the basis for the operation of all electromagnetic and optical devices
such as electric motors, telescopes, cyclotrons, eyeglasses, television transmitters and
receivers, telephones, electromagnets, radar, and microwave ovens. These equations help
to explain natural phenomena such as rainbows and lightening. That so much can be
summed up in just four “simple” equations is the epitome of elegance.



